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BRIESKORN SPHERES BOUNDING RATIONAL BALLS
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(Communicated by David Futer)

Abstract. Fintushel and Stern showed that the Brieskorn sphere Σ(2, 3, 7)
bounds a rational homology ball, while its non-trivial Rokhlin invariant ob-
structs it from bounding an integral homology ball. It is known that their
argument can be modified to show that the figure-eight knot is rationally slice,
and we use this fact to provide the first additional examples of Brieskorn
spheres that bound rational homology balls but not integral homology balls:
the families Σ(2, 4n+1, 12n+5) and Σ(3, 3n+ 1, 12n+ 5) for n odd. We also
provide handlebody diagrams for a rational homology ball containing a ratio-
nally slice disk for the figure-eight knot, as well as for a rational homology ball
bounded by Σ(2, 3, 7). These handle diagrams necessarily contain 3-handles.

1. Introduction

A classic question in low-dimensional topology asks which 3-dimensional inte-
gral homology spheres smoothly bound integral homology balls. Due to their nice
properties, a reasonable starting point to address this question is to consider the
Brieskorn homology spheres Σ(p, q, r) = {xp + yq + zr = 0} ∩ S5 ⊂ C

3, with p, q, r
positive and relatively prime. A large number of Brieskorn spheres are known to
bound integral homology balls (or even contractible 4-manifolds), for example see
[AK79], [CH81], [Ste78], [FS81], and [Fic84]. One can weaken the above question
to ask which integral homology spheres bound rational homology balls; however,
it turns out that this has not helped much in producing more examples. Indeed
it appears to be a difficult problem to find Brieskorn spheres that bound rational
homology balls but not integral homology balls. Fintushel and Stern [FS84] pro-
vided the first example by constructing a rational homology ball bounded by the
Brieskorn sphere Σ(2, 3, 7). Since Σ(2, 3, 7) has Rokhlin invariant μ = 1, it cannot
bound an integral homology ball. In this note we give the first new examples. Us-
ing the fact that the figure-eight knot is rationally slice (see Section 3), a simple
observation shows that the μ = 1 Brieskorn sphere Σ(2, 3, 19) bounds a rational ho-
mology ball (Proposition 3). More interesting are two infinite families of Brieskorn
spheres.

Theorem 1. The Brieskorn spheres Σ(2, 4n+1, 12n+5) and Σ(3, 3n+1, 12n+5)
bound rational homology balls, and when n is odd they have μ = 1 and so do not
bound integral homology balls.

The difficulty of this problem is related to handle decompositions of 4-manifolds.
A simple homological argument shows that if an integral homology 3-sphere bounds
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a rational homology ball X that is not an integral homology ball, then any handle
decomposition of X must contain 3-handles. Therefore the difficulty of working
with handle decompositions with 3-handles points to the challenge and interest of
finding these examples.

One of the main motivations for our work relates to the group of integral ho-
mology spheres Θ3

Z and the group of rational homology spheres Θ3
Q. There is a

canonical homomorphism ψ : Θ3
Z → Θ3

Q induced by inclusion (see [AL16] for more
discussion of this homomorphism), and the work of [FS84] can be interpreted as
showing that the kernel of ψ is non-trivial. Since Σ(2, 3, 7) has infinite order in Θ3

Z

we get that the kernel contains a subgroup isomorphic to Z. Beyond this nothing
is known of its structure, but it seems likely that the kernel is in fact much larger.
Theorem 1 gives a large collection of additional Brieskorn spheres that represent
non-trivial elements in the kernel of ψ, but it is unknown if they are linearly inde-
pendent in Θ3

Z. Since Brieskorn spheres are often amenable to the computation of
gauge and Floer theoretic invariants, it is possible that the following is a tractable
question.

Question. Is some subset of the Brieskorn spheres Σ(2, 3, 7), Σ(2, 3, 19), Σ(2, 4n+
1, 12n+ 5), and Σ(3, 3n+ 1, 12n+ 5) linearly independent in Θ3

Z?

