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ON FAMILIES OF SUBSETS OF NATURAL NUMBERS

DECIDING THE NORM CONVERGENCE IN �1

DAMIAN SOBOTA

(Communicated by Thomas Schlumprecht)

Abstract. The classical Schur theorem asserts that the weak convergence
and the norm convergence in the Banach space �1 coincide. In this paper we
study complexity and cardinality of subfamilies F of ℘(ω) such that a sequence〈
xn : n ∈ ω

〉
⊆ �1 is norm convergent whenever limn→∞

∑
j∈A xn(j) = 0 for

every A ∈ F . We call such families Schur and prove that they cannot have
cardinality less than the pseudo-intersection number p. On the other hand,
we also show that every non-meager subset of the Cantor space 2ω is a Schur
family when thought of as a subset of ℘(ω), implying that the minimal size of
a Schur family is bounded from above by non(M), the uniformity number of
the ideal of meager subsets of 2ω.

1. Introduction

We start with the following motivation. By �1 and �∞ we denote the Banach
spaces of all summable complex-valued sequences and all bounded complex-valued
sequences, respectively. Recall that the dual space �∗∞ of �∞ is isometrically isomor-
phic to the space ba(℘(ω)) of all bounded complex-valued finitely additive measures
on ℘(ω), the power set of ω. As a predual space of �∞, �1 embeds isometrically into
ba(℘(ω)). Hence, every element x =

〈
x(n) : n ∈ ω

〉
∈ �1 may be considered as a

measure μx ∈ ba(℘(ω)) given for every A ∈ ℘(ω) by the formula

μx(A) =
∑
j∈A

x(j).

Since the natural embedding �1↪→ ba(℘(ω)) is an isometry, we have

‖x‖1 =
∑
j∈ω

∣∣x(j)∣∣ = ∑
j∈ω

∣∣μx

(
{j}

)∣∣ = ‖μx‖.

Motivated by this, for every μ ∈ ba(℘(ω)) we define the element μ � ω of �1 by the
formula

μ � ω =
〈
μ
(
{j}

)
: j ∈ ω

〉
.

Notice that ‖μ � ω‖1 ≤ ‖μ‖ < ∞ and the equality occurs only in the case when
μ = μx for some x ∈ �1. Note also that x = μx � ω for every x ∈ �1.

Phillips [16, Lemma 3.3] proved an important result (Phillips’s lemma) stating
that every sequence

〈
μn ∈ ba(℘(ω)) : n ∈ ω

〉
such that limn→∞ μn(A) = 0 for

every A ∈ ℘(ω) satisfies the equality limn→∞ ‖μn � ω‖1 = 0. Note that this lemma
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concerns sequences of measures from entire ba(℘(ω)), not only from �1 embedded
into ba(℘(ω)). However, if we restrict our attention only to measures from �1, then
by the identification of every A ∈ ℘(ω) with its characteristic function χA ∈ �∞, we
immediately obtain an important result due to Schur [18] asserting that for every
sequence

〈
xn ∈ �1 : n ∈ ω

〉
such that limn→∞〈χA, xn〉 = 0 for every A ∈ ℘(ω),

we have limn→∞ ‖xn‖1 = 0. (The symbol 〈y, x〉 for x ∈ �1 and y ∈ �∞ denotes
the sum

∑
j∈ω y(j)x(j)). Thus, Schur’s theorem asserts that to decide the norm

convergence of a sequence
〈
xn ∈ �1 : n ∈ ω

〉
it is sufficient to check for every

A ∈ ℘(ω) the convergence of the sequence
〈
〈χA, xn〉 : n ∈ ω

〉
. In this paper we are

interested in obtaining smaller than ℘(ω) families of subsets of ω which still decide
the norm convergence of sequences in �1.

Definition 1.1. A family F ⊆ ℘(ω) is a Phillips family if limn→∞ ‖μn � ω‖1 = 0
for every sequence

〈
μn ∈ ba(℘(ω)) : n ∈ ω

〉
such that limn→∞ μn(A) = 0 for every

A ∈ F .

Definition 1.2. A family F ⊆ ℘(ω) is a Schur family if limn→∞ ‖xn‖1 = 0 for
every sequence

〈
xn ∈ �1 : n ∈ ω

〉
such that limn→∞〈χA, xn〉 = 0 for every A ∈ F .

