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ALGEBRAIC EQUATIONS IN STATE CONDITION

CHEOLGYU LEE

(Communicated by Ken Ono)

Abstract. In this paper, we will prove that a problem deciding whether there
is an upper-triangular coordinate in which a character is not in the state of a
Hilbert point is NP-hard. This problem is related to the GIT-semistability of
a Hilbert point.

1. Introduction

Let k be an algebraically closed field of characteristic zero and rS = k[x1, . . . , xr]
be a polynomial ring of r variables graded by degree. We will omit the superscript
r if there is no confusion. When non-negative integers d and b are fixed, there is a
projective space

Er
d,b = P

( b∧
rSd

)
,

which is a GLr(k)-representation. Let Tr be the maximal torus of GLr(k) which
consists of diagonal matrices and Ur be the set of all upper-triangular matrices with
1’s in the diagonal. There is a G-equivariant closed immersion

ir,P,d : HilbP (Pr−1
k ) → Er

d,Q(d)

for d ≥ gP where gP is the Gotzmann number associated to a Hilbert polynomial
P , which is defined in [2]. Also Q(d) =

(
r+d−1

d

)
− P (d).

For any point v ∈ Er
d,b, the collection of states ΞG.v = {Ξg.v(T )|g ∈ GLr(k)} (de-

fined in [5]) of v determines whether v is semistable or not, as stated in [7]. If v is un-

stable, ΞG.v determines the Hesselink strata of P

(∧b Sd

)us

that contains v, which

is stated in [3]. For an arbitrary character χ of T , Zv,χ = {g ∈ GLr(k)|χ /∈ Ξg.v}
is a Zariski-closed subset of GLr(k). In this paper, we will construct a solvability
check problem (SC) which is equivalent to deciding if an arbitrary system of alge-
braic equations is solvable (SysAl) by specializing the defining equation of some
Zv,χ to the defining equation of Ur ∩ Zv,χ in Ur.
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It’s a well-known fact that to decide whether an arbitrary system of algebraic
equation is solvable is an NP-hard problem ([6]). We will show that this problem
can be reduced to the problem asking whether there is a g ∈ Ur such that χ /∈ Ξg.w,
in polynomial time. This means that such a problem is NP-hard. This problem is
related to the GIT-semistability of a Hilbert point. By solving finitely many such
problems, we can decide whether a Hilbert point is semistable or not.

2. Definitions and notation

First of all, we need to define the notion of generalization of a system of algebraic
equation.

Definition. Suppose I is an ideal of S = k[x1, . . . , xr]. An ideal J of a finitely
generated k algebra R is a generalization of I under π if there is a surjective ring
homomorphism π : R → S and a minimal generator {z1, . . . , zr′} of R satisfying
the following:

• For any 1 ≤ i ≤ r′, π(zi) ∈ k ∪ {x1, . . . , xr}.
• π(J) = I.

I is a specialization of J if J is a generalization of I.

For example, I = 〈x2+ y2〉 ⊂ k[x, y] is a specialization of J = 〈z(x2+ y2), zw〉 ⊂
k[x, y, z, w] under the map π : k[x, y, z, w] → k[x, y] which satisfies π(x) = x,
π(y) = y, π(z) = 1 and π(w) = 0.

We define some notation. Let <lex be a lexicographic monomial order satisfying

xi+1 <lex xi and let Ar
d,b =

∧b rSd. Let
rMd be the set of all monomials in rSd and

W r
d,b =

{ b∧
i=1

mi

∣∣∣∣mi ∈ rMd, mi >lex mi+1

}
.

W r
d,b is a basis of Ar

d,b. Suppose v ∈ Ar
d,b and w ∈ W r

d,b. We define vw to be the
w-component of the vector v. That is,

v =
∑

w∈W r
d,b

vww.

Let [v] ∈ Er
d,b be the line in Ar

d,b through v and the origin of Ar
d,b. For any

g ∈ GLr(k), gij ∈ k is the component of g in the i’th row and j’th column. That
is,

g =

⎡
⎢⎢⎢⎢⎣

g11 · · · g1j · · ·
...

. . .
... · · ·

gi1 · · · gij · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦ .

Also, GLr(k) action on rS is given by g.xi =
∑

1≤j≤r gjixj . Note that this ac-

tion is a left action on rS. For any v ∈ Ar
d,b and w ∈ k[W r

d,b], (g.v)w means

((idΓ(GLr(k),OGLr(k)) ⊗k ev) ◦ φ)(w) when g is an indeterminate. Here φ is the co-
action map

φ : k[W r
d,b] → Γ(GLr(k),OGLr(k))⊗k k[W

r
d,b]

∼= k[{gij}ri,j=1]det g ⊗k k[W r
d,b]

and ev is the evaluation map ev : k[W r
d,b] → k at v. Let’s define χi ∈ X(Tr) for all

1 ≤ i ≤ r as follows:
χi(D) = Dii
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where D ∈ Tr. Let ξ
r
d,b =

db
r (1, . . . , 1) ∈ X(Tr)R = X(Tr)⊗Z R. Here X(Tr) is the

group of characters of the algebraic torus Tr.
Let Lr = {g ∈ GLr(k)|g is lower-triangular.}. Let’s define a specialization map

θr : Γ(GLr(k),OGLr(k)) → Γ(Ur,OUr
) as follows:

θr(zij) =

⎧⎨
⎩

1, if i = j,
0, if i > j,
zij , if i < j,

where Γ(GLr(k),OGLr(k)) = k[{zij}ri,j=1]detz and Γ(Ur,OUr
) = k[{zij}1≤i<j≤r].

For any C ⊂ k[{zij}ri,j=1]detz, let spanC be the k-subspace of k[{zij}ri,j=1]det z
spanned by C. Let Σr be the permutation group on the set {1, 2, . . . , r}, which is
a subgroup of GLr(k). Let Δv be the convex hull of Ξv in X(Tr)R for all v ∈ Er

d,b.

3. Polynomial coefficients in some special cases

Suppose v ∈ Ar
d,b. In this section, we will compute vw for some special w ∈ W r

d,b.
Let’s compute it when b = 1 first.

Lemma 3.1. Suppose r ≥ 2. Let p ∈ rSd = Ar
d,1. For any g ∈ GLr(k),

(g.p)xd−j
1 xj

2
=

∑
i1+...+ir=j

∏
1≤a≤r g

ia
2a∏

1≤a≤r ia!

∂jp

∂xi1
1 . . . ∂xir

r

∣∣∣∣
xi=g1i

.

Proof. Without loss of generality, we can assume that p is a monomial. When p is
a monomial, expanding g.p proves the equality. �

We can generalize Lemma 3.1 using the following lemma.

Lemma 3.2. Suppose r ≥ 2. Let p1, p2 ∈ rSd = Ar
d,1. For any g ∈ GLr(k),

(g.p1 ∧ p2)xd−j1
1 x

j1
2 ∧x

d−j2
1 x

j2
2

=

∣∣∣∣ (g.p1)xd−j1
1 x

j1
2

(g.p1)xd−j2
1 x

j2
2

(g.p2)xd−j1
1 x

j1
2

(g.p2)xd−j2
1 x

j2
2

∣∣∣∣
for all 1 ≤ j1 < j2 ≤ d.

Proof. It can be derived from the definition. �

In Lemma 3.1, we see that taking (g.�)m of p separates each monomial with
respect to the degrees of each variable of p and m. Our construction would make
use of this phenomenon. That is, we will control the degree of one variable, say
xr+1.

Fix d. Let F be a sequence {Fi}2l−1
i=0 ∈ (rSd)

2l ⊂ (r+1Sd)
2l. Let’s define vrd(F ) ∈

Ar+1
2l+d,2 as follows:

vrd(F ) =

{
2l−1∑
i=0

xi
r+1x

2l−i
1 Fi

}
∧
{

2l−1∑
i=0

xi+1
r+1x

2l−i−1
1 Fi

}
.

Note that [vrd(F )] ∈ HilbP (Pr
k) where

P (t) =

(
r + t

r

)
−
(
r + t− 2l − d+ 1

r

)
+

(
r + t− 2l − d− 1

r − 2

)
.
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Indeed, the graded ideal

IF =

〈 2l−1∑
i=0

xi
r+1x

2l−i
1 Fi,

2l−1∑
i=0

xi+1
r+1x

2l−i−1
1 Fi

〉

of r+1S satisfies the following properties.

