CONFIRMING A q-TRIGONOMETRIC CONJECTURE OF GOSPER

MOHAMED EL BACHRAOUI

(Communicated by Mourad Ismail)

Abstract

We shall confirm a conjecture of Gosper on the q-analogue of the function $\cos (2 z)$ and we shall give a short proof for his other related identity on the q-analogue of $\sin (2 z)$ which was recently proved by Mező.

1. Introduction

Throughout the paper let $q=e^{\pi i \tau}$ with $\operatorname{Im}(\tau)>0$, let $\tau^{\prime}=-\frac{1}{\tau}$, and let $p=e^{\pi i \tau^{\prime}}$. Note that the assumption $\operatorname{Im}(\tau)>0$ guarantees that $|q|<1$ and $|p|<1$. For a complex variable a, the q-shifted factorials are given by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right), \quad(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n},
$$

and for brevity let

$$
\left(a_{1}, \ldots, a_{k} ; q\right)_{n}=\left(a_{1} ; q\right)_{n} \cdots\left(a_{k} ; q\right)_{n}, \quad\left(a_{1}, \ldots, a_{k} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty} \cdots\left(a_{k} ; q\right)_{\infty} .
$$

The four Jacobi's theta functions (with nome q) are defined as follows:

$$
\begin{aligned}
& \theta_{1}(z, q)=\theta_{1}(z \mid \tau)=2 \sum_{n=0}^{\infty}(-1)^{n} q^{(2 n+1)^{2} / 4} \sin (2 n+1) z, \\
& \theta_{2}(z, q)=\theta_{2}(z \mid \tau)=2 \sum_{n=0}^{\infty} q^{(2 n+1)^{2} / 4} \cos (2 n+1) z \\
& \theta_{3}(z, q)=\theta_{3}(z \mid \tau)=1+2 \sum_{n=1}^{\infty} q^{n^{2}} \cos 2 n z \\
& \theta_{4}(z, q)=\theta_{4}(z \mid \tau)=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}} \cos 2 n z
\end{aligned}
$$

A standard reference for information about theta functions is the book by Whittaker and Watson [11]. By Jacobi's triple product identity (see [11, p. 469] and [3, p. 15])

$$
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} z^{n}=\left(z q, z^{-1} q, q^{2} ; q^{2}\right)_{\infty}
$$

Received by the editors February 2, 2017, and, in revised form, May 18, 2017.
2010 Mathematics Subject Classification. Primary 33E05, 11F11, 11F12.
Key words and phrases. q-trigonometric functions; elliptic functions, theta function identities.
it can be seen that each of the Jacobi's theta functions have infinite product representations. In particular, we have

$$
\theta_{1}(z \mid \tau)=i q^{\frac{1}{4}} e^{-i z}\left(q^{2} e^{-2 i z}, e^{2 i z}, q^{2} ; q^{2}\right)_{\infty}
$$

and

$$
\theta_{2}(z \mid \tau)=q^{\frac{1}{4}} e^{-i z}\left(-q^{2} e^{-2 i z},-e^{2 i z}, q^{2} ; q^{2}\right)_{\infty} .
$$

It is clear that the function θ_{1} is odd and the function θ_{2} is even. For the purpose of this work we will need the following basic properties of θ_{1} and θ_{2} which can be derived straightforwardly by the definitions:

$$
\begin{align*}
\theta_{1}(k \pi) & =0 \quad(k \in \mathbb{Z}), \\
\theta_{1}(z+\pi \mid \tau) & =-\theta_{1}(z \mid \tau), \tag{1}\\
\theta_{1}(z+\pi \tau \mid \tau) & =-q^{-1} e^{-2 i z} \theta_{1}(z \mid \tau), \\
\theta_{1}\left(z+\pi \tau \left\lvert\, \frac{\tau}{2}\right.\right) & =q^{-2} e^{-4 i z} \theta_{1}\left(z \left\lvert\, \frac{\tau}{2}\right.\right), \\
\theta_{2}\left(k \frac{\pi}{2}\right) & =0 \quad(k \in \mathbb{Z}), \\
\theta_{2}(z \mid \tau) & =\theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, \tau\right), \tag{2}\\
\theta_{2}(z+\pi \tau \mid \tau) & =q^{-1} e^{-2 i z} \theta_{2}(z \mid \tau) .
\end{align*}
$$

