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FUGLEDE-PUTNAM THEOREM

FOR LOCALLY MEASURABLE OPERATORS

A. BER, V. CHILIN, F. SUKOCHEV, AND D. ZANIN

(Communicated by Adrian Ioana)

Abstract. We extend the Fuglede-Putnam theorem from the algebra B(H)
of all bounded operators on the Hilbert space H to the algebra of all locally
measurable operators affiliated with a von Neumann algebra.

1. Introduction

The (first part of the) following problem was suggested by von Neumann (see
pp. 60-61, Appendix 3 in [8]).

Problem 1. Let a, b, c ∈ B(H). If a is normal and if ac = ca, does it follow that
a∗c = ca∗? More generally, if a and b are normal and if ac = cb, does it follow that
a∗c = cb∗?

If the operators a and c belong to a finite factor M, then the first part of
the problem was resolved (in the affirmative) by von Neumann himself. In full
generality, a problem was resolved by Fuglede [4].

Furthermore, von Neumann mentioned that a “formal” analogue of Problem 1
for unbounded operators can be non-rigorously answered in the negative due to the
fact that a product of 2 unbounded operators does not always exists. A partial
affirmative answer was given by Putnam (see Theorem 1.6.2 in [9]). He proved that
if cb ⊂ ac, then cb∗ ⊂ ac∗ provided that c is bounded.

In what follows, we propose a rigorous analogue of Problem 1 for unbounded
operators affiliated with a von Neumann algebra M. We start with a proper frame-
work.

The set of all operators affiliated to a von Neumann algebra M does not nec-
essarily form an algebra. At the same time, the class of unital ∗-algebras1 which
consist of operators affiliated with M is vast. In particular, it contains all algebras
of measurable operators [12] and those of τ -measurable operators [7].

According to [15], in this class, there is a unique maximal element called LS(M).
We call LS(M) the algebra of all locally measurable operators affiliated with M.
An equivalent constructive definition of LS(M) is given in Section 2.

We now properly restate Problem 1 for unbounded operators affiliated with M.
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Problem 2. Let M be a von Neumann algebra and let a, b, c ∈ LS(M). If a and
b are normal and if ac = cb, does it follow that a∗c = cb∗?

Theorem 5 in [2] delivers the positive answer to Problem 2 for the case when a, b
and c are measurable operators affiliated with a von Neumann algebra M of type I
(see also [1]). In the case of an arbitrary finite von Neumann algebra M, Problem
2 is resolved in the affirmative in [5] (see Corollary 3.6 there).

We answer Problem 2 in the affirmative in full generality. Our methods are
stronger than those of [1], [2], [4], [5], [9] and are of independent interest.

The following theorem is the main result of the paper.

Theorem 3. Let M be an arbitrary von Neumann algebra and let a, b, c be locally
measurable operators affiliated with M. If a and b are normal and if ac = cb, then
a∗c = cb∗.

The corollary below extends the classical spectral theorem for normal operator
(see e.g. [10, Ch. 13, Theorem 13.33]) to the setting of locally measurable operators.

Corollary 4. Let M be an arbitrary von Neumann algebra and let a, b be locally
measurable operators affiliated with M. If a is normal and ab = ba, then eb = be
for every spectral projection e of the operator a. If a and b are normal, then the
following conditions are equivalent:

(a) ab = ba;
(b) ef = fe for every spectral projection e of the operator a and for every

spectral projection f of the operator b;
(c) φ(a)ψ(b) = ψ(b)φ(a) for every Borel complex function φ and ψ on C, which

are bounded on compact subsets.

2. Preliminaries

Let H be a Hilbert space, let B(H) be the ∗-algebra of all bounded linear opera-
tors on H, and let 1 be the identity operator on H. Given a von Neumann algebra
M acting on H, denote by Z(M) the centre of M and by P(M) = {p ∈ M : p =
p2 = p∗} the lattice of all projections in M. Let Pfin(M) be the set of all finite
projections in M.