Lemma 3.3. r+1S/IF has the Hilbert polynomial

P (t) =

(
r + t

r

)
−
(
r + t− 2l − d+ 1

r

)
+

(
r + t− 2l − d− 1

r − 2

)
.

Also, gP = 2l + d so that ir+1,P,d+2l(IF ) = [vrd(F )]. If r ≥ 2, then IF is saturated.

Proof. I = IF is isomorphic to 〈x1, xr+1〉(−2l − d + 1) as a graded r+1S module.
Thus, dimk(IF )t+2l+d is equal to the number of monomials in r+1St+1 which is
divisible by x1 or xr+1, for every t ≥ 0. This implies that IF has the Hilbert
polynomial

Q(t) =

(
r + t− 2l − d+ 1

r

)
−
(
r + t− 2l − d− 1

r − 2

)
.

Q admits the Macaulay representation

Q(t) =

(
r + t− 2l − d

r

)
+

(
r + t− 2l − d− 1

r − 1

)
.

By the definition of n(Q) in [2, p. 65], gP = 2l + d. The regularity of IF is
equal to the regularity of 〈x1, xr+1〉(−2l − d + 1), which is equal to 2l + d. Let
J be the saturation of IF . The Hilbert polynomial of J is Q. This implies that
the regularity of J is at most gP = 2l + d. Therefore, dimk Jt = Q(t) = dimk It
for all t ≥ 2l + d by [2, (1.2) Satz, (2.9) Lemma]. Suppose r ≥ 2. If there is a
homogeneous q ∈ J \ I, then q ∈ Jt for some t < 2l + d. We derive an inequality
2 = dimk I2l+d = dimk J2l+d ≥ dimk〈q〉2l+d ≥ r + 1 ≥ 3, which is false. �

We can analyze the polynomial coefficient of g.vrd(F ) as follows:

Lemma 3.4. {fa,r,l,F }l−1
a=0 is a basis for

span{θr+1((g.v
r
d(F ))x2l+d−a

1 xa
r+1∧xd+a

1 x2l−a
r+1

)|0 ≤ a ≤ l − 1}

where

fa,r,l,F =
∑

0≤i<j≤2l−1

F̃iF̃jg
i+j−2l+1
1r+1

[(
i

a

)(
j

2l − a− 1

)
+

(
i

2l − a− 1

)(
j

a

)]

+

2l−1∑
i=0

F̃i
2
g2i−2l+1
1r+1

(
i

a

)(
i

2l − a− 1

)
and

F̃i = Fi(1, g12, . . . , g1r).

Proof. Using Lemma 3.1 and Lemma 3.2, we can compute that

fa,r,l,F − fa−1,r,l,F = θr+1((g.v
r
d(F ))x2l+d−a

1 xa
r+1∧xd+a

1 x2l−a
r+1

)

for all 1 ≤ a ≤ l − 1 and

f0,r,l,F = θr+1((g.v
r
d(F ))x2l+d

1 ∧xd
1x

2l
r+1

).

�
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Let ψ be a sequence {ψi}l−1
i=0 ∈ (rSd)

l ⊂ (r+1Sd)
l. Let’s define a sequence

Fψ ∈ (rSd)
2l ⊂ (r+1Sd)

2l as follows:

• (Fψ)i = 0 for all l ≤ i ≤ 2l − 2.
• (Fψ)2l−1 = xd

1.
• (Fψ)i =

1
i!ψi for all 0 ≤ i ≤ l − 1.

Lemma 3.5. πψ = {πψ
j }l−1

j=0 is a basis for

span{θr+1((g.v
r
d(Fψ))x2l+d−a

1 xa
r+1∧xd+a

1 x2l−a
r+1

)|0 ≤ a ≤ l − 1}

where

πψ
j =

(2l − 1)!

(2l − 1− j)!

[
l−1−j∑
a=0

(
2l − 1− j

a

)
(−1)a

]
g2l−1
1r+1 + ψ̃jg

j
1r+1

and

ψ̃j = ψj(1, g12, . . . , g1r).