Jacobi's imaginary transformation for the function θ_{1} states that

$$
\begin{equation*}
\theta_{1}(z \mid \tau)=(-i \tau)^{-\frac{1}{2}}(-i) e^{\frac{i \tau^{\prime} z^{2}}{\pi}} \theta_{1}\left(z \tau^{\prime} \mid \tau^{\prime}\right) \tag{3}
\end{equation*}
$$

See [11, p. 475]. Gosper [4 introduced q-analogues of $\sin (z)$ and $\cos (z)$ as follows:

$$
\begin{gathered}
\sin _{q}(\pi z)=q^{(z-1 / 2)^{2}} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n-2 z}\right)\left(1-q^{2 n+2 z-2}\right)}{\left(1-q^{2 n-1}\right)^{2}}=q^{\left(z-\frac{1}{2}\right)^{2}} \frac{\left(q^{2 z}, q^{2-2 z} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}^{2}} \\
\cos _{q}(\pi z)=q^{z^{2}} \prod_{n=1}^{\infty} \frac{\left(1-q^{2 n-2 z-1}\right)\left(1-q^{2 n+2 z-1}\right)}{\left(1-q^{2 n-1}\right)^{2}}=q^{z^{2}} \frac{\left(q^{1+2 z}, q^{1-2 z} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}^{2}}
\end{gathered}
$$

It is easy to see that $\cos _{q}(z)=\sin _{q}(\pi / 2-z)$. Gosper proved a variety of identities involving these two functions. In particular, he showed that both $\sin _{q}(z)$ and $\cos _{q}(z)$ in fact are ratios of Jacobi's theta functions with nome p. More specifically, he showed that

$$
\sin _{q}(z)=\frac{\theta_{1}(z, p)}{\theta_{1}\left(\frac{\pi}{2}, p\right)} \quad \text { where }(\ln p)(\ln q)=\pi^{2}
$$

which is readily seen to be equivalent to

$$
\begin{equation*}
\sin _{q}(z)=\frac{\theta_{1}\left(z \mid \tau^{\prime}\right)}{\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right)} \tag{4}
\end{equation*}
$$

As to $\cos _{q}(z)$, clearly the formula (4) combined with the identities $\cos _{q}(z)=$ $\sin _{q}(\pi / 2-z)$ and $\theta_{1}(z+\pi)=-\theta_{1}(z)$ yield

$$
\begin{equation*}
\cos _{q}(z)=\frac{\theta_{1}\left(z+\frac{\pi}{2}, p\right)}{\theta_{1}\left(\frac{\pi}{2}, p\right)}=\frac{\theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right)}{\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right)} . \tag{5}
\end{equation*}
$$

See Gosper [4, p. 98]. The author after introducing the function $\cos _{q} z$ proved that

$$
\begin{equation*}
\sin _{q}(2 z)=q^{-\frac{1}{4}} \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{4}}{\left(q ; q^{2}\right)_{\infty}^{2}} \cdot \sin _{q^{2}}(z) \cos _{q^{2}}(z) \tag{6}
\end{equation*}
$$

which can be seen to be a q-analogue for the famous trigonometric identity $\sin 2 z=$ $2 \sin z \cos z$; refer to [4, p. 92]. Mező [8] gave another proof for (6). Besides, in an attempt to give a q-analogue for the related identity $\cos 2 z=\cos ^{2} z-\sin ^{2} z$, Gosper conjectured that

$$
\begin{equation*}
\cos _{q}(2 z)=\left(\cos _{q^{2}}(z)\right)^{2}-\left(\sin _{q^{2}}(z)\right)^{2} \tag{7}
\end{equation*}
$$

and noted that he found "empirical confirmation"; see Gosper [4, p. 93]. Note that taking into account the relations (4) and (5), formula (7) can be written as

$$
\frac{\theta_{1}\left(\left.2 z+\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right)}{\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right)}=\left(\frac{\theta_{1}\left(z+\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}{\theta_{1}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}\right)^{2}-\left(\frac{\theta_{1}\left(z \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}{\theta_{1}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}\right)^{2}
$$

which after rearrangement becomes

$$
\begin{aligned}
& \theta_{1}\left(\left.2 z+\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) \\
& \quad=\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}^{2}\left(z+\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)-\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}^{2}\left(z \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) .
\end{aligned}
$$

Furthermore, again by virtue of (4) and (5) note that formula (6) means

$$
\frac{\theta_{1}\left(2 z \mid \tau^{\prime}\right)}{\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right)}=C(q) \frac{\theta_{1}\left(z \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}{\theta_{1}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)} \cdot \frac{\theta_{1}\left(z+\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}{\theta_{1}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}
$$

or equivalently,

$$
\theta_{1}\left(2 z \mid \tau^{\prime}\right) \theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)=C(q) \theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}\left(z \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) \theta_{1}\left(z+\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)
$$

