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This paper is dedicated to the memory of Ludwig Faddeev, one of the founders of soliton theory

Abstract. In the context of the Cauchy problem for the Korteweg-de Vries
equation we put forward a new effective method to link smoothness of the
solution with the rate of decay of the initial data. Our approach is based on
the Peller characterization of trace class Hankel operators.

1. Introduction

In the recent article [11] we extended the inverse scattering transform (IST) for
the Korteweg-de Vries (KdV) equation

(1.1)

{
∂tu− 6u∂xu+ ∂3

xu = 0,

u(x, 0) = q(x)

to initial data q (x) rapidly decaying at +∞ but having almost unrestricted behavior
at −∞. Note that this setting is very different from classical (rapidly decaying or
periodic initial data) due to a much more complicated spectral situation. Our
approach is based upon Hankel operators, and it was some subtle results from the
theory of Hankel operators that allowed us to remove nearly all conditions on q (x)
at −∞. In the present note we show how the famous characterization of trace class
Hankel operators due to Peller [18] applies to the study of the effect of +∞ on the
smoothness of u (x, t). Our goal here is not to achieve optimal results (this will be
done elsewhere) but rather to introduce a new effective approach to study delicate
relations between decay of the data and smoothness of the corresponding solutions.

To state our main result we need some preliminary information. Let q be a real
function such that the differential expression −∂2

x + q (x) is in the limit point case
at −∞ and q (x) = O

(
x−2−ε

)
as x → +∞. It is well-known that densely defined

(symmetric) −∂2
x + q (x) can be extended to the self-adjoint Schrödinger operator

Lq on L2 (R). The corresponding Schrödinger equation

Lqu = k2u
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has the right Jost solution ψ (x, k), i.e. the solution subject to

ψ (x, k) = eikx + o (1) , x → ∞,

and the (essentially unique) left Weyl solution Ψ
(
x, k2

)
, i.e. the solution subject

to

Ψ
(
x, k2

)
∈ L2 (−∞, 0) for any Im k2 > 0.

Then as in [11] we can define the right reflection coefficient

(1.2) R (k) =
W (ψ (·, k) ,Ψ

(
·, k2 + i0

)
)

W (Ψ (·, k2 + i0) , ψ (·, k)) , Im k = 0,

where W (f, g) = fg′ − f ′g is the Wronskian. It can be shown [11] that R is well
defined for a.e. k ∈ R and

R (−k) = R (k), |R (k)| ≤ 1.

Note that in our setting the left reflection coefficient need not exist.
Assume now that Spec(Lq) is bounded below. Then [11], shifting the origin to

the right if needed, R admits the analytic split

(1.3) R (k) = R0 (k)− T0 (k) /ψ (0, k) +A (k) .

Here R0 (k) and T0 (k) are respectively the right reflection and transmission coef-
ficients from q0 := q|

R+
. Without loss of generality the origin can be moved to

the right so that T0 (k) /ψ (0, k) is meromorphic in C+ with only one simple pole
iκ0. Then T0 (k) /ψ (0, k) is uniformly bounded in C+ away from iκ0. The function
A (k) is bounded on R and can be analytically continued into C+�iΔ where

iΔ =
{
k ∈ iR+ : k2 ∈ Spec(Lq) ∩ R−

}
.

Furthermore, its jump across iΔ,

(1.4) dρ (s) = i (A(is− 0)−A(is+ 0)) ds/2π,

defines a non-negative, finite measure ρ supported on Δ. Outside iΔ the function
A (k) is uniformly bounded in C+. The exact formula for A (k) is not essential to
us. Thus R0 (k) is the only term in (1.3) that need not in general admit an analytic
continuation into C+.

The analytic split (1.3) is the main reason why the IST works for the KdV
equation with unrestricted behavior at −∞. More precisely, the set

Sq = {R, dρ}

forms scattering data for Lq; i.e. Sq determines q uniquely.
We next recall [17] that given function ϕ ∈ L∞ (R), the operator H(ϕ) defined

on H2 (C+) by

(1.5) H(ϕ)f = JP−ϕf, f ∈ H2
(
C+

)
,

is called the Hankel operator with symbol ϕ. Here H2 (C±) stands for the standard
Hardy space of analytic on C± function respectively, P± is the orthogonal (Riesz)
projection in L2 (R) ontoH2 (C±), and J is the operator of reflection, i.e. (Jf) (x) =
f (−x). Apparently, JH2 (C−) = H2 (C+).