Now we outline the proof of Theorem 1. Recall that Σ(2, 3, 7) can be obtained
by +1-surgery on the figure-eight knot, and in fact the construction in [FS84] can
be modified to show that the figure-eight knot is rationally slice, that is, bounds
a smooth disk in a rational homology ball bounded by S3 (see [Cha07]). This
fact was apparently also known by Kawauchi1 [Kaw80], whose argument moreover
generalizes to show that all strongly negative-amphicheiral knots are rationally slice
(see [Kaw09], [KW16]). In Section 3 we give a handle proof that the figure-eight
knot is rationally slice. Our proof uses the fact that the linking circle (meridian)
of the 1-handle of −W+(0, 2) is slice in −W+(0, 2) (see p. 23 of [Akb16] for the
notation).

If Y denotes the 3-manifold obtained by 0-surgery on the figure-eight knot, it
then follows that Y bounds a 4-manifold with the rational homology of S1 ×D3.
Hence any homology sphere obtained by integral surgery on Y will bound a rational
homology ball (the surgery corresponds to attaching a 2-handle to the rational
homology S1 ×D3 which kills the non-torsion part of the homology). Theorem 1
is then proved by showing that each Σ(2, 4n+1, 12n+5) and Σ(3, 3n+1, 12n+5)
can be obtained by an integral surgery on Y . We do this in Section 2.

In Section 3 we give handle diagrams for some of the relevant rational homology
balls. In particular we give handle diagrams for a rational homology ball bounded
by Σ(2, 3, 7), and a rational homology ball bounded by S3 showing a rationally
slice disk for the figure-eight knot. While the arguments in [FS84] and [Cha07] are
constructive, they do not give explicit handle diagrams for the rational homology
balls they construct.

1Kawauchi adds an extra algebraic condition in his definition of rationally slice and shows that
the (2,1)-cable of the figure-eight knot satisfies this stronger condition. However, it is implicit in
his argument that the figure-eight knot satisfies the weaker definition we use.
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Figure 1. On the left we have the knotKn, where the box denotes
n full right-handed twists. In the middle is Σ(2, 3, 7), and on the
right is Σ(2, 3, 19).

2. Proof of Theorem 1

We start with the following lemma whose proof was outlined in Section 1. As
before, let Y denote 0-surgery on the figure-eight knot.

Lemma 2. Any integral homology sphere obtained by integral surgery on Y bounds
a rational homology ball.

Proof. Let X be a rational homology ball with boundary S3 such that the figure-
eight knot bounds a smooth properly embedded disk D in X (for example, see
Section 3). Then the Mayer-Vietoris long exact sequence shows that C := X \ νD
has the rational homology of S1 × D3. The manifold C has boundary Y (the
induced framing on ∂D is the 0-framing on the figure-eight knot because gluing D
to a Seifert surface for the figure-eight knot gives a closed surface in X, a 4-manifold
with trivial intersection form). An integral surgery on Y corresponds to attaching a
2-handle to C. If the resulting 3-manifold is an integral homology sphere, then the
4-manifold W obtained by attaching the corresponding 2-handle to C must be a
rational homology ball, as can be seen from the Mayer-Vietoris long exact sequence
and the long exact sequence of the pair (W,∂W ). �

We remark that in the previous lemma we can use 0-surgery on any rationally
slice knot, and not just the figure-eight knot.

Proposition 3. Σ(2, 3, 19) bounds a rational homology ball.