It is immediate that every Phillips family is Schur. In Section 2 we show that
every Schur family (and hence Phillips) is of cardinality at least equal to the pseudo-
intersection number p. On the other hand, in Theorem 3.2 we strengthen Schur’s
classical theorem and show in ZFC that every non-meager subset of the Cantor
space 2ω is a Phillips family (and hence Schur) when thought of as a subfamily of
℘(ω).

In Section 4.1 we provide some remarks concerning cardinal invariants of the
continuum related to Phillips and Schur families. The final section of the paper,
Section 4.2, is devoted to the applications of Schur families to the classical Banach–
Steinhaus theorem (also known as the Uniform Boundedness Principle).

1.1. Notation and terminology. Our notation and terminology are standard.
In particular, we refer the reader to the books of Diestel [5] and Bartoszyński and
Judah [2] for all the necessary information concerning Banach space theory and set
theory, respectively.

2. The pseudo-intersection number p and Schur families

In this section we present the proof that every Schur family (and hence every
Phillips family) has cardinality not smaller than the pseudo-intersection number
p. In the following, Q denotes the subset of c00 consisting of all rational-valued
sequences.

Lemma 2.1. For every N ∈ ω, finite subset F ⊆ S�∞ and ε ∈ (0, 1) there exists
x ∈ Q such that ‖x‖1 ≥ N and

∣∣〈y, x〉∣∣ < ε for every y ∈ F .

Proof. There exists x′ ∈
⋂

y∈F ker y such that ‖x′‖1 ≥ N + 1. Since every y ∈ F is

uniformly continuous, there exists δ ∈ (0, 1) such that |y(x)| < ε whenever y ∈ F ,
x ∈ �1 and ‖x− x′‖1 < δ. Choose x ∈ Q such that ‖x− x′‖1 < δ; then

‖x‖1 = ‖x′ + (x− x′)‖1 ≥ ‖x′‖1 − ‖x− x′‖1 > N + 1− δ > N.

�
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Theorem 2.2. Let F ⊆ ℘(ω) be such that |F| < p. Then there exists
〈
xn ∈ Q :

n ∈ ω
〉
such that supn∈ω

∥∥xn

∥∥
1
= ∞ and limn→∞〈χA, xn〉 = 0.

Proof. For every N, k ∈ ω and A ∈ F put

Q(N) =
{
x ∈ Q : ‖x‖ ≥ N

}
and Q(A, k) =

{
x ∈ Q :

∣∣〈χA, x〉
∣∣ < 1/k

}
.

By Lemma 2.1, the following family has the strong finite intersection property:

G =
{
Q(N) : N ∈ ω

}
∪
{
Q(A, k) : A ∈ F , k ∈ ω

}
.

Since |G| = |F| · ω < p, there exists infinite X ⊆ Q almost contained in every
element of G. The elements of X form the required sequence. �

Corollary 2.3. Every Schur family is of cardinality at least p. �

Recall that MAκ(σ-centered) denotes Martin’s axiom for σ-centered posets and
at most κ many dense subsets (cf. Bartoszyński and Judah [2, Section 1.4.B]) and
the result of Bell [3] stating that MAκ(σ-centered) holds if and only if p > κ.

Corollary 2.4. Let κ be a cardinal number and assume MAκ(σ-centered). If
F ⊆ ℘(ω) is a Schur family, then |F| > κ.

In particular, if Martin’s axiom holds, then every Schur family is of cardinality
c. �

However, the next proposition shows that consistently all Schur families may
have cardinality much bigger than p.

Proposition 2.5. It is consistent that all Schur families have cardinality c but
p = ω1 < c.

Proof. Start with a model M of ZFC in which p = c and a Suslin tree T exists (see
e.g. Kunen and Tall [10, Corollary 10] and Fremlin [9, Section 11]). Let N be a
T-generic extension of M . Then, p = ω1 < c holds in N (Džamonja, Hrušák and
Moore [6, Theorem 6.16]). However, we claim that every Schur family in N has
cardinality c. To see that, assume that there exists a Schur family F ∈ N such

that
(
|F| < c

)N
. Since the forcing T is ω1-Baire, i.e., intersections of countably

many open dense subsets are open dense,
(
℘(ω)

)M
=

(
℘(ω)

)N
. Let κ be a cardinal

in N such that |F| = κ. T satisfies the countable chain condition, so T preserves
cardinals and there is G ⊆ ℘(ω) in M such that F ⊆ G and (|G| = κ)M (cf.
Kunen [11, Lemma VII.5.5]). But then, in M , G is a Schur family and |G| < p, a
contradiction with Corollary 2.3. �

3. Non-meager subsets of 2ω and Phillips families

The aim of this section is to prove in ZFC that every non-meager subset of the
Cantor space 2ω containing all finite subsets of ω is a Phillips family and hence
there exists a Phillips family of cardinality non(M), the minimal cardinality of a
non-meager subset of the Cantor set 2ω. All measures considered in the sequel are
bounded and finitely additive.