We are now ready to state our main result.
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Theorem 1.1 (Main Theorem). Suppose that a (real) initial profile q in (1.1)
satisfies

(1.6) inf Spec (Lq) = −h2 > −∞ (boundedness from below);

(1.7)

∫ ∞
xN |q (x)| dx < ∞, N > 9/2 (decay at+∞).

Then (1.1) has a global-in-time classical1 solution given by

(1.8) u(x, t) = −2∂2
x log det (1 +H(ϕx,t)) , t > 0,

where

(1.9) ϕx,t (k) = R (k) ei(8k
3t+2kx) +

∫ h

0

e8s
3t−2sx dρ(s)

s+ ik
,

such that if ub(x, t) is the (necessarily unique) classical solution with data qb =
q|(b,∞), then ub(x, t) converges to u(x, t) uniformly on compacts in R× R+ as b →
−∞. Furthermore, the map (x, t) → H(ϕx,t) is continuously differentiable in trace
norm n times in x and m times in t where n ≤ 2 (N − 2) and m ≤ 2 (N − 2) /3.
Consequently, ∂j

x∂
k
t u (x, t) is continuous on R× R+ if 0 ≤ j + 3k ≤ 2N − 6.

The condition (1.6) is optimal, but (1.7) is not. The best bound known to us
is N = 11/4 [2], but as will be easily seen from our arguments, this bound is not
optimal either. Note that the approach of [2] requires a rapid decay at −∞ whereas
ours doesn’t.

The paper is organized as follows. In Section 2 we give brief background informa-
tion on trace class Hankel operators. Section 3 is devoted to the proof of Theorem
1.1, and the final section, Section 4, is reserved for relevant discussions.

2. Trace class Hankel Operators

We refer the reader to [17] and [18] for the details on the facts given in this
section.

It directly follows from definition (1.5) that the Hankel operator H(ϕ) is bounded
if its symbol ϕ is bounded and H(ϕ+h) = H(ϕ) for any ϕ ∈ H∞ (C+) (analytic and
bounded on the C+ function). The latter means that only the part of ϕ analytic
in C− matters. More specifically,

H(ϕ) = H(P̃−ϕ),

where

(P̃−ϕ)(x) = (x+ i)

(
P−

1

·+ i
ϕ

)
(x)

= − 1

2πi

∫
R

(
1

s− (x− i0)
− 1

s+ i

)
ϕ(s)ds, ϕ ∈ L∞ (R) .

We note that the condition ϕ ∈ L∞ (R) guarantees only that P̃−ϕ ∈ BMOA (C−),
but the Hankel operator H(ϕ) is still well defined by (1.5) and bounded.

A much more subtle fact, the Nehari Theorem, says that H(ϕ) is compact iff

P̃−ϕ ∈ C (R). We will crucially use the following delicate theorem.

1That is, at least three times continuously differentiable in x and once in t.
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Theorem 2.1 (Peller, 1980). Let ϕ ∈ L∞ (R). Then H(ϕ) is trace class iff(
P̃−ϕ

)′′
∈ L1 (C−) and supIm z≤−1

∣∣∣P̃−ϕ (z)
∣∣∣ < ∞.

In general, the membership of H(ϕ) in any Shatten-von Neumann class

Sp, 0 < p < ∞, is characterized by the membership of P̃−ϕ in the Besov classes of

smooth functions. If ϕ ∈ C∞ (
R
)
, then H(ϕ) ∈ Sp for any 0 < p ≤ ∞.

3. Proof of the Main Theorem

Take b > 0 and consider the problem (1.1) with initial data qb = q|(b,∞). This

problem [2] is well-posed, and its solution ub can be written as

(3.1) ub (x, t) = −2∂2
x log det

(
1 +H(ϕb

x,t)
)
,

where

(3.2) ϕb
x,t (k) = Rb (k) e

i(8k3t+2kx) +

∫ h

0

e8s
3t−2sx dρb(s)

s+ ik
.

