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ON THE REGULARITY OF VECTOR FIELDS

UNDERLYING A DEGENERATE-ELLIPTIC PDE

ERIKA BATTAGLIA, STEFANO BIAGI, AND GIULIO TRALLI

(Communicated by Jeremy Tyson)

Abstract. In this note we discuss the relationship, under an algebraic con-
stant rank condition, between the regularity of the characteristic form’s coef-
ficients of a degenerate elliptic linear PDO in RN and the regularity of vector
fields controlling its degeneracy. We consider both the cases where the number
of vector fields is N and it is equal to the rank.

1. Introduction

Let Ω be an open subset of R
N , and let L be a second-order linear partial

differential operator of the form

(1) L =

N∑
i,j=1

aij(x) ∂xi
∂xj

+

N∑
k=1

bk(x) ∂xk
, for x ∈ Ω.

Let us just assume (for now) that, for all x, the matrix A(x) =
(
aij(x)

)N
i,j=1

is

symmetric and nonnegative definite; that is, L is degenerate-elliptic. It is well-
known (see e.g. [6,22,38]) that the existence of vector fields with suitable properties
allowing us to write L as a sum of squares (possibly up to first order terms) can
be crucial for studying qualitative and quantitative properties for the solutions
or subsolutions to Lu = 0: the properties of the metric space related to such
vector fields have been widely investigated and successfully exploited. Moreover,
motivated by the studies on certain nonlinear degenerate-elliptic equations of sub-
Riemannian type and on linear subelliptic equations with nonsmooth coefficients
(see [1,11,12,14,42,45] and the monographs [7,8,43], with the references therein),
there have been recent investigations concerning the minimal regularity assumptions
for having vