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WHEN IS R� I AN ALMOST GORENSTEIN LOCAL RING?

SHIRO GOTO AND SHINYA KUMASHIRO

(Communicated by Irena Peeva)

Abstract. Let (R,m) be a Gorenstein local ring of dimension d > 0 and let
I be an ideal of R such that (0) �= I � R and R/I is a Cohen-Macaulay ring
of dimension d. There is given a complete answer to the question of when the
idealization A = R � I of I over R is an almost Gorenstein local ring.

1. Introduction

Let (R,m) be a Gorenstein local ring of dimension d > 0 with infinite residue
class field. Assume that R is a homomorphic image of a regular local ring. With
this notation the purpose of this paper is to prove the following theorem.

Theorem 1.1. Let I be a non-zero ideal of R and suppose that R/I is a Cohen-
Macaulay ring of dimension d. Let A = R � I denote the idealization of I over R.
Then the following conditions are equivalent:

(1) A = R� I is an almost Gorenstein local ring.
(2) R has the presentation R = S/[(X) ∩ (Y )] where S is a regular local ring

of dimension d+ 1 and X,Y is a part of a regular system of parameters of
S such that I = XR.

The notion of an almost Gorenstein local ring (AGL ring for short) is one of
the generalizations of Gorenstein rings, which originated in the paper [1] of V.
Barucci and R. Fröberg in 1997. They introduced the notion for one-dimensional
analytically unramified local rings and developed a beautiful theory, investigating
the semigroup rings of numerical semigroups. In 2013 the first author, N. Matsuoka,
and T. T. Phuong [5] extended the notion to arbitrary Cohen-Macaulay local rings
but still of dimension one. The research of [5] has been succeeded by two works
[11] and [3] in 2015 and 2017, respectively. In [3] one can find the notion of a
2-almost Gorenstein local ring (2-AGL ring for short) of dimension one, which is
a generalization of AGL rings. Using the Sally modules of canonical ideals, the
authors show that 2-AGL rings behave well as if they were twins of AGL rings.
The purpose of the research [11] of the first author, R. Takahashi, and N, Taniguchi
started in a different direction. They have extended the notion of an AGL ring to
higher dimensional Cohen-Macaulay local/graded rings, using the notion of Ulrich
modules ([2]). Here let us briefly recall their definition for the local case.
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Definition 1.2. Let (R,m) be a Cohen-Macaulay local ring of dimension d, pos-
sessing the canonical module KR. Then we say that R is an AGL ring, if there
exists an exact sequence

0 → R → KR → C → 0

of R-modules such that either C = (0) or C �= (0) and μR(C) = e0m(C), where
μR(C) denotes the number of elements in a minimal system of generators of C and

e0m(C) = lim
n→∞

(d− 1)!·�R(C/mn+1C)

nd−1

denotes the multiplicity of C with respect to the maximal ideal m (here �R(∗) stands
for the length).

We explain a little about Definition 1.2. Let (R,m) be a Cohen-Macaulay local
ring of dimension d and assume that R possesses the canonical module KR. The
condition of Definition 1.2 requires that R is embedded into KR and even though
R �= KR, the difference C = KR/R between KR and R is an Ulrich R-module
([2]) and behaves well. In particular, the condition is equivalent to saying that
mC = (0), when dimR = 1 ([11, Proposition 3.4]). In general, if R is an AGL
ring of dimension d > 0, then Rp is a Gorenstein ring for every p ∈ AssR, because
dimR C ≤ d− 1 ([11, Lemma 3.1]).

The research on almost Gorenstein local/graded rings is still in progress, ex-
ploring, e.g., the problem of when the Rees algebras of ideals/modules are almost
Gorenstein rings (see [6–10, 15]) and the reader can consult [11] for several basic
results on almost Gorenstein local/graded rings. For instance, non-Gorenstein AGL
rings are G-regular in the sense of [14] and all the known Cohen-Macaulay local
rings of finite Cohen-Macaulay representation type are AGL rings. Besides, the
authors explored the question of when the idealization A = R�M is an AGL ring,
where (R,m) is a Cohen-Macaulay local ring and M is a maximal Cohen-Macaulay
R-module. Because A = R � M is a Gorenstein ring if and only if M ∼= KR as
an R-module ([13]), this question seems quite natural and in [11, Section 6] the
authors actually gave a complete answer to the question in the case where M is a
faithful R-module, that is, the case (0) :R M = (0). However, the case where M is
not faithful has been left open, which our Theorem 1.1 settles in the special case
where R is a Gorenstein local ring and M = I is an ideal of R such that R/I is a
Cohen-Macaulay ring with dimR/I = dimR. For the case where dimR/I = d but
depthR/I = d− 1 the question remains open (see Remark 2.6).

2. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. To begin with, let us fix
our notation. Unless otherwise specified, throughout this paper let (R,m) be a
Gorenstein local ring with d = dimR > 0. Let I be a non-zero ideal of R such that
R/I is a Cohen-Macaulay ring with dimR/I = d. Let A = R�I be the idealization
of I over R. Therefore, A = R ⊕ I as an R-module and the multiplication in A is
given by

(a, x)(b, y) = (ab, bx+ ay)

where a, b ∈ R and x, y ∈ I. Hence A is a Cohen-Macaulay local ring with dimA =
d, because I is a maximal Cohen-Macaulay R-module.



WHEN IS R � I AN ALMOST GORENSTEIN LOCAL RING? 1433

For each R-module N let N∨ = HomR(N,R). We set L = I∨ ⊕ R and consider
L to be an A-module under the following action of A:

(a, x) ◦ (f, y) = (af, f(x) + ay),

where (a, x) ∈ A and (f, y) ∈ L. Then it is standard to check that the map

A∨ → L, α �→ (α ◦ j, α(1))
is an isomorphism of A-modules, where j : I → A, x �→ (0, x) and 1 = (1, 0)
denotes the identity of the ring A. Hence by [12, Satz 5.12] we get the following.

Fact 2.1. KA = L, where KA denotes the canonical module of A.

We set J = (0) :R I. Let ι : I → R denote the embedding. Then taking the
R-dual of the exact sequence

0 → I
ι−→ R → R/I → 0,

we get the exact sequence

0 → (R/I)∨ → R∨ ι∨−→ I∨ → 0 = Ext1R(R/I,R) → · · ·
of R-modules, which shows I∨ = R·ι. Hence J = (0) :R I∨ because I = I∨∨

([12, Korollar 6.8]), so that I∨ = R·ι ∼= R/J as an R-module. Hence I ∼= (R/J)∨ =
KR/J ([12, Satz 5.12]). Therefore, taking again the R-dual of the exact sequence

0 → J → R∨ ι∨−→ I∨ → 0,

we get the exact sequence 0 → I
ι−→ R → J∨ → 0 of R-modules, whence J∨ ∼= R/I,

so that J ∼= (R/I)∨ = KR/I . Summarizing the arguments, we get the following.

Fact 2.2. I ∼= (R/J)∨ = KR/J and J ∼= (R/I)∨ = KR/I .

Notice that r(A) = 2 by [12, Satz 6.10] where r(A) denotes the Cohen-Macaulay
type of A, because A is not a Gorenstein ring (as I �∼= R; see [13]) but KA is
generated by two elements; KA = R·(ι, 0) +R·(0, 1).

We denote byM = m×I the maximal ideal of A. Let us begin with the following.

Lemma 2.3. Let d = 1. Then the following conditions are equivalent:

(1) A is an AGL ring.
(2) I + J = m.

When this is the case, I ∩ J = (0).

Proof. (2) ⇒ (1) We set f = (ι, 1) ∈ KA and C = KA/Af . Let α ∈ m and β ∈ I.
Let us write α = a+ b with a ∈ I and b ∈ J . Then because

(α, 0)(0, 1) = (0, α) = (bι, a+ b) = (b, a)(ι, 1), (0, β)(0, 1) = (0, 0),

we get MC = (0), whence A is an AGL ring.
(1) ⇒ (2) We have I ∩ J = (0). In fact, let p ∈ AssR and set P = p × I.

Hence P ∈ MinA. Assume that IRp �= (0). Then since AP = Rp � IRp and
AP is a Gorenstein local ring, IRp

∼= Rp ([13]), so that JRp = (0). Therefore,
(I ∩ J)Rp = (0) for every p ∈ AssR, whence I ∩ J = (0).