Here Rb is the right reflection coefficient off qb and

(3.3) dρb (s) =
∑
n

cbnδ
(
s− κb

n

)
ds,

where cbn is the norming constant of the bound state −
(
κb
n

)2
. Split Rb by (1.3) as

follows

(3.4) Rb (k) = R0 (k)− T0 (k) /ψ (0, k) +Ab (k) ,

where Ab can be analytically continued into C+ as a meromorphic function having
simple poles at

(
iκb

n

)
with residues

(
cbn
)
. If follows from (3.2), (3.3) and (3.4) that

ϕb
x,t (k) =

(
R0 (k)−

T0 (k)

ψ (0, k)

)
ξx,t(k) + Φb

x,t (k) ,

where

Φb
x,t (k) = Ab (k) ξx,t(k)−

∑
n

icbnξx,t(iκ
b
n)

k − iκb
n

,

ξx,t(k) := exp i(8k3t+ 2kx).

Consider the part of ϕb
x,t analytic in C−:

P̃−ϕ
b
x,t = P̃−Φ

b
x,t − P̃−

(
T0

ψ (0, ·)ξx,t
)
+ P̃− (R0ξx,t)(3.5)

= φb
1 + φ2 + φ3,

only φb
1 being dependent on b. Let us treat it first. One clearly has that for any

β ≥ 0,

|ξx,t(α+ iβ)| = ξx,t(iβ) exp

{
−24t

(√
βα

)2
}

(3.6)

= e8β
3t−2βx exp

{
−24t

(√
βα

)2
}
.
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That is, for every fixed β > 0 the function ξx,t(α + iβ) shows a rapid decay as
|α| → ∞. Observe that as opposed to Abξx,t, the function Φb

x,t has only removable

singularities in C+ and therefore for any h0 > h we clearly have

φb
1 = −k + i

2πi

∫
R

Φb
x,t(s)

s+ i

ds

s− (k − i0)

=
k + i

2πi

∫
R+ih0

Ab (s) ξx,t(s)

s+ i

ds

k − s
.

It is proven in [11] that Ab (s) → A (s) uniformly on compacts in C+, and hence
we have

lim
b→∞

φb
1 (k) =

k + i

2πi

∫
R+ih0

A (s) ξx,t(s)

s+ i

ds

k − s

=: φ1 (k) .

Since the last equation holds for h0 > h, we immediately conclude that φ1 (k) is an
entire function with the property that for any n ≥ 1,

lim ∂n
kφ1 (k) = 0, Im k = 0, k → ±∞.

Moreover, for every n,m,

lim
b→∞

∂n
x∂

m
t φb

1 (k) = ∂n
x∂

m
t φ1 (k)

and ∂n
x∂

m
t φ1 (k) is an entire function such that lim ∂n

kφ1 (k)=0, Im k=0, k→±∞.
We can now conclude that for every n,m,

(3.7)
∥∥∂n

x∂
m
t

[
H
(
φb
1

)
−H (φ1)

]∥∥
S1

→ 0, b → ∞.

For the symbol φ2 in (3.5) we notice that T0 (k) /ψ (0, k) is meromorphic in C+ with
only one simple pole, call it iκ0. Therefore, merely repeating the same arguments
as before, we have

(3.8) φ2 (k) = −k + i

2πi

∫
R+ih0

T0 (s) ξx,t(s)

(s+ i)ψ (0, s)

ds

k − s
,

with any 0 < h0 < κ0 and for every n,m,

(3.9) ∂n
x∂

m
t H (φ2) ∈ S1.

The symbol φ3 in (3.5) is the most difficult as R0 (k) need not extend into C+ as
an analytic function. Our analysis is based on the representation [4]

(3.10) R0 (k) =
T0 (k)

2ik

∫ ∞

0

e−2iksg (s) ds,

where g is some function for which we only need the bound

|g (s)| ≤ |q (s)|+ const

∫ ∞

s

|q| ,

which implies that under the condition (1.7) (i.e.
∫∞

xN |q (x)| dx < ∞)

(3.11)

∫ ∞
xN−1 |g (x)| dx < ∞.

