Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Universality of group embeddability


Authors: Filippo Calderoni and Luca Motto Ros
Journal: Proc. Amer. Math. Soc. 146 (2018), 1765-1780
MSC (2010): Primary 03E15
DOI: https://doi.org/10.1090/proc/13857
Published electronically: November 10, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Working in the framework of Borel reducibility, we study various notions of embeddability between groups. We prove that the embeddability between countable groups, the topological embeddability between (discrete) Polish groups, and the isometric embeddability between separable groups with a bounded bi-invariant complete metric are all invariantly universal analytic quasi-orders. This strengthens some results from works by Williams and Ferenczi, Louveau and Rosendal.


References [Enhancements On Off] (What's this?)

  • [BYBHU08] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315-427. MR 2436146, https://doi.org/10.1017/CBO9780511735219.011
  • [BYDNT16] Itaï Ben Yaacov, Michal Doucha, Andre Nies, and Todor Tsankov,
    Metric scott analysis,
    preprint, http://arxiv.org/abs/1407.7102, 2016.
  • [CMMR] Riccardo Camerlo, Alberto Marcone, and Luca Motto Ros,
    On isometry and isometric embeddability between metric and ultrametric polish spaces,
    preprint, https://arxiv.org/abs/1412.6659.
  • [CMMR13] Riccardo Camerlo, Alberto Marcone, and Luca Motto Ros, Invariantly universal analytic quasi-orders, Trans. Amer. Math. Soc. 365 (2013), no. 4, 1901-1931. MR 3009648, https://doi.org/10.1090/S0002-9947-2012-05618-2
  • [Dou16] Michal Doucha, Metrical universality for groups, Forum Math. 29 (2017), no. 4, 847-872. MR 3669006, https://doi.org/10.1515/forum-2015-0181
  • [FLR09] Valentin Ferenczi, Alain Louveau, and Christian Rosendal, The complexity of classifying separable Banach spaces up to isomorphism, J. Lond. Math. Soc. (2) 79 (2009), no. 2, 323-345. MR 2496517, https://doi.org/10.1112/jlms/jdn068
  • [FMR11] Sy-David Friedman and Luca Motto Ros, Analytic equivalence relations and bi-embeddability, J. Symbolic Logic 76 (2011), no. 1, 243-266. MR 2791347, https://doi.org/10.2178/jsl/1294170999
  • [FS89] Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894-914. MR 1011177, https://doi.org/10.2307/2274750
  • [Gao09] Su Gao, Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), vol. 293, CRC Press, Boca Raton, FL, 2009. MR 2455198
  • [GK03] Su Gao and Alexander S. Kechris, On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), no. 766, viii+78. MR 1950332, https://doi.org/10.1090/memo/0766
  • [HKL90] L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903-928. MR 1057041, https://doi.org/10.2307/1990906
  • [Kec95] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
  • [LR05] Alain Louveau and Christian Rosendal, Complete analytic equivalence relations, Trans. Amer. Math. Soc. 357 (2005), no. 12, 4839-4866. MR 2165390, https://doi.org/10.1090/S0002-9947-05-04005-5
  • [LS01] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024
  • [Rad64] R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964), 331-340. MR 0172268
  • [Sab16] Marcin Sabok, Completeness of the isomorphism problem for separable $ \rm C^\ast$-algebras, Invent. Math. 204 (2016), no. 3, 833-868. MR 3502066, https://doi.org/10.1007/s00222-015-0625-5
  • [Wil14] Jay Williams, Universal countable Borel quasi-orders, J. Symb. Log. 79 (2014), no. 3, 928-954. MR 3305823, https://doi.org/10.1017/jsl.2013.35

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03E15

Retrieve articles in all journals with MSC (2010): 03E15


Additional Information

Filippo Calderoni
Affiliation: Dipartimento di matematica, \guillemotleft{Giuseppe Peano}\guillemotright, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Email: filippo.calderoni@unito.it

Luca Motto Ros
Affiliation: Dipartimento di matematica, \guillemotleft{Giuseppe Peano}\guillemotright, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Email: luca.mottoros@unito.it

DOI: https://doi.org/10.1090/proc/13857
Keywords: Borel reducibility, countable groups, Polish groups, separable metric groups, group embeddability
Received by editor(s): February 13, 2017
Received by editor(s) in revised form: June 14, 2017
Published electronically: November 10, 2017
Communicated by: Heike Mildenberger
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society