A linear operator a : D (a) → H, where the domain D (a) of a is a linear subspace
of H, is said to be affiliated with M if ba ⊆ ab for all b from the commutant M′ of
algebra M.

A densely-defined closed linear operator a (possibly unbounded) affiliated with
M is said to be measurable with respect to M if there exists a sequence {pn}∞n=1 ⊂
P(M) such that pn ↑ 1, pn(H) ⊂ D(a) and p⊥n = 1 − pn ∈ Pfin(M) for every
n ∈ N, where N is the set of all natural numbers. Let us denote by S(M) the set
of all measurable operators.

Let a, b ∈ S(M). It is well known that a + b, ab and a∗ are densely-defined
and preclosed operators. Moreover, the closures a+ b (strong sum), ab (strong
product) and a∗ are also measurable, and equipped with these operations S(M) is
a unital ∗-algebra over the field C of complex numbers [12]. It is clear that M is a
∗-subalgebra of S(M).

A densely-defined linear operator a affiliated with M is called locally measurable
with respect to M if there is a sequence {zn}∞n=1 of central projections in M such
that zn ↑ 1, zn(H) ⊂ D(a) and azn ∈ S(M) for all n ∈ N.
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The set LS(M) of all locally measurable operators is a unital ∗-algebra over the
field C with respect to the same algebraic operations as in S(M) [14], and S(M)
is a ∗-subalgebra of LS(M). It is clear that if M is finite, the algebras S(M) and
LS(M) coincide. If von Neumann algebra M is of type III and dim(Z(M)) = ∞,
then S(M) = M, but LS(M) 	= M.

For every subset E ⊂ LS(M), the sets of all self-adjoint (resp., positive) opera-
tors in E will be denoted by Eh (resp. E+). The partial order in LS(M) is defined
by its cone LS+(M) and is denoted by ≤.

Let a be a closed operator with dense domain D(a) in H and let a = u|a| be
the polar decomposition of the operator a, where |a| = (a∗a)

1
2 and u is a partial

isometry in B(H) such that u∗u (respectively, uu∗) is the right (left) support r(a)
(respectively, l(a)) of a. It is known that a = |a∗|u and a ∈ LS(M) (respectively,
a ∈ S(M)) if and only if |a| ∈ LS(M) (respectively, |a| ∈ S(M)) and u ∈ M [6,
§§2.2, 2.3]. If a is a self-adjoint operator affiliated with M, then the spectral family
of projections eλ(a) = e(−∞,λ](a), λ ∈ R, for a belongs to M [6, §2.1]. A locally

measurable operator a is measurable if and only if e⊥λ (|a|) ∈ Pfin(M) for some
λ > 0 [6, § 2.2].

In what follows, we use the notation n(a) = 1− r(a) for the projection onto the
kernel of the operator a.

Assume now that M is a semifinite von Neumann algebra equipped with a faith-
ful normal semifinite trace τ . A densely-defined closed linear operator a affiliated
with M is called τ -measurable if for each ε > 0 there exists e ∈ P(M) with
τ (e⊥) ≤ ε such that e(H) ⊂ D(a). Let us denote by S(M, τ ) the set of all τ -
measurable operators. It is well known [7] that S(M, τ ) is a ∗-subalgebra of S(M)
and M ⊂ S(M, τ ). It is clear that if M is a semifinite factor, the algebras S(M, τ )
and S(M) coincide. Note also that for every a ∈ S(M, τ ) there exists λ > 0 such
that τ (e⊥λ (|a|)) < ∞ (see [7] and [6, §2.6]).

Measure topology is defined in S(M, τ ) by the family V (ε, δ), ε > 0, δ > 0, of
neighborhoods of zero:

V (ε, δ) = {a ∈ S(M, τ ) : ‖ae‖M ≤ δ for some e ∈ P(M) with τ (e⊥) ≤ ε}.