Lemma 3.1. Let δ > 0 and
〈
μn : n ∈ ω

〉
be a sequence of real-valued measures

such that limn→∞ μn(A) = 0 for every A ∈ [ω]
<ω

, but ‖μn � ω‖1 ≥ 6δ for every
n ∈ ω. Then, there exist increasing sequences

〈
Nk ∈ ω : k ∈ ω

〉
and

〈
nk : k ∈ ω

〉
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and an antichain
〈
Fk ∈ [ω]<ω : k ∈ ω

〉
in [ω]<ω such that for every k ∈ ω the

following conditions are satisfied:

• Fk ⊆
[
Nk, Nk+1

)
,

•
∣∣μnk

(
Fk

)∣∣ > δ,

•
∑
j<Nk

∣∣μnk

(
{j}

)∣∣ < δ/4 and
∑

j≥Nk+1

∣∣μnk

(
{j}

)∣∣ < δ/4.

Proof. The proof goes by induction. Assume that for some K ∈ ω we have con-
structed sequences N0, . . . , NK−1, n0, . . . , nK−1 and F0, . . . , FK−1 as required. To
obtain NK , nK and FK we proceed as follows.

Since ‖μnK−1
� ω‖1 < ∞, there is NK > maxFK−1 (if K = 0, just put N0 = 0)

such that ∑
j≥N2

∣∣μnK−1

(
{j}

)∣∣ < δ/4.

Now, there exists nK > nK−1 (again, if K = 0, put n0 = 0) such that∑
j<NK

∣∣μnK

(
{j}

)∣∣ < δ/4.

Finally, there exists FK ⊆ [ω \ {0, . . . , NK − 1}]<ω such that

∣∣μnK

(
FK

)∣∣ ≥ 1

5

∑
j≥NK

∣∣μnK

(
{j}

)∣∣ = 1

5

(∑
j∈ω

∣∣μnK

(
{j}

)∣∣− ∑
j<NK

∣∣μnK

(
{j}

)∣∣)

>
1

5
(6δ − δ) = δ.

�

We think of subsets of 2ω as subfamilies of ℘(ω), so we say that F ⊆ 2ω contains
all finite sets if F contains all points x ∈ 2ω such that x(i) = 0 for all but finitely
many i ∈ ω.

Theorem 3.2. Let F ⊆ 2ω be a non-meager set containing all finite sets. Then,
F is a Phillips family.

Proof. We first prove that F is a Phillips family for sequences of real-valued mea-
sures. So assuming F is not, there exists a sequence

〈
μn : n ∈ ω

〉
of real-valued mea-

sures such that limn→∞ μn(A) = 0 for every A ∈ [ω]<ω, but there exists δ > 0 for

which ‖μn � ω‖1 ≥ 6δ for every n ∈ ω. Since [ω]
<ω ⊆ F , there exist increasing se-

quences
〈
Nk ∈ ω : k ∈ ω

〉
and

〈
nk : k ∈ ω

〉
and an antichain

〈
Fk ∈ [ω]<ω : k ∈ ω

〉
as in Lemma 3.1.

For every n ∈ ω and G ∈ [ω]
<ω

there exists k(G,n) > n such that Nk(G,n) >
maxG (and hence minFk(G,n) > maxG). Define the function

hn
G : G ∪

[
Nk(G,n), Nk(G,n)+1

)
→ {0, 1}

as follows:

hn
G(x) =

{
1 if x ∈ G ∪ Fk(G,n),
0 if x ∈

[
Nk(G,n), Nk(G,n)+1

)
\ Fk(G,n).

For every n ∈ ω and G ⊆ [ω]<ω define the following open subset of 2ω:

On
G =

{
g ∈ 2ω : hn

G ⊆ g
}
.
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For every n ∈ ω put

Xn =
⋃

G∈[ω]<ω

On
G.