Proof. Using Lemma 2 it suffices to show that Σ(2, 3, 19) can be obtained by an inte-
gral surgery on Y . The Brieskorn sphere Σ(2, 3, 6n+1) admits a surgery description
as +1-surgery on the twist knot Kn defined as in Figure 1 (for this and plumbing
descriptions of Brieskorn spheres see [Sav02]). Note that K1 is the figure-eight
knot. Blowing down the −1-framed components in the middle and right pictures of
Figure 1 results in +1-surgery on K1 and K3, respectively, showing that Σ(2, 3, 7)
and Σ(2, 3, 19) bound rational homology balls. �

Proof of Theorem 1. For the families Σ(2, 4n+1, 12n+5) and Σ(3, 3n+1, 12n+5)
we use the dual approach, giving integral surgeries from their canonical negative
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definite plumbings to Y . For Σ(2, 4n+ 1, 12n+ 5) these plumbings take the form
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and for Σ(3, 3n+ 1, 12n+ 5) we have
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When n = 1 we get Σ(2, 5, 17) and Σ(3, 4, 17). Surgery diagrams for their canon-
ical negative definite plumbings appear as the gray components in Figure 2 and
Figure 3, and the black component gives the necessary surgery to Y . This can be
seen from a straightforward sequence of blowdowns which we leave to the reader.

Now we describe an iterative procedure to obtain the whole families. Starting
with the plumbing for either Σ(2, 5, 17) or Σ(3, 4, 17), in Figure 2 or Figure 3 we can
blow up to unlink the black −1-framed component from the −2-framed component.
This is demonstrated in Figure 4. The result is to lower the framing of the −2-
framed component to −3, and the previous surgery curve becomes a −2-framed
component in the bottom chain. If we forget about the newly introduced −1-framed
unknot we see a plumbing for the n = 2 case, and the −1-framed unknot again
provides the required surgery to Y since blowing up does not change the boundary
3-manifold. It is clear that we can keep blowing up in this fashion, each time
adding a −2-framed component to the bottom chain and decreasing the framing on
the appropriate component in the upper-right chain by 1. Hence if we start with
Σ(2, 5, 17), blowing up in this way will generate the family Σ(2, 4n+1, 12n+5), and
starting with Σ(3, 4, 17) generates Σ(3, 3n+1, 12n+5). In each case the −1-framed
unknot coming from the blow up provides the surgery to Y , and so by Lemma 2
these Brieskorn spheres bound rational homology balls.

It is not hard to compute the Rokhlin invariant for our examples from the di-
agrams of their canonical negative definite plumbings, as described for example
in [NR78]. In fact it is just as easy to compute the more powerful Neumann-
Siebenmann μ̄ invariant [Neu80]. The plumbings have signature −5− n, and when
n is odd the square of their spherical Wu class is −13 − n. Hence for odd n these
Brieskorn spheres have μ̄ = (−5 − n) − (−13 − n) = 8. Since μ = μ̄

8 mod (2), we
see that these examples have non-trivial Rokhlin invariant. �
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−2 −1 −4 −2 −3

−5 −1

Figure 2. An integral surgery from Σ(2, 5, 17) to Y .

−3 −1 −3 −2 −4

−4 −1

Figure 3. An integral surgery from Σ(3, 4, 17) to Y .
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Figure 4. Blowing up in the diagram.

3. Handle diagrams

Here we will first construct a rational ball W0 with boundary S3 where the
figure-eight knot K is slice. Then by blowing down this slice disk we will get a
specific handlebody of a rational ball W which Σ(2, 3, 7) bounds. We start with
the figure-eight knot in S3 = ∂B4, drawn as the yellow curve in Figure 6. Then we
attach a canceling 2/3 handle pair to B4. After this, we apply the obvious boundary
diffeomorphisms to get the last picture of Figure 6. Then we go from Figure 6 to



1822 SELMAN AKBULUT AND KYLE LARSON

Figure 7 by applying the local diffeomorphism described in Figure 5. This brings
us to the first picture of Figure 7. Then an isotopy and handle slide (indicated by
the dotted arrow) and turning a zero framed 2-handle to a dotted circle gives us
the last picture of Figure 7, which is a rational ball and the figure-eight knot K
(drawn in yellow color) is obviously slice there. Then by blowing down this slice
K, in Figure 8 with +1-framing, gives a rational ball W which Σ(2, 3, 7) bounds.
The notation in Figure 8 means that everything going through K is twisted by a
−1-twist. From the picture we see that W has one 1-handle, two 2-handles, and
one 3-handle.
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