Therefore, Gosper's identities (6) and (77) both can be seen as three-term addition formulas involving theta functions. The theory of elliptic functions proved to be a powerful tool to study this type of addition formulas. For recent papers dealing with addition formulas using elliptic functions, we refer to Liu 6, 7]. See also Whittaker and Watson [11, Lawden [5, and Shen [9,10] for more additive formulas involving theta functions and applications. In this paper we will confirm conjecture (77) and we will reproduce a short proof for formula (6) by employing the theory of elliptic functions. We shall prove the following results.

Theorem 1. For all complex number z we have

$$
\begin{aligned}
\theta_{1}\left(\left.2 z+\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) & =\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}^{2}\left(z+\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) \\
& -\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}^{2}\left(z \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)
\end{aligned}
$$

Theorem 2. For all complex number z we have

$$
\theta_{1}\left(2 z \mid \tau^{\prime}\right) \theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)=C(q) \theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau^{\prime}\right) \theta_{1}\left(z \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) \theta_{1}\left(z+\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)
$$

where

$$
C(q)=\frac{\theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}{\theta_{1}^{2}\left(\frac{\pi}{4} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}=q^{-\frac{1}{4}} \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{4}}{\left(q ; q^{2}\right)_{\infty}^{2}}
$$

It turns out that Theorem 11 and Theorem 2 are direct consequences of the following result.

Theorem 3. For all complex number x, y, and z we have

$$
\begin{aligned}
& \theta_{1}(z-x-y \mid \tau) \theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.z-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \\
= & \theta_{1}(y-x-z \mid \tau) \theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.y-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \\
- & \theta_{1}(x-y-z \mid \tau) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.x-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) .
\end{aligned}
$$

To prove Theorem 3, we shall need the following more general result.
Theorem 4. Let $f(u)$ be an entire function such that

$$
f(u+\pi)=-f(u) \quad \text { and } f\left(u+\frac{\pi \tau}{2}\right)=q^{-\frac{1}{2}} e^{-2 i u} f(u)
$$

Then for all complex numbers x, y, and z we have

$$
\begin{aligned}
\frac{\theta_{1}(z-x-y \mid \tau) f(z)}{\theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right)} & =\frac{\theta_{1}(y-x-z \mid \tau) f(y)}{\theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right)} \\
& -\frac{\theta_{1}(x-y-z \mid \tau) f(x)}{\theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right)}
\end{aligned}
$$

2. Proof of Theorem 4

Let

$$
g(u)=\frac{\theta_{1}(2 u-x-y-z \mid \tau) f(u)}{\theta_{1}\left(u-x \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(u-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(u-z \left\lvert\, \frac{\tau}{2}\right.\right)},
$$

where x, y, and z are different from the zeros of $\theta_{1}(2 u-x-y-z \mid \tau) f(u)$. Suppose for the moment that $0<x, y, z<\pi$. Then by the properties of the function θ_{1} and the assumptions on the function $f(u)$ we can easily check that

$$
g(u+\pi)=g(u) \quad \text { and } g\left(u+\frac{\pi \tau}{2}\right)=g(u)
$$

showing that $g(u)$ is an elliptic function with periods π and $\frac{\pi \tau}{2}$. Clearly, the function $g(u)$ has simple poles at x, y, and z in the fundamental parallelogram $0, \pi, \frac{\pi \tau}{2}, \pi+\frac{\pi \tau}{2}$. We have

$$
\begin{align*}
\operatorname{Res}(g ; x) & =\lim _{u \rightarrow x} \frac{u-x}{\theta_{1}\left(u-x \left\lvert\, \frac{\tau}{2}\right.\right)} \cdot \frac{\theta_{1}(x-y-z \mid \tau) f(x)}{\theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right)} \tag{8}\\
& =\frac{\theta_{1}(x-y-z \mid \tau) f(x)}{\theta^{\prime}\left(0 \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right)}
\end{align*}
$$

and similarly,

$$
\begin{align*}
\operatorname{Res}(g ; y) & =\frac{\theta_{1}(y-x-z \mid \tau) f(y)}{\theta^{\prime}\left(0 \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y-x \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right)} \tag{9}\\
\operatorname{Res}(g ; z) & =\frac{\theta_{1}(z-x-y \mid \tau) f(z)}{\theta^{\prime}\left(0 \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(z-x \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(z-y \left\lvert\, \frac{\tau}{2}\right.\right)}
\end{align*}
$$

Hence by the residue theorem for elliptic functions and the formulas in (8) and (9) we obtain the desired identity which holds for all complex x, y, and z by analytic continuation.