By construction, q0 is supported on a half-line, and hence [4] T0 (k) is meromorphic
in the entire complex plane with one simple pole iκ0 in C+. Generically T0 (0) =
0 (otherwise we shift the origin), and hence f (k) := T0 (k) /2ik is analytic and
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bounded on the strip Sh0
= {0 ≤ Im k ≤ h0} for any h0 < κ0. Thus for φ3 in (3.5)

we now have

φ3 = P̃− (ξx,tfG) ,

where

G (k) :=

∫ ∞

0

e−2iksg (s) ds.

It follows from (3.11) that

(3.12) ∂n
kG (k) ∈ H∞ (

C−) ∩ C (R)

for any integer n ≤ N − 1, but it doesn’t in general extend analytically into C+,
and we can no longer deform the contour into the upper half plane. Let us now
consider instead its pseudoanalytic extension into C+. Following [5] we call F (x, y)
a pseudoanalytic extension of f (x) into C if

F (x, 0) = f (x) and ∂F (x, y) → 0, y → 0,

where ∂ := (1/2) (∂x + i∂y). Note that due to (3.12) for any n ≤ N − 1 the Taylor
formula

(3.13) G
(
λ, λ

)
=

n−1∑
m=0

G(n)
(
λ
)

m!

(
λ− λ

)m
, λ ∈ C+,

defines such a continuation, as G
(
λ, λ

)
clearly agrees with G on the real line, and

for λ ∈ C+,

(3.14) ∂G
(
λ, λ

)
=

G(n)
(
λ
)

(n− 1)!

(
λ− λ

)n−1
, n ≤ N − 1.

Now evaluate φ3 by the Cauchy-Green formula applied to the strip Sh0
. We have

(λ = α+ iβ)

φ3 (k) = P̃−φx,t (k)(3.15)

=
k + i

2πi

∫
R

ξx,t (λ) (fG) (λ)

λ+ i

dλ

λ− (k − i0)

=
k + i

2πi

∫
R+ih0

ξx,t (λ) f (λ)G
(
λ, λ

)
λ+ i

dλ

k − λ

+
k + i

π

∫
Sh0

f (λ) ξx,t (λ) ∂G
(
λ, λ

)
λ+ i

dαdβ

λ− k

= φ4 (k) + φ5 (k) .

The function φ4 is similar to φ2 given by (3.8), and hence as for φ2 we have

(3.16) ∂n
x∂

m
t H (φ4) ∈ S1.

It remains to treat

φ5 (k) =
k + i

π

∫
Sh0

f (λ) ξx,t (λ) ∂G
(
λ, λ

)
λ+ i

dαdβ

λ− k
.

Since ∂tξx,t = −∂3
xξx,t without loss of generality we can consider x-derivatives only.

We define the x-derivatives of H (φ5) by the formula

(3.17) ∂j
xH (φ5) = H

(
∂j
xφ5

)
.



KDV EQUATION 1633

We now show that

(3.18) H
(
∂j
xφ5

)
∈ S1 for any j < 2 (N − 2) .

By Theorem 2.1 we need to demonstrate that
(
∂j
xφ5

)′′ ∈ L1 (C−). One has

(
∂j
xφ5

)′′
(k) =

2

π

∫
Sh0

(2iλ)
j
f (λ) ξx,t (λ) ∂G

(
λ, λ

)
(λ− k)

3 dαdβ,

and thus we need to prove convergence of the following integral (k = u+ iv):∫
C−

∣∣∣∣∣
∫
Sh0

λj−1T0 (λ) ξx,t (λ) ∂G
(
λ, λ

)
(λ− k)

3 dαdβ

∣∣∣∣∣ dudv(3.19)

≤
∫
Sh0

∣∣λjf (λ) ξx,t (λ)
∣∣(∫

C−

dudv

|λ− k|3

)
dαdβ := I.