Proof. By the definition of fa,r,l,Fψ
,

a!

(
2l − 1

a

)−1

fa,r,l,Fψ
=

(2l − 1)!

(2l − 1− a)!
g2l−1
1r+1 +

l−1∑
i=a

1

(i− a)!
ψ̃ig

i
1r+1

for all 0 ≤ a ≤ l − 1. Now

l−1∑
a=j

(−1)a+j

(a− j)!

[
a!

(
2l − 1

a

)−1

fa,r,l,Fψ

]
= (2l − 1)!

l−1∑
a=j

(−1)a+j

(a− j)!(2l − 1− a)!
g2l−1
1r+1

+

l−1∑
a=j

l−1∑
i=a

(−1)a+j

(a− j)!(i− a)!
ψ̃ig

i
1r+1

=
(2l − 1)!

(2l − 1− j)!

l−1−j∑
a=0

(
2l − 1− j

a

)
(−1)ag2l−1

1r+1

+
l−1∑
i=j

i−j∑
a=0

1

(i− j)!

(
i− j

a

)
(−1)aψ̃ig

i
1r+1 = πψ

j .

Clearly {πj |0 ≤ j ≤ l−1} is a linearly independent set. This proves the lemma. �

πψ has the following property. This property depends on the characteristic of k,
which is zero in this paper.

Lemma 3.6. The coefficient of g2l−1
1r+1 in πψ

j is non-zero. That is,

l−1−j∑
a=0

(
2l − 1− j

a

)
(−1)a �= 0

for any choice of integers l and j satisfying l ≥ 1 and 0 ≤ j ≤ l − 1.

Proof. Note that (
2l − 1− j

a

)
≤

(
2l − 1− j

a+ 1

)
for all a satisfying 0 ≤ a ≤ l − 1− j.
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If l − 1− j is even,

l−1−j∑
a=0

(
2l − 1− j

a

)
(−1)a = 1 +

l−1−j
2∑

a=1

(
2l − 1− j

2a

)
−
(
2l − 1− j

2a− 1

)
> 0.

Similarly, If l − 1− j is odd, we can show that

l−1−j∑
a=0

(
2l − 1− j

a

)
(−1)a < 0

because the first term is always strictly smaller than the absolute value of the second
term. �

4. NP-hardness of a problem judging the existence

of an upper-triangular coordinate

Suppose l ≥ 3, r ≥ 2 and p = {pi}l−3
i=0 ∈ k[x2, . . . , xr]

l−2. Assume that

d ≥ max{deg(pi)|0 ≤ i ≤ l − 3}
where deg(pi) means the non-homogeneous degree of pi. Let’s construct ψ(p) =

{ψi(p)}l−1
i=0.

• Define the first two terms as follows:

(1) ψi(p) = − (2l − 1)!

(2l − 1− i)!

[
l−1−i∑
a=0

(
2l − 1− i

a

)
(−1)a

]
xd
1

for i ∈ {0, 1}.
• For 2 ≤ i ≤ l − 1, let

(2) ψi(p) = − (2l − 1)!

(2l − 1− i)!

[
l−1−i∑
a=0

(
2l − 1− i

a

)
(−1)a

]
xd
1

+xd
1pi−2

(
x2

x1
, . . . ,

xr

x1

)
.

Now we are ready to prove the following.

Theorem 4.1. Let l ≥ 3. There is g ∈ Ur+1 satisfying χ = χ2d+2l
1 χ2l

r+1 /∈
Ξ[g.vr

d(Fψ(p))] if and only if the ideal J of k[x2, . . . , xr] generated by {pi|0 ≤ i ≤ l−3}
has a solution over k.

Proof. By definition, Z[vr
d(Fψ(p))],χ ∩ Ur+1 is the zero set of the ideal

I ⊂ Γ(Ur+1,OUr+1
) = k[{gij}1≤i<j≤r+1]

generated by

{θr+1((g.v
r
d(Fψ(p)))x2l+d−a

1 xa
r+1∧xd+a

1 x2l−a
r+1

)|0 ≤ a ≤ l − 1}.

By Lemma 3.5, I is generated by

{πψ(p)
i |0 ≤ i ≤ l − 1}.