Now consider the exact sequence

0 → A
ϕ−→ KA → C → 0

of A-modules such that MC = (0). We set f = ϕ(1). Then f �∈ MKA by
[11, Corollary 3.10], because A is not a discrete valuation ring (DVR for short).
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We identify KA = I∨ × R (Fact 2.1) and write f = (aι, b) with a, b ∈ R. Then
a �∈ m or b �∈ m, since f = (a, 0)(ι, 0) + (b, 0)(0, 1) �∈ MKA.

First, assume that a �∈ m. Without loss of generality, we may assume a =
1, whence f = (ι, b). Let α ∈ m. Then since (α, 0)(0, 1) ∈ Af , we can write
(α, 0)(0, 1) = (r, x)(ι, b) with some r ∈ R and x ∈ I. Because

(0, α) = (α, 0)(0, 1) = (r, x)(ι, b) = (rι, x+ rb),

we get
r ∈ (0) :R ι = J, α = x+ rb ∈ I + J.

Therefore, m = I + J .
Now assume that a ∈ m. Then since b �∈ m, we may assume b = 1, whence

f = (aι, 1). Let α ∈ m and write (α, 0)(ι, 0) = (r, x)(aι, 1) with r ∈ R and x ∈ I.
Then since (αι, 0) = ((ra)ι, ax+ r), we get

α− ra ∈ J, r = −xa ∈ (a),

so that α ∈ J + (a2) ⊆ J + m2, whence m = J . Because I ∩ J = (0), this implies
I = (0), which is absurd. Therefore, a �∈ m, whence I + J = m. �

Corollary 2.4. Let d = 1. Assume that A = R � I is an AGL ring. Then both
R/I and R/J are discrete valuation rings and μR(I) = μR(J) = 1. Consequently,
if R is a homomorphic image of a regular local ring, then R has the presentation

R = S/[(X) ∩ (Y )]

for some two-dimensional regular local ring (S, n) with n = (X,Y ), so that I = (x)
and J = (y), where x, y respectively denote the images of X, Y in R.

Proof. Since I+J = m and I∩J = (0), KR/I
∼= J ∼= m/I by Fact 2.2. Hence R/I is

a DVR by Burch’s Theorem (see, e.g., [4, Theorem 1.1 (1)]), because idR/I m/I =
idR/I KR/I = 1 < ∞, where idR/I(∗) denotes the injective dimension. We similarly
get that R/J is a DVR, since KR/J

∼= I ∼= m/J . Consequently, μR(I) = μR(J) = 1.
We write I = (x) and J = (y). Hence m = I + J = (x, y). Since xy = 0, we have
m2 = (x2, y2) = (x + y)m. Therefore, v(R) = e(R) = 2 because R is not a
DVR, where v(R) (resp. e(R)) denotes the embedding dimension of R (resp. the
multiplicity e0m(R) of R with respect to m). Suppose now that R is a homomorphic
image of a regular local ring. Let us write R = S/a where a is an ideal in a
two-dimensional regular local ring (S, n) and choose X,Y ∈ n so that x, y are the
images of X,Y in R, respectively. Then n = (X,Y ), since a ⊆ n2. We consider the
canonical epimorphism

ϕ : S/[(X) ∩ (Y )] → R

and get that ϕ is an isomorphism, because

�S (S/(XY,X + Y )) = 2 = �R (R/(x+ y)R) .

Thus a = (X) ∩ (Y ) and R = S/[(X) ∩ (Y )]. �

We note the following.

Proposition 2.5. Let S be a regular local ring of dimension d+ 1 (d > 0) and let
X,Y be a part of a regular system of parameters of S. We set R = S/[(X) ∩ (Y )]
and I = (x), where x denotes the image of X in R. Then I �= (0), R/I is a
Cohen-Macaulay ring with dimR/I = d, and the idealization A = R� I is an AGL
ring.
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Proof. Let y be the image of Y in R. Then (y) = (0) :R x and we have the
presentation

0 → (y) → R → (x) → 0

of the R-module I = (x), whence A = R[T ]/(yT, T 2), where T is an indeterminate.
Therefore

A = S[T ]/(XY, Y T, T 2).