Convergence of the sequence {an} ⊂ S(M, τ ) in measure topology is called conver-
gence in measure. When equipped with measure topology, S(M, τ ) is a complete
metrizable topological ∗-algebra (see [7]). For basic properties of the measure topol-
ogy, see [7]. We remark only that en → 0 in measure, en ∈ P(M), if and only if
τ (en) → 0.

Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace τ. We set

(L1 ∩ L∞)(M, τ ) =
{
x ∈ M : τ (|x|) < ∞

}
.

The following property is standard.

Property 5. Let M be a semifinite von Neumann algebra and let τ be a faithful
normal semifinite trace on M. If x, y ∈ (L1 ∩ L∞)(M, τ ), then τ (xy) = τ (yx).

3. The Fuglede-Putnam theorem in S(M, τ )

The proof of Theorem 3 in full generality is based on its special case for the
∗-algebra S(M, τ ).
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Theorem 6. Let M be a semifinite von Neumann algebra and let τ be a faithful
normal semifinite trace on M. Let a, b, c ∈ S(M, τ ), and let a and b be normal. If
ac = cb, then a∗c = cb∗.

Our strategy for proving Theorem 6 relies on a number of auxiliary lemmas.
Whereas some of them look similar to those used in [5], the lemmas below appear
to be stronger than their counterparts from [5].

Lemma 7. If a ∈ M is normal, p ∈ P(M) and τ (p) < ∞ with ap = pap, then
ap = pa.

Proof. Denote, for brevity,

a1 = pap, a2 = pa(1− p).

Due to the normality of a and using the equality ap = pap, we have

a∗1a1 = (ap)∗(ap) = pa∗ap = paa∗p = (pa)(pa)∗ = (a1+a2)(a1+a2)
∗ = a1a

∗
1+a2a

∗
2.

Since τ (p) < ∞, it follows that a1, a2 ∈ (L1 ∩ L∞)(M, τ ). Taking the trace and
using Property 5, we conclude that τ (a2a

∗
2) = 0. Since τ is faithful, it follows that

a2 = 0. This completes the proof. �

Lemma 8. Let a, b ∈ M be normal, c ∈ S+(M, τ ) and ac = cb. Let λ > 0 be such
that τ (e(λ,+∞)(c)) < ∞. Setting p1 = e[0,λ](c) and p2 = e(λ,+∞)(c), we obtain

pia = api, pib = bpi, i = 1, 2.

Proof. Set aij = piapj and bij = pibpj for i, j = 1, 2.

Step 1. We claim that

τ (a∗12a12) = τ (a∗21a21), τ (b∗12b12) = τ (b∗21b21).

Indeed, using the equality a∗a = aa∗ and Property 5, we have

τ (a∗12a12) = τ (p2a
∗p1ap2) = τ (p2a

∗ap2)− τ (p2a
∗p2ap2)

= τ (p2aa
∗p2)− τ (p2ap2a

∗p2) = τ (p2ap1a
∗p2) = τ (a21a

∗
21) = τ (a∗21a21).

The proof of the second equality in the claim is identical.

Step 2. We claim that

τ (a∗12a12) ≤ τ (b∗12b12)

and

τ (b∗21b21) ≤ τ (a∗21a21).

Since p2c
2p2 ≥ λ2p2, it follows that

a12a
∗
12 = p1a · p2 · a∗p1 ≤ λ−2 · p1a · p2c2p2 · a∗p1 = λ−2(a12c)(a12c)

∗.

By assumption,

(1) a12c = p1ap2 · c = p1 · ac · p2 = p1 · cb · p2 = c · p1bp2 = cb12.

Thus,

(2) a12a
∗
12 ≤ λ−2(cb12)(cb12)

∗.

Since cp1 ∈ M and since b12 ∈ (L1 ∩ L∞)(M, τ ), it follows that

cb12 = cp1 · b12 ∈ (L1 ∩ L∞)(M, τ ).
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Hence (see Property 5),

τ (a∗12a12) = τ (a12a
∗
12)

(2)

≤ λ−2τ ((cb12)(cb12)
∗) = λ−2τ ((cb12)

∗(cb12)) < ∞.