It suffices to show that the zero set of I is non-empty if and only if the zero set of J is
non-empty. If there is an element {xij}1≤i<j≤r−1 in the zero set of I, then g1r+1 = 1

because π
ψ(p)
i = 0 for i ∈ {0, 1} if and only if g2l−1

1r+1 = 1 and g2l−1
1r+1 − g1r+1 = 0
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by Lemma 3.6. Note that (x12, . . . , x1r) is a solution of the system of equations
defined by

{πψ(p)
i |g1r+1=1|2 ≤ i ≤ l − 1} = {pi(g12, . . . , g1r)|0 ≤ i ≤ l − 3}

so that J has non-empty zero set. If there is an element {xi}ri=2 in the zero set
of J , {zij}1≤i<j≤r+1 is in the zero set of I if zir = xi for all 2 ≤ i ≤ l − 1 and
z1r+1 = 1. �

Theorem 4.1 implies the following.

Corollary 4.2. For any ideal I of a polynomial ring, there is a Hilbert point v ∈
HilbP (Pr

k), a choice of closed immersion HilbP (Pr
k) → P(

∧Q(d) Sd) and a character
χ ∈ X(Tr+1) such that there is an ideal J of Γ(GLr+1(k),OGLr+1(k)) such that Zv,χ

is the zero locus of J and J is a generalization of I.

Let’s consider some decision problems. Let SysAl be a problem asking if a
system of algebraic equations over Q has a solution over k and HC be a problem
asking if a graph has a Hamiltonian cycle. Using the proof of Corollary 2.3.2 in
[6, p. 21], we can prove that HC can be reduced to SysAl in polynomial time. By
Theorem 10.23 of [4], HC is an NP-complete problem so that SysAl is an NP-hard
problem. Let’s describe a solvability check problem SC as follows:

• Given : A rational Hilbert point v ∈ HilbP (Pr−1
k ), a choice of closed im-

mersion HilbP (Pr−1
k ) → P(

∧Q(d) Sd) and a character χ ∈ X(Tr).
• Decide : Is there a coordinate g ∈ Ur satisfying χ /∈ Ξg.v?

Here, v ∈ HilbP (Pr−1
k ) is rational if it represents a saturated homogeneous ideal of

rS generated by rational polynomials. Theorem 4.1 shows that there is a polynomial
time reduction from SysAl to SC. That is,

Corollary 4.3. The problem SC is NP-hard.

There is an extended version of SC, which would be called ESC, described as
follows:

• Given : A rational Hilbert point v ∈ HilbP (Pr−1
k ), a choice of closed immer-

sion HilbP (Pr−1
k ) → P(

∧Q(d) Sd) and a finite set of characters C ⊂ X(Tr).
• Decide : Is there a coordinate g ∈ Ur satisfying C ∩ Ξg.v = ∅?

SC can be reduced to ESC in polynomial time so that we can prove the following:

Corollary 4.4. The problem ESC is NP-hard.

On the other hand, we can use Buchberger’s algorithm in [1] to solve the problem
ESC because the zero set of an ideal I ⊂ rS is non-empty if and only if 1 /∈ I if
and only if the Gröbner basis of I with respect to the lexicographic (or graded
reverse-lexicographic) monomial order contains 1.

Let’s construct an example. Fix natural numbers r and d. Suppose l = 3,
p0 ∈ k[x2, . . . , xr] and deg(p0) ≤ d. In this case, p is a sequence of length 1 and
the ideal generated by {pi|0 ≤ i ≤ l− 3} has empty zero locus if and only if p0 is a
non-zero constant polynomial. Let

F ′ = −6xd+5
1 + 15xd+4

1 xr+1 − 10xd+3
1 x2

r+1 + xd
1x

5
r+1 +

xd+3
1 x2

r+1

2
p0

(
x2

x1
, . . . ,

xr

x1

)
.
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By the definition, IFψ(p)
= 〈x1F

′, xr+1F
′〉. This means that there is a g ∈ Ur+1

such that χ2d+6
1 χ6

r+1 /∈ Ξ[g.vr
d(Fψ(p))] if and only if p0 is the zero polynomial or

deg(p0) ≥ 1.