By a direct computation∫
C−

dudv

|λ− k|3
=

∫
C−

dudv

|u− α+ i (v − β)|3
=

∫
v≤−β

∫
R

dudv

|u+ iv|3
(3.20)

=

∫ ∞

β

∫
R

dudv

|u+ iv|3
=

∫ ∞

β

dv

v2

∫
R

du

|u+ i|3
= const β−1.

Next, it follows from (3.14) that

(3.21)
∣∣∂G (

λ, λ
)∣∣ ≤ 2n−1

(n− 1)!

∥∥∥G(n)
∥∥∥
∞

βn−1.

Let us now estimate ξx,t (λ). By (3.20), (3.21), and (3.6), the inequality (3.19) can
be continued:

I ≤ const

∫
Sh0

(|α|+ h0)
j−1 ξx,t(iβ) exp

{
−24t

(√
βα

)2
}
βn−1dαdβ

= const

∫ h0

0

ξx,t(iβ)β
n−2

[∫
R

(|α|+ h0)
j−1

exp

{
−24t

(√
βα

)2
}
dα

]
dβ.

Substituting ω =
√
βα we have∫
R

(|α|+ h)j−1 exp

{
−24t

(√
βα

)2
}
dα

=
1√
β

∫
R

(
|ω|√
β
+ h0

)j−1

exp
{
−24tω2

}
dω.

This integral is clearly convergent since

1√
β

∫
R

(
|ω|√
β

)j−1

exp
{
−24tω2

}
dω

= β− j
2

∫
R

|ω|j−1
exp

{
−24tω2

}
dω < ∞.
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But ξx,t(iβ) = exp{8β3t− 2βx)}, and we finally have

I ≤ const

∫ h0

0

ξx,t(iβ)β
− j

2 βn−2dβ

≤ const

∫ h0

0

β− j
2 βn−2dβ = const

∫ h0

0

β− j
2+n−2dβ.

The last integral converges if −j/2 + n− 2 > −1 or

j < 2 (n− 1) ≤ 2 (N − 2) ,

which proves (3.18). It follows form (3.5) and (3.15) that

P̃−ϕ
b
x,t = φb

1 + φ2 + φ4 + φ5.

The latter combined with (3.18), (3.7), (3.9), and (3.16) immediately yields

(3.22)
∥∥∂n

x∂
m
t

[
H
(
ϕb
x,t

)
−H (ϕx,t)

]∥∥
S1

→ 0, b → ∞,

for any n,m subject to
n+ 3m = j < 2 (N − 2) .

It remains to show that

ub(x, t) → u(x, t) = −2∂2
x log det (1 +H(ϕx,t)) , b → ∞,

and u (x, t) solves (1.1). As in [11], [20] we rewrite u = ub +Δub. For Δub we have

(3.23) Δub (x, t) = −2∂2
x log det

(
I −

{
(I +H(ϕx,t))

−1
[
H(ϕx,t)−H(ϕb

x,t)
]})

where (I +H(ϕx,t))
−1 is bounded [11]. By the well-known differentiation formula

(log det (1 +A))′ = tr (1 +A)−1 A′

it follows from (3.22) and (3.23) that

∂n
xΔub → 0 (n = 1, 2, 3), ∂tΔub → 0, b → ∞,

and therefore

∂tu− 6u∂xu+ ∂3
xu(3.24)

= ∂tΔub + 3∂x [(Δub − 2u)Δub] + ∂3
xΔub → 0, b → ∞.

Thus u(x, t) solves (1.1) for all x and t > 0 and Theorem 1.1 is proven.