Using now the inequality p1c
2p1 ≤ λ2p1, we have that

(cb12)
∗(cb12) = b∗12c

2b12 = b∗12 · p1c2p1 · b12 ≤ λ2 · b∗12p1b12 = λ2b∗12b12

and

(3) τ (a∗12a12) ≤ τ (b∗12b12).

Let a′ = b∗ and b′ = a∗. Taking the adjoints in the equality ac = cb, we obtain
a′c = cb′. In addition

a′12
def
= p1a

′p2 = b∗21, b′12
def
= p1b

′p2 = a∗21.

Applying (3) to the triple (a′, b′, c), we obtain

τ (b∗21b21) = τ (b21b
∗
21) = τ ((a′12)

∗a′12) ≤ τ ((b′12)
∗b′12) = τ (a21a

∗
21) = τ (a∗21a21).

This proves the claim.

Step 3. Using Steps 1, 2, we obtain

τ (a∗12a12) ≤ τ (b∗12b12) = τ (b∗21b21) ≤ τ (a∗21a21) = τ (a∗12a12).

Thus,
τ (a∗12a12) = τ (a∗21a21) = τ (b∗12b12) = τ (b∗21b21).

Step 4. We claim that ap2 = p2a and bp2 = p2b.
By (1), we have

a12c = cb12.

Now, using Property 5, we obtain

τ ((a12c)(a12c)
∗) = τ ((cb12)(cb12)

∗) = τ ((cb12)
∗(cb12)).

The definition of p1 now yields

(cb12)
∗(cb12) = b∗12c

2b12 = b∗12 · p1c2p1 · b12 ≤ λ2b∗12 · p1 · b12 = λ2b∗12b12.

It follows from Step 3 that

τ ((a12c)(a12c)
∗) ≤ λ2τ (a∗12a12).

In other words,

τ (a12 · p2c2p2 · a∗12) = τ ((a12c)(a12c)
∗) ≤ λ2τ (a12a

∗
12) = τ (a12 · λ2p2 · a∗12).

Hence,
τ (a12 · p2(c2 − λ21)p2 · a∗12) ≤ 0.

Since τ is faithful and since

a12 · p2(c2 − λ21)p2 · a∗12 ≥ 0,

it follows that

a12 · p2(c2 − λ21)p2 · a∗12 = 0.(4)

For every ε > 0 and pε = e(λ+ε,+∞)(c) we have c2pε = pεc
2pε ≥ (λ + ε)2pε.

Therefore,
c2p2 ≥ λ2p2 + ε2pε, p2(c

2 − λ21)p2 ≥ ε2pε.

We now infer from (4) that
a12 · pε · a∗12 = 0.
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Since pε → p2 in measure as ε → 0, we obtain a12a
∗
12 = 0. Thus, a12 = 0 and

ap2 = p1ap2 + (1− p1)ap2 = (1− p1)ap2 = p2ap2.

Hence, we infer from Lemma 7 that ap2 = p2a. Similarly, bp2 = p2b. It follows
immediately that

ap1 = a− ap2 = a− p2a = p1a, bp1 = b− bp2 = b− p2b = p1b.
�

Lemma 9. Let a, b ∈ M be normal, c ∈ S+(M, τ ) and ac = cb. Then a∗c = cb∗.

Proof. The assumption c ∈ S+(M, τ ) guarantees that there exists λ > 0 such that
τ (1 − eλ(c)) < ∞. Set p2 = e(λ,+∞)(c), p1 = (1 − p2) and aj = apj , bj = bpj ,
cj = cpj , j = 1, 2. By Lemma 8, the operators a and b commute with pj ; in
particular, aj and bj are normal j = 1, 2. By the same lemma, the operator a
commutes with projections (1−eν(c)) for all ν ≥ λ. Since finite linear combinations
of projections (1− eν(c)), ν ≥ λ, converge to operator c2 in the measure topology
and since multiplication in S(M, τ ) is continuous in that topology, it follows that

c2a = ac2 and, similarly, c2b = bc2.(5)

Appealing now to Lemma 8, we obtain

c2a = ac2 = ac · p2 = cb · p2 = c · bp2 L.8
= c · p2b = cp2 · b = c2b.(6)

Combining (6) and (5) now yields

a∗c2 = (c2a)
∗ = (c2b)

∗ = (bc2)
∗ = c2b

∗.