Notice that (XY, Y T, T 2) is equal to the ideal generated by the 2× 2 minors of the
matrix M = (X Y T

T Y 0 ) and we readily get by [11, Theorem 7.8] that A = R � I is
an AGL ring, because X,Y, T is a part of a regular system of parameters of the
regular local ring S[T ]P, where P = nS[T ] + (T ). �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.5 we have only to show the implication
(1) ⇒ (2). Consider the exact sequence

0 → A → KA → C → 0

of A-modules such that C is an Ulrich A-module. Let M = m × I stand for the
maximal ideal of A. Then since mA ⊆ M ⊆ mA (here mA denotes the integral
closure of mA) and the field R/m is infinite, we can choose a superficial sequence
f1, f2, . . . , fd−1 ∈ m for C with respect to M so that f1, f2, . . . , fd−1 is also a part
of a system of parameters for both R and R/I. We set q = (f1, f2, . . . , fd−1) and
R = R/q. Let I = (I + q)/q and J = (J + q)/q. Then since f1, f2, . . . , fd−1 is a
regular sequence for R/I, by the exact sequence

0 → I → R → R/I → 0

we get the exact sequence

0 → I/qI → R → R/(I + q) → 0,

so that I/qI ∼= I as an R-module. Hence

A/qA = R� (I/qI) ∼= R� I.

Remember that A/qA is an AGL ring by [11, Theorem 3.7], because f1, f2, . . . , fd−1

is a superficial sequence of C with respect to M and f1, f2, . . . , fd−1 is an A-regular
sequence. Consequently, thanks to Corollary 2.4, R/I is a DVR and μR(I) = 1.

Hence R/I is a regular local ring and μR(I) = 1, because I/qI ∼= I. Let I = (x).
Then R/J ∼= I = (x), since J = (0) :R I. Because f1, f2, . . . , fd−1 is a regular
sequence for the R-module I, f1, f2, . . . , fd−1 is a regular sequence for R/J , so that
we get the exact sequence

0 → J/qJ → R → R/(J + q) → 0.

Therefore, J ∼= J/qJ and since R/(J + q) ∼= I/qI ∼= I, we have J = (0) :R I. Hence

R/J is a regular local ring and μR(J) = 1, because R/J is a DVR and μR(J) = 1
by Corollary 2.4.

Let J = (y) and let m = m/q. Then by Lemma 2.3 we have m = I + J , whence
m = (x, y, f1, f2, . . . , fd−1). Therefore μR(m) = d + 1, since R is not a regular
local ring. On the other hand, since both R/I and R/J are regular local rings,
considering the canonical exact sequence

0 → R → R/I ⊕R/J → R/(I + J) → 0
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(notice that I ∩ J = (0) for the same reason as in the proof of Lemma 2.3), we
readily get e(R) = 2. We now choose a regular local ring (S, n) of dimension
d + 1 and an ideal a of S so that R = S/a. Let X,Y,Z1, Z2, . . . , Zd−1 be the
elements of n whose images in R are equal to x, y, f1, f2, . . . , fd−1, respectively.
Then n = (X,Y, Z1, Z2, . . . , Zd−1), since a ⊆ n2. Because (X)∩ (Y ) ⊆ a as xy = 0,
we get a surjective homomorphism

S/[(X) ∩ (Y )] → R

of rings, which has to be an isomorphism, because both the Cohen-Macaulay local
rings S/[(X) ∩ (Y )] and R have the same multiplicity 2. This completes the proof
of Theorem 1.1. �

Remark 2.6. Let (S, n) be a two-dimensional regular local ring and let X,Y be a
regular system of parameters of S. We set R = S/[(X)∩ (Y )]. Let x, y denote the
images of X, Y in R, respectively. Let n ≥ 2 be an integer. Then dimR/(xn) = 1
but depthR/(xn) = 0. We have xn = xn−1(x + y), whence (xn) ∼= (x) as an R-
module because x + y is a non-zerodivisor of R, so that R � (xn) is an AGL ring
(Proposition 2.5). This example shows that there are certain ideals I in Gorenstein
local rings R of dimension d > 0 such that dimR/I = d and depthR/I = d − 1,
for which the idealizations R� I are AGL rings. However, we have no idea how to
control them.
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