4. Discussion

We conclude our short note with some comments.
1. Theorem 1.1 says if q (x) is subject to conditions (1.6)-(1.7), then (1.1) is

globally well-posed in the following strong sense: classical solutions un (x, t) with
compactly supported initial data qn (x) converge to a classical solution u (x, t) uni-
formly on any compact x-domain for any t > 0 and independently of the choice of
qn (x) approximating q (x). Note that [6] the condition

(4.1) Sup
|I|=1

∫
I

max (−q (x) , 0) dx < ∞ (essential boundedness from below)

is sufficient for the condition (1.6) to hold and is also necessary if q ≤ 0 . Therefore,
any q subject to (1.6)-(1.7) is essentially bounded from below, decays sufficiently
fast at +∞ but is arbitrary otherwise. Thus we don’t assume any kind of pattern
of behavior of q (x) at −∞.
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2. We note that the problems of the well-posedness and related regularity of
(1.1) have been extensively studied since about the same time when the IST was
first introduced. The literature on the subject is truly enormous, and we make no
attempt to give a comprehensive review here. Besides the already discussed [2],
we only mention a few relevant papers where much more literature on the subject
can be found. In [16] the existence and uniqueness of a weak solution is proven for
L2 (R) data subject to the additional condition

(4.2)

∫ ∞
xNq (x)

2
dx < ∞, N > 3/2.

In [9] the latter condition is improved to N > 3/4. In the famous [1] the global
well-posedness is proven without the extra condition (4.2). This paper drew much
attention. In particular, its results were generalized to singular initial data from
the Sobolev space Hs (R) with negative index s. In [13] the well-posedness result
was extended locally in time to s > −3/4 and then globally in time in [3]. In [15]
and [7] the limiting case s = −3/4 was finally included. Moreover, it was shown in
[14] that s = −3/4 is in a certain sense optimal. Note however that s = −3/4 is the
threshold for the harmonic analytical methods used in above mentioned papers. It
was shown in [12] and [11] that IST techniques can push well-posedness to some
classes of singular functions from H−1 (R).

3. Most of the papers discussed in item 2 also provide some norm estimates
for the solution u (x, t). For this reason the referee posed the question: “Does one
have any control of the ‘growth’ in time of the norms of the solutions?” We believe
that our explicit formula (1.8) for u (x, t) should yield new types of norm estimates.
However, at the moment we don’t know even the basic form of trace formulas for
potentials subject to our conditions (1.6)-(1.7). The referee also asked if “for a
solution u(x; t) corresponding to a data (potential) satisfying the hypothesis (1.6)-
(1.7) can one say anything about the decay property of u(x; 1) for x > 0?” It is
yet another good question of practical importance. Our explicit formula (1.8) is
not convenient for subtle asymptotic analysis of u(x, t). Methods based upon the
Riemann-Hilbert problem have been proven best for such analysis. The main issue
is that these methods break down in a serious way, and it is far from being clear how
to modify them. We note that the basic theory guarantees only that the spectrum
of Lu(x,t) is independent of t, which is insufficient to make meaningful conclusions
about asymptotic behavior of u(x, t) even for fixed t.

4. The negative spectrum of Lq has multiplicity one but could be of any type
(including absolutely continuous (a.c.)), and the positive spectrum has a.c. com-
ponent filling R+ but need not be uniform (however no embedded bound states).
Thus Theorem 1.1 says that the IST for the KdV equation works smoothly with-
out boundary condition at −∞, which is a very strong manifestation of spatial
anisotropy of the KdV equation. Our [21] appears to be the first rigorous paper to
this effect. We however still needed some extra (technical) assumptions which were
further relaxed in [20] and [19], culminating in [11], where techniques of Hankel
operators allowed us to get rid of inessential conditions.

5. The bounded invertibility of I +H(ϕx,t) for all x and positive t is the reason
why a blow-up solution doesn’t develop over time. It is one of the main results of
our [11].
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6. If q (x) = O (x−∞) , x → ∞, then the solution is (infinitely) smooth. A precise

description of smoothness in the scale q (x) = O
(
e−Cxδ

)
, x → ∞, is given in [19].

We proved that if δ > 1/2, then u (x, t) is meromorphic in x on the entire complex
plane (with no real poles). If δ = 1/2, then u (x, t) is meromorphic in x in a strip
around the real line whose width is increasing as

√
t. If 0 < δ < 1/2, then u (x, t) is

Gevrey smooth. In all these cases u (x, t) is smooth in t. It is worth mentioning that
the smoothing effect of the KdV flow is so strong that even strong (non-integrable)
singularities instantaneously disappear [10].