Taking (5) into account, we rewrite (6) as ac2 = c2b. Combining this with the
assumption ac = cb, we infer ac1 = c1b. Taking into account that c1 ∈ M and
applying the classical Fuglede-Putnam theorem we derive that

a∗c1 = c1b
∗.

Thus,
a∗c = a∗c1 + a∗c2 = c1b

∗ + c2b
∗ = cb∗.

�
Lemma 10. Let a, b ∈ M be normal and let c ∈ S(M, τ ) be such that ac = cb. If
n(c∗) � n(c) or n(c) � n(c∗), then a∗c = cb∗.

Proof. We only consider the first case (the second case can be reduced to the first
one by considering the triple (b∗, a∗, c∗) instead of the triple (a, b, c)).

Let c = v|c| be a polar decomposition of c so that v∗v = r(c) and vv∗ = r(c∗).
Let w be a partial isometry such that w∗w = n(c∗) and ww∗ ≤ n(c). Define an
isometry u = v∗+w (that is, u∗u = 1). It is immediate that u∗|c| = c and uc = |c|.
Thus,

(uau∗) · |c| = ua · c = u · ac = u · cb = uc · b = |c| · b.
Since u∗u = 1 and since a is normal, it follows that uau∗ is also normal. Applying
Lemma 9 to the triple (uau∗, b, |c|), we obtain

(ua∗u∗) · |c| = |c| · b∗.
Therefore,

a∗c = a∗ · u∗|c| = u∗ · (ua∗u∗) · |c| = u∗ · |c| · b∗ = cb∗.

This completes the proof. �
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We now give the proof of Theorem 6 in the case of arbitrary semifinite von
Neumann algebra M with a faithful normal semifinite trace τ .

Proof of Theorem 6. Let us suppose at first that a, b ∈ M. By [11, Theorem 2.1.3]
there exist central projections z1, z2 ∈ Z(M) such that

z1 + z2 = 1, n(c∗)z1 � n(c)z1, n(c)z2 � n(c∗)z2.

It is immediate that

az1 ·cz1 = a ·z1c ·z1 = a ·cz1 ·z1 = ac ·z21 = cb ·z21 = c ·bz1 ·z1 = c ·z1b ·z1 = cz1 ·bz1,

az2 ·cz2 = a ·z2c ·z2 = a ·cz2 ·z2 = ac ·z22 = cb ·z22 = c ·bz2 ·z2 = c ·z2b ·z2 = cz2 ·bz2.
Clearly, n(czk) = n(c)zk and n(c∗zk) = n(c∗)zk, k = 1, 2, where the left hand side
is taken in the algebra zkM. Applying Lemma 10 to the triples (az1, bz1, cz1) and
(az2, bz2, cz2), we obtain

a∗z1 · cz1 = cz1 · b∗z1, a∗z2 · cz2 = cz2 · b∗z2.

Summing these equalities, we obtain that a∗c = cb∗. This proves the assertion for
the case a, b ∈ M.

Now let a, b be arbitrary normal operators in S(M, τ ) and ac = cb. Let qn
(respectively, rn) be the spectral projection for a (respectively, b) corresponding to
the set {z : |z| ≤ n}. It is clear that {qn} and {rn} are increasing sequences of
projections with supn≥1 qn = 1 and supn≥1 rn = 1. In addition (see e.g. [10, Ch. 13,
Theorems 13.24, 13.33]),

aqn = qna, a∗qn = qna
∗, brn = rnb, b∗rn = rnb

∗, n ∈ N.