5. A relation between the problem ESC and GIT-semistability

In this section, every GIT problem is related to the action of GLr(k) on Er
d,b. It

will be proved that we can decide whether a rational Hilbert point is GIT-semistable
by solving finitely many ESC. As a consequence of [7, Criterion 3.3], we have the
following lemma.

Lemma 5.1. A rational point v ∈ Er
d,b is GIT-semistable if and only if ξrd,b ∈ Δg.v

for all g ∈ GLr(k).

Proof. v is semistable if and only if it is semistable under the action of every
maximal torus of GLr(k) by [8, Theorem 2.1]. Since every two maximal tori are
conjugate, [7, Criterion 3.3] proves the lemma. �

A point in X(T )R is not in a polytope Δ if and only if there is a separating
hyperplane in X(T )R. That is,

Lemma 5.2. For any g ∈ GLr(k) and v ∈ Er
d,b, ξ

r
d,b /∈ Δg.v if and only if there is

an ω ∈ X(T )∨
R
such that

(3) ω(ξrd,b) < minω(Ξg.v ⊗R 1).

For some special choices of ω ∈ X(T )∨
R
and v, we can still guarantee (3) for every

g ∈ Lr.

Lemma 5.3. Suppose there are v ∈ Er
d,b and ω ∈ X(T )∨

R
satisfying

ω(ξrd,b) < minω(Ξv ⊗R 1)

and ω(χi) ≤ ω(χi+1) for all 1 ≤ i < r. Then, for any l ∈ Lr,

ω(ξrd,b) < minω(Ξl.v ⊗R 1).

Proof. Suppose η ∈ Ξl.v⊗R1\Ξv⊗R1. It suffices to show that ω(η) ≥ minω(Ξv⊗R1).
By definition, there is an m ∈ W r

d,b satisfying η ∈ Ξl.m and Ξm ⊂ Ξv. By expanding
l.m, we can prove that

ω(η) ≥ minω(Ξm ⊗R 1)

using the condition ω(χi) ≤ ω(χi+1), ∀1 ≤ i ≤ r−1. Since Ξm ⊂ Ξv, we can deduce
that minω(Ξm ⊗R 1) ≥ minω(Ξv ⊗R 1). Thus the claimed statement is true. �

Now, we can restate the condition for v to be unstable.

Theorem 5.4. Suppose v ∈ Er
d,b. v is unstable if and only if there are u ∈ Ur and

q ∈ Σr satisfying

ξrd,b /∈ Δuq.v.

Proof. If part is obvious by Lemma 5.1. Suppose there is g ∈ GLr(k) satisfying

ξrd,b /∈ Δg.v.

By Lemma 5.2, there is ω ∈ X(T )∨
R
satisfying

ω(ξrd,b) < minω(Ξg.v ⊗R 1).
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There is a p ∈ Σr satisfying ω(χp(i)) ≤ ω(χp(i+1)) for all i. Let’s define ωp(χi) =
ω(χp(i)). Then,

ωp(ξ
r
d,b) = ω(ξrd,b) < minω(Ξg.v ⊗R 1) = minωp(Ξp−1g.v ⊗R 1).

Now there are l ∈ Lr,u ∈ Ur and q ∈ Σr satisfying p−1g = luq by the LU-
decomposition of general non-singular matrix. p−1g.v and ωp satisfies the condition
of Lemma 5.3. Thus,

ωp(ξ
r
d,b) < minωp(Ξl−1luq.v ⊗R 1) = minωp(Ξuq.v ⊗R 1).

By Lemma 5.2, ξrd,b /∈ Δuq.v, as desired. �
Using Theorem 5.4 and Lemma 5.2, we can solve ESC for each choice of ω ∈

X(T )∨
R
and q ∈ Σr to check if

{χ ∈ X(T )|ω(χ) ≤ ω(ξrd,Q(d))} ∩ Ξuq.v = ∅

for a rational v ∈ HilbP (Pr−1
k ) and an integer d ≥ gP . Note that we have to consider

finitely many ω’s because Ar
d,b has only finitely many weights with respect to the

action of Tr. In this way, we can check if v is semistable or not. This fact implies
that there is an algorithm deciding if a rational v ∈ HilbP (Pr−1

k ) is GIT-semistable
or not.
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