7. As we have already mentioned the condition (1.6) is optimal, but the con-
dition (1.7) is not. The bound on N in (1.7) can be lowered to 7/2. It can be
achieved by a different-from-(3.10) representation for R0, which follows from our
[22]. The main loss of accuracy however comes from the estimate (3.19), where the
oscillatory nature of the integral was lost. In fact, the integral on the left hand side
of (3.19) admits a sharp estimate based upon the steepest descent approximation
significantly lowering the bound on N . We also expect some improvements related
to pseudoanalytic continuations. The very interesting paper [5] contains a number
of if-and-only-if statements linking smoothness of an analytic in C− function and
the rate of decay of the ∂ derivative of its pseudoanalytic continuation into C+. We
hope that all this will result in optimal statements relating decay of q (x) at −∞
and smoothness of u (x, t). We will return to it elsewhere.

8. We emphasize the importance of the analytic split (1.3) in our consideration.
It allows us to effectively separate the influence of the behavior of initial data at
−∞ from that at +∞, which effect the solution in profoundly different ways.

9. The formula (1.8) can also be written as

u(x, t) = 2 tr
{
(I +H(ϕx,t))

−2
[
(∂xH(ϕx,t))

2 − ∂2
xH(ϕx,t)−H(ϕx,t)∂

2
xH(ϕx,t)

]}
.
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[16] S. N. Kruzhkov and A. V. Faminskĭı, Generalized solutions of the Cauchy problem for the
Korteweg-de Vries equation (Russian), Mat. Sb. (N.S.) 120(162) (1983), no. 3, 396–425.
MR691986

[17] Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical
Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002.
Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR1864396

[18] Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Math-
ematics, Springer-Verlag, New York, 2003. MR1949210

[19] Alexei Rybkin, Spatial analyticity of solutions to integrable systems. I. The KdV case, Comm.
Partial Differential Equations 38 (2013), no. 5, 802–822, DOI 10.1080/03605302.2013.771658.
MR3046294

[20] Alexei Rybkin, The Hirota τ -function and well-posedness of the KdV equation with an arbi-
trary step-like initial profile decaying on the right half line, Nonlinearity 24 (2011), no. 10,
2953–2990, DOI 10.1088/0951-7715/24/10/015. MR2842104

[21] Alexei Rybkin, Meromorphic solutions to the KdV equation with non-decaying initial data
supported on a left half line, Nonlinearity 23 (2010), no. 5, 1143–1167, DOI 10.1088/0951-
7715/23/5/007. MR2630095

[22] Alexei Rybkin, Some new and old asymptotic representations of the Jost solution and the
Weyl m-function for Schrödinger operators on the line, Bull. London Math. Soc. 34 (2002),
no. 1, 61–72, DOI 10.1112/S0024609301008645. MR1866429

Department of Mathematics and Statistics, University of Alaska Fairbanks, P.O.

Box 756660, Fairbanks, Alaska 99775

E-mail address: arybkin@alaska.edu

http://www.ams.org/mathscinet-getitem?mr=2531556
http://www.ams.org/mathscinet-getitem?mr=2261424
http://www.ams.org/mathscinet-getitem?mr=1019307
http://www.ams.org/mathscinet-getitem?mr=3395045
http://www.ams.org/mathscinet-getitem?mr=3356985
http://www.ams.org/mathscinet-getitem?mr=2189502
http://www.ams.org/mathscinet-getitem?mr=1329387
http://www.ams.org/mathscinet-getitem?mr=1813239
http://www.ams.org/mathscinet-getitem?mr=2410871
http://www.ams.org/mathscinet-getitem?mr=691986
http://www.ams.org/mathscinet-getitem?mr=1864396
http://www.ams.org/mathscinet-getitem?mr=1949210
http://www.ams.org/mathscinet-getitem?mr=3046294
http://www.ams.org/mathscinet-getitem?mr=2842104
http://www.ams.org/mathscinet-getitem?mr=2630095
http://www.ams.org/mathscinet-getitem?mr=1866429

	1. Introduction
	2. Trace class Hankel Operators
	3. Proof of the Main Theorem
	4. Discussion
	Acknowledgments
	References