Multiplying the equality ac = cb by qn on the left and by rn on the right, we obtain

(qna) · (qncrn) = (qncrn) · (rnb), n ∈ N.

Clearly, qna ∈ M and rnb ∈ M are normal operators for every n ∈ N. It follows
from the preceding paragraph that

qn · a∗c · rn = (qna)
∗ · (qncrn) = (qncrn) · (rnb)∗ = qn · cb∗ · rn.

Thus,

qn(a
∗c− cb∗)rn = 0, n ∈ N.

Since a, b ∈ S(M, τ ), it follows that τ (1− qn) → 0, τ (1− rn) → 0 as n → ∞. Thus
qn → 1, rn → 1 in measure. Therefore, for every x ∈ S(M, τ ), we have qnxrn → x
in measure as n → ∞. Taking x = a∗c− cb∗, we complete the proof. �

4. The Fuglede-Putnam theorem in the ∗-algebra LS(M)

Lemma 11 below is the key tool used to extend the Fuglede-Putnam theorem
from τ−measurable operators to measurable ones.

Lemma 11. Let M be a semifinite von Neumann algebra and let q ∈ P(M) be
a finite projection. Then there exists partition of unity {zi}i∈I ⊂ P(Z(M)), such
that every von Neumann algebra ziM, i ∈ I, has a faithful normal semifinite trace
τi with τi(ziq) < ∞.
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Proof. It is well known that a commutative von Neumann algebra Z(M) is ∗-
isomorphic to the ∗-algebra L∞(Ω,Σ, μ) of all essentially bounded measurable
complex-valued functions defined on a measure space (Ω,Σ, μ) with the measure
μ satisfying the direct sum property (we identify functions that are equal almost
everywhere) (see e.g. [3, Ch. 7, §7.3]). The direct sum property of a measure
μ means that the Boolean algebra of all projections of the ∗-algebra L∞(Ω,Σ, μ)
is order complete, and for any non-zero p ∈ P(M) there exists a non-zero pro-
jection r ≤ p such that μ(r) < ∞. The direct sum property of a measure μ is
equivalent to the fact that the functional ν(f) :=

∫
Ω
f dμ is a semifinite normal

faithful trace on the algebra L∞(Ω,Σ, μ). Therefore there exists partition of unity
{rj}j∈j ⊂ P(L∞(Ω,Σ, μ)), such that νj(f) = ν(rjf) is faithful normal finite trace
on rjL

∞(Ω,Σ, μ) for every j ∈ J .
Let ϕ be a ∗-isomorphism from Z(M) onto the ∗-algebra L∞(Ω,Σ, μ). Denote

by L+(Ω, Σ, m) the set of all measurable real-valued functions defined on (Ω,Σ, μ)
and taking values in the extended half-line [0, ∞] (functions that are equal almost
everywhere are identified).

By [13, Ch. V, §2, Theorem 2.34 and Proposition 2.35] there exists a faithful
semifinite normal extended center valued trace T ,

T : M+ → L+(Ω,Σ, μ),

such that μ({ω ∈ Ω : T (q)(ω) = +∞}) = 0. Thus characteristic functions qn = χAn

corresponding to sets An = {ω ∈ Ω : n − 1 ≤ T (q)(ω) < n}, n ∈ N, partition the
unit element χΩ of Boolean algebra P(L∞(Ω,Σ, μ)). In addition

T (qϕ−1(qn)) = ϕ−1(qn)T (q) ≤ nqn

for all n ∈ N.
It is clear that {zjn = ϕ−1(rjqn), j ∈ J, n ∈ N} is a partition of unity in

P(Z(M)). In addition, the functional τj,n : zjnM+ → [0,∞], given by the formula

τj,n(x) = νj(T (x)), x ∈ zjnM+,

is a faithful normal finite trace on zjnM. In particular,

τj,n(z
j
nq) = νj(T (z

j
nq)) ≤ nνj(ϕ

−1(qn)rj) ≤ nνj(rj) < ∞ for all j ∈ J, n ∈ N.