3. Proof of Theorem 3

Let $f(u)=\theta_{2}\left(u \left\lvert\, \frac{\tau}{2}\right.\right)$. Then it is easily verified by the properties (2) that the function $f(u)$ satisfies the two conditions of Theorem 4 and so,

$$
\begin{aligned}
\frac{\theta_{1}(z-x-y \mid \tau) \theta_{2}\left(z \left\lvert\, \frac{\tau}{2}\right.\right)}{\theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right)} & =\frac{\theta_{1}(y-x-z \mid \tau) \theta_{2}\left(y \left\lvert\, \frac{\tau}{2}\right.\right)}{\theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right)} \\
& -\frac{\theta_{1}(x-y-z \mid \tau) \theta_{2}\left(x \left\lvert\, \frac{\tau}{2}\right.\right)}{\theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right)}
\end{aligned}
$$

Now rearranging and using the basic fact $\theta_{2}(z \mid \tau)=\theta_{1}(z-\pi / 2 \mid \tau)$, the previous formula yields

$$
\begin{aligned}
& \theta_{1}(z-x-y \mid \tau) \theta_{1}\left(x-y \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.z-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \\
= & \theta_{1}(y-x-z \mid \tau) \theta_{1}\left(x-z \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.y-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \\
- & \theta_{1}(x-y-z \mid \tau) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.x-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right),
\end{aligned}
$$

as desired.

4. Proof of Theorem 1

Letting in Theorem 3, $x-z=y-\pi / 2, y-z=x-3 \pi / 2$, and so $z=\pi$, gives

$$
\begin{array}{r}
\theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.\pi-2 y-\frac{\pi}{2} \right\rvert\, \tau\right)=\theta_{1}\left(\left.-\frac{3 \pi}{2} \right\rvert\, \tau\right) \theta_{1}^{2}\left(\left.y-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \\
-\theta_{1}\left(\left.-\frac{\pi}{2} \right\rvert\, \tau\right) \theta_{1}\left(y-\pi \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(y \left\lvert\, \frac{\tau}{2}\right.\right)
\end{array}
$$

which by the basic properties (1) is equivalent to

$$
-\theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.2 y-\frac{\pi}{2} \right\rvert\, \tau\right)=\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau\right) \theta_{1}^{2}\left(\left.y-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right)-\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau\right) \theta_{1}^{2}\left(y \left\lvert\, \frac{\tau}{2}\right.\right) .
$$

Then using the substitution $z:=y-\pi / 2$ in the previous identity gives the desired formula.

5. Proof of Theorem 2

Let $z=y-x$ in Theorem 3 and use the basic properties in (11) to get

$$
\begin{aligned}
& \theta_{1}(2 x \mid \tau) \theta_{1}\left(y-x \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.y-x-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \\
& =\theta_{1}(2 y-2 x \mid \tau) \theta_{1}\left(x \left\lvert\, \frac{\tau}{2}\right.\right) \theta_{1}\left(\left.x-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) .
\end{aligned}
$$

Then the substitution $z:=x-\pi / 2$ in the previous identity implies

$$
\begin{aligned}
& \theta_{1}(2 z+\pi \mid \tau) \theta_{1}\left(\left.y-z-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \theta_{1}\left(y-z-\pi \left\lvert\, \frac{\tau}{2}\right.\right) \\
& \quad=\theta_{1}(2 y-2 z-\pi \mid \tau) \theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \theta_{1}\left(z \left\lvert\, \frac{\tau}{2}\right.\right)
\end{aligned}
$$

or, equivalently

$$
\begin{aligned}
& -\theta_{1}(2 z \mid \tau) \theta_{1}\left(\left.y-z-\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \theta_{1}\left(y-z \left\lvert\, \frac{\tau}{2}\right.\right) \\
& =\theta_{1}(2 y-2 z \mid \tau) \theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \theta_{1}\left(z \left\lvert\, \frac{\tau}{2}\right.\right)
\end{aligned}
$$