The set Xn is open dense in 2ω for every n ∈ ω. Since F is non-meager as a subset
of 2ω, there exists f ∈ F ∩

⋂
n∈ω Xn. For every n ∈ ω there exists G ∈ [ω]<ω such

that hn
G ⊆ f and hence ∣∣μnk(G,n)

(f)
∣∣

≥
∣∣μnk(G,n)

(
Fk(G,n)

)∣∣− ∑
j<Nk(G,n)

∣∣μnk(G,n)

(
{j}

)∣∣− ∑
j≥Nk(G,n)+1

∣∣μnk(G,n)

(
{j}

)∣∣
> δ − δ/4− δ/4 = δ/2.

Hence, lim supn∈ω

∣∣μn(f)
∣∣ ≥ δ/2 > 0 and f ∈ F , which is a contradiction.

Finally, we show that F is a Phillips family for sequences of complex-valued
measures. Let

〈
μn : n ∈ ω

〉
be a sequence of complex-valued measures on ℘(ω)

such that limn→∞ μn(A) = 0 for every A ∈ F . Then,

lim
n→∞

Re
(
μn(A)

)
= lim

n→∞
Im

(
μn(A)

)
= 0

for every A ∈ F , and hence

lim
n→∞

∥∥(Re(μn)
)
� ω

∥∥
1
= lim

n→∞

∥∥( Im(μn)
)
� ω

∥∥
1
= 0,

since F is a Phillips family for sequences of real-valued measures. By the triangle
inequality we obtain that limn→∞

∥∥μn � ω
∥∥
1
= 0. �

Corollary 3.3. There exists a Phillips family of cardinality non(M).

Since non(M) = ω1 < c holds, e.g., in the Cohen, Sacks or Miller models (see
Blass [4, Chapter 11]), we obtain the following corollary.

Corollary 3.4. It is consistent that ω1 < c and there exists a Phillips family of
cardinality ω1. In particular, the existence of a Phillips family (or a Schur family)
of cardinality strictly less than c is undecidable in ZFC+¬CH. �

4. Final remarks and consequences

In this final section of the paper we give several remarks and show some conse-
quences of the results proved in the previous sections. We also ask some questions.

4.1. Cardinal invariants of the continuum. In Section 2 we proved that there
is no countable Schur family, and in Section 3 we showed in ZFC that there is a
Phillips family of cardinality non(M). Hence, it seems reasonable to introduce the
following cardinal invariants of the continuum related to Phillips and Schur families.

Definition 4.1. The Phillips number phil is the smallest cardinality of a Phillips
family:

phil = min
{
|F| : F ⊆ ℘(ω) is a Phillips family

}
.

The Schur number schur is the smallest cardinality of a Schur family:

schur = min
{
|F| : F ⊆ ℘(ω) is a Schur family

}
.

Since every Phillips family is Schur, we immediately have that schur ≤ phil. The
following corollary expresses all the results from the previous sections in terms of
the numbers phil and schur.
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Corollary 4.2.

(1) Under Martin’s axiom, phil = schur = c.
(2) p ≤ schur ≤ phil ≤ non(M).
(3) It is consistent that ω1 = p < schur = phil = non(M) = c.
(4) It is consistent that ω1 = p = phil = schur = non(M) < c. �
We would like to know whether it is possible to express phil and schur exactly

in terms of the classical cardinal invariants of the continuum studied, e.g., in Bar-
toszyński and Judah [2] or Blass [4].
Problem 4.3.

(1) Give (better) bounds for phil and schur.
(2) Determine the exact values of phil and schur in terms of classical cardinal

invariants.

It seems also interesting to distinguish the class of Phillips families and the class
of Schur families.
Question 4.4.

(1) Is every Schur family Phillips?
(2) If no, is it consistent that schur < phil?

4.2. Weak* Banach–Steinhaus sets in �∞. Let X be an infinite-dimensional
Banach space with a predual space X∗ and the dual space X∗. Then, X∗ isometri-
cally embeds into X∗ and the Banach–Steinhaus theorem states in particular that if
a sequence

〈
xn ∈ X∗ : n ∈ ω

〉
is pointwise bounded onX, i.e., supn∈ω

∣∣〈xn, y〉
∣∣ < ∞

for every y ∈ X, then it is uniformly bounded, i.e., supn∈ω

∥∥xn

∥∥ < ∞. In this sec-
tion, we are interested in whether we can consider a small subset D of SX to decide
the uniform boundedness of the sequence

〈
xn : n ∈ ω

〉
.