Setting i = (j, n) and I = J × N, we complete the proof. �

Lemma 12. Let M be a von Neumann algebra and let {zi}i∈I ⊂ Z(M) be a
partition of unity. If x ∈ LS(M) is such that xzi = 0 for every i ∈ I, then x = 0.

Proof. Since zi ≤ n(x) for all i ∈ I, it follows that 1 = supi∈I zi ≤ n(x). Thus
n(x) = 1, i.e. x = 0. �

The following lemma extends the result of Theorem 6 to the setting of measurable
operators.

Lemma 13. Let M be a semifinite von Neumann algebra and let a, b, c ∈ S(M).
If a and b are normal and if ac = cb, then a∗c = cb∗.

Proof. Choose n so large that projections e|a|(n,+∞), e|b|(n,+∞) and e|c|(n,+∞)
are finite. Let q be a finite projection given by the formula

q = e|a|(n,+∞) ∨ e|b|(n,+∞) ∨ e|c|(n,+∞).
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Let {zi}i∈I be the partition of unity constructed in Lemma 11. We have

azi · czi = czi · bzi, i ∈ I.

It follows from Lemma 11 that, for a given i ∈ I,

τi(e|a|(n,+∞)zi), τi(e|b|(n,+∞)zi), τi(e|c|(n,+∞)zi) < ∞.

A standard argument yields

e|a|(n,+∞)zi = e|azi|(n,+∞),

where the right hand side is taken in the algebra ziM. It follows that azi, bzi and
czi are τi−measurable operators for every i ∈ I. Theorem 6 implies that

a∗zi · czi = czi · b∗zi.
The assertion follows now from Lemma 12. �

Lemma 14 extends the Fuglede-Putnam theorem to the setting of locally mea-
surable operators affiliated with a semifinite von Neumann algebra M.

Lemma 14. Let M be a semifinite von Neumann algebra and let a, b, c ∈ LS(M).
If a and b are normal and if ac = cb, then a∗c = cb∗.

Proof. By the (constructive) definition of the algebra LS(M), there exist central
projections {pk}k≥1, {ql}l≥1 and {rm}m≥1 such that pk ↑ 1, ql ↑ 1 and rm ↑ 1 and
such that

apk, bql, crm ∈ S(M), k, l,m ≥ 1.

Denote the triple (k, l,m) by n and set Pn = pkqlrm. Since

aPn · cPn = cPn · bPn, n ∈ N
3,

it follows from Lemma 13 that

a∗Pn · cPn = cPn · b∗Pn, n ∈ N
3.

In other words (here, we let r0 = 0),

(a∗c− cb∗)pkql · (rm − rm−1) = 0, m ∈ N.

Since {rm − rm−1}m≥1 is a partition of unity which consists of central projections,
it follows from Lemma 12 that

(a∗c− cb∗)pkql = 0, k, l ∈ N.

Repeating the argument for l and, after that, for k, we complete the proof. �

The following assertion can be found in [1] (see Theorem 1 there). We provide
a short proof for the convenience of the reader.

Lemma 15. Let M be a purely infinite von Neumann algebra and let a, b, c ∈
LS(M). If a and b are normal and if ac = cb, then a∗c = cb∗.

Proof. Recall that S(M) = M. Choose central projections {pk}k≥1, {ql}l≥1 and
{rm}m≥1 such that pk ↑ 1, ql ↑ 1 and rm ↑ 1 and such that

apk, bql, crm ∈ M, k, l,m ≥ 1.

Denote the triple (k, l,m) by n and let Pn = pkqlrm. We have

aPn · cPn = cPn · bPn, n ∈ N
3.
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By the classical Fuglede-Putnam theorem, we have

a∗Pn · cPn = cPn · b∗Pn, n ∈ N
3.