Finally, let in the previous identity $y-z=\pi / 4$ to get

$$
\theta_{1}(2 z \mid \tau) \theta_{1}^{2}\left(\frac{\pi}{4} \left\lvert\, \frac{\tau}{2}\right.\right)=\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau\right) \theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \theta_{1}\left(z \left\lvert\, \frac{\tau}{2}\right.\right)
$$

or, equivalently

$$
\theta_{1}(2 z \mid \tau) \theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau}{2}\right.\right)=\frac{\theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau}{2}\right.\right)}{\theta_{1}^{2}\left(\frac{\pi}{4} \left\lvert\, \frac{\tau}{2}\right.\right)} \theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, \tau\right) \theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, \frac{\tau}{2}\right) \theta_{1}\left(z \left\lvert\, \frac{\tau}{2}\right.\right)
$$

It remains to prove that if we replace τ by τ^{\prime} in the previous identity, then

$$
\begin{equation*}
\frac{\theta_{1}^{2}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}{\theta_{1}^{2}\left(\frac{\pi}{4} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right)}=q^{-\frac{1}{4}} \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{4}}{\left(q ; q^{2}\right)_{\infty}^{2}} \tag{10}
\end{equation*}
$$

Indeed, by virtue of Jacobi's imaginary transformation (3) we have

$$
\begin{align*}
\theta_{1}\left(\frac{\pi}{2} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) & =\left(-i \frac{\tau^{\prime}}{2}\right)^{-\frac{1}{2}}(-i) e^{i(2 \tau) \frac{\pi}{4}} \theta_{1}\left(\left.\frac{\pi}{2}(2 \tau) \right\rvert\, 2 \tau\right) \\
& =\left(-i \frac{\tau^{\prime}}{2}\right)^{-\frac{1}{2}}(-i) q^{\frac{1}{2}} i q^{-\frac{1}{2}}\left(q^{2}, q^{2}, q^{4} ; q^{4}\right)_{\infty} \tag{11}\\
& =\left(-i \frac{\tau^{\prime}}{2}\right)^{-\frac{1}{2}}\left(q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}
\end{align*}
$$

and similarly,

$$
\begin{align*}
\theta_{1}\left(\frac{\pi}{4} \left\lvert\, \frac{\tau^{\prime}}{2}\right.\right) & =\left(-i \frac{\tau^{\prime}}{2}\right)^{-\frac{1}{2}}(-i) e^{i(2 \tau) \frac{\pi}{16}} i q^{\frac{1}{2}} e^{-i \frac{\pi \tau}{2}}\left(q^{3}, q, q^{4} ; q^{4}\right)_{\infty} \tag{12}\\
& =\left(-i \frac{\tau}{2}\right)^{-\frac{1}{2}} q^{\frac{1}{8}}\left(q ; q^{2}\right)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}
\end{align*}
$$

Finally take the squares in the relations (11) and (12) and divide to establish identity (10). This completes the proof.

References

[1] Tom M. Apostol, Modular functions and Dirichlet series in number theory, 2nd ed., Graduate Texts in Mathematics, vol. 41, Springer-Verlag, New York, 1990. MR1027834
[2] Bruce C. Berndt, Ramanujan's notebooks, Math. Mag. 51 (1978), no. 3, 147-164, DOI 10.2307/2689995. MR0497733
[3] George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR2128719
[4] R. Wm. Gosper, Experiments and discoveries in q-trigonometry, Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), Dev. Math., vol. 4, Kluwer Acad. Publ., Dordrecht, 2001, pp. 79-105, DOI 10.1007/978-1-4613-0257-5_6. MR1880081
[5] Derek F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, vol. 80, Springer-Verlag, New York, 1989. MR1007595
[6] Zhi-Guo Liu, A theta function identity and its implications, Trans. Amer. Math. Soc. 357 (2005), no. 2, 825-835, DOI 10.1090/S0002-9947-04-03572-X. MR2095632
[7] Zhi-Guo Liu, An addition formula for the Jacobian theta function and its applications, Adv. Math. 212 (2007), no. 1, 389-406, DOI 10.1016/j.aim.2006.10.005. MR2319774
[8] István Mező, Duplication formulae involving Jacobi theta functions and Gosper's q trigonometric functions, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2401-2410, DOI 10.1090/S0002-9939-2013-11576-5. MR 3043021
[9] Li-Chien Shen, On the additive formulae of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5, Trans. Amer. Math. Soc. 345 (1994), no. 1, 323-345, DOI 10.2307/2154606. MR 1250827
[10] Li-Chien Shen, On some modular equations of degree 5, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1521-1526, DOI 10.2307/2161143. MR1273524
[11] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR1424469

Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates

E-mail address: melbachraoui@uaeu.ac.ae