Definition 4.5. A subset D of the unit sphere SX is weak* Banach–Steinhaus in
X if every sequence

〈
xn ∈ X∗ : n ∈ ω

〉
which is pointwise bounded on D, i.e.,

supn∈ω

∣∣〈xn, y〉
∣∣ < ∞ for every y ∈ D, is uniformly bounded.

Nygaard and Põldvere [15] provide several characterizations of weak* Banach–
Steinhaus sets (under the name of weak*-thick sets). We prove that those sets
cannot be too small.

Proposition 4.6. Every weak* Banach–Steinhaus set D ⊆ SX in an infinite-
dimensional Banach space X with a predual X∗ is uncountable and linearly weak*
dense (i.e., spanweak∗

(D) = X).

Proof. We only show that D is uncountable, since the proof of linear weak* density
of D is similar.

Assume D is countable, i.e., D =
{
yn : n ∈ ω

}
. Put

An = span
{
y0, . . . , yn−1

}
.

Recall that (X,weak∗)∗ denotes the space of all weak* continuous functionals on
X. Since (X,weak∗)∗ = X∗ (cf. Rudin [17, Theorem 3.10]), by the Hahn–Banach
theorem, there exists xn ∈ X∗ such that xn(z) = 0 for every z ∈ An and 〈xn, yn〉 =
n. For every m ∈ ω we have

sup
n∈ω

|〈xn, ym〉| = sup
n∈{0,...,m}

|〈xn, ym〉| < ∞,

but supn∈ω

∥∥xn

∥∥ = ∞. Thus, D is not weak* Banach–Steinhaus. �
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We are now going to the following setting: X∗ = �1, X = �∞ andX∗ = ba(℘(ω)).
An immediate corollary of Theorem 2.2 is the following result. Note that this also
yields that there are no countable weak* Banach–Steinhaus sets in �∞.

Corollary 4.7. Every weak* Banach–Steinhaus set in �∞ is of cardinality at least
p. In particular, assuming Martin’s axiom, every weak* Banach–Steinhaus set in
�∞ is of cardinality c. �

The next proposition reveals a relation between Schur families and weak*
Banach–Steinhaus sets in �∞.

Proposition 4.8. If F ⊆ ℘(ω) is a Schur family, then the set D =
{
χA : A ∈ F

}
is weak* Banach–Steinhaus in �∞.

Proof. Assume
〈
xn ∈ �1 : n ∈ ω

〉
is pointwise bounded on D, but limn→∞

∥∥xn

∥∥
1
=

∞. For every n ∈ ω define x′
n ∈ �1 as follows:

x′
n = xn/

√∥∥xn

∥∥
1
.

Then, for every A ∈ F we have limn→∞〈χA, x
′
n〉 = 0. Since F is Schur, it follows

that limn→∞
∥∥x′

n

∥∥
1
= 0. But

∥∥x′
n

∥∥
1
=

√∥∥xn‖1 for every n ∈ ω, a contradiction.

�
Corollary 4.9. There exists a weak* Banach–Steinhaus set in �∞ of cardinality
non(M). Hence, it is consistent that ω1 < c and there exists a weak* Banach–
Steinhaus set in �∞ of cardinality ω1. In particular, the existence of weak* Banach–
Steinhaus sets in �∞ of cardinality strictly smaller than c is undecidable in
ZFC+¬CH. �

Note that for every Banach space (X, ‖ · ‖) the density character of (X∗, weak∗)
is not greater than the density character of (X, ‖ · ‖) (cf. Fabian et al. [7, page
576]). Hence, the weak* density character of �∞ is ω. Corollary 4.7 implies that
not every weak* dense subset of �∞ is a weak* Banach–Steinhaus set (i.e., those of
cardinality less than p are not). However, if D ⊆ S�∞ , then the same proposition
states that linear weak* density of D is a necessary condition for D to be weak*
Banach–Steinhaus. On the other hand, since the density character of �∞ is c,
Corollary 4.9 yields that consistently there exists a weak* Banach–Steinhaus set
which is not linearly dense in �∞.

Question 4.10. Assume Martin’s axiom. Is every weak* Banach–Steinhaus set in
�∞ linearly dense?
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