The same argument as in Lemma 14 yields the assertion. �

Proof of Theorem 3. It is well known that for every von Neumann algebra M there
exist central projections z1, z2 ∈ Z(M) such that z1+z2 = 1, Mz1 is the semifinite
von Neumann algebra and Mz2 is the purely infinite von Neumann algebra (see,
for example, [11, Ch. 2, §2.2]). We have

azk · czk = czk · bzk, k = 1, 2.

Lemmas 14 and 15 imply that

a∗zk · czk = czk · b∗zk, k = 1, 2.

Summing these equalities, we complete the proof. �

We need the following useful property of locally measurable operators.

Lemma 16. Let M be a von Neumann algebra and let x ∈ LS(M). Let {pn}n≥1 ⊂
P(M) be such that pn ↑ 1. If pnxpn = 0 for every n ≥ 1, then x = 0.

Proof. Fix m ∈ N. For every n ≥ m, we have

pmxpn = pm · pnxpn = 0.

Thus, pn ≤ 1 − r(pmx) for every n ≥ 1. Since pn ↑ 1, it follows that r(pmx) = 0
and, therefore, pmx = 0.

Hence, x∗pm = 0 for every m ≥ 1. Thus, pm ≤ 1− r(x∗) for every m ≥ 1. Since
pm ↑ 1, it follows that r(x∗) = 0 and, therefore, x = 0. �

Lemma 17. Let M be a von Neumann algebra and let a, b ∈ LS(M). If a is
normal and if ab = ba, then eb = be for every spectral projection e of the operator
a.

Proof. Let b1 = �(b) = b+b∗

2 and b2 = �(b) = b−b∗

2i . By Theorem 3 we have that
ab∗ = b∗a. Thus abj = bja, j = 1, 2. Let a Borel function φ be given by the formula
φ(t) = (t + i)−1, t ∈ R, and let cj = φ(bj), j = 1, 2. Since b∗j = bj and since
|φ(t)| ≤ 1, t ∈ R, it follows from the Spectral Theorem that cj ∈ M, j = 1, 2. Since
abj = bja, it follows that

a(bj + i)−1 − (bj + i)−1a = (bj + i)−1 · ((bj + i)a− a(bj + i)) · (bj + i)−1 = 0,

that is, acj = cja. Theorem 13.33 in [10] yields that ecj = cje, j = 1, 2, for every
spectral projection e of the operator a. Thus, eb1 = b1e and eb2 = b2e. Summing
these equalities, we obtain eb = be. �

Proof of Corollary 4. (a) ⇒ (b). Lemma 17 states that eb = be for every spectral
projection e of the operator a. Again applying Lemma 17 to the couple (b, e), we
obtain that ef = fe for every spectral projection e of the operator a and for every
spectral projection f of the operator b.

(b) ⇒ (c). Let qn (respectively, rn) be the spectral projection for a (respectively,
b) corresponding to the set Dn = {z : |z| ≤ n}, n ∈ N. Denote φn = φ · χDn

and
ψn = ψ · χDn

. By the Spectral Theorem, we have

qn · φ(a) = φ(a) · qn = φn(aqn), rm · ψ(b) = ψ(b) · rm = ψm(brm).
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Bounded operators aqn and brm are normal, and their spectral projections com-
mute. By the Spectral Theorem for bounded operators, these operators commute
and, therefore,

φn(aqn) · ψm(brm) = ψm(brm) · φn(aqn).

Thus,

qnrm · φ(a)ψ(b) · qnrm = qnrn · φn(aqn)ψm(brm) · qnrm

= qnrm · ψm(brm)φn(aqn) · qnrm = qnrm · ψ(b)φ(a) · qnrm.

Taking into account that rm ↑ 1 and using Lemma 16, we obtain

qn · φ(a)ψ(b) · qn = qn · ψ(b)φ(a) · qn.

Again appealing to Lemma 16, we obtain (c).
Taking φ(z) = z and ψ(z) = z in (c), we obtain the implication (c) ⇒ (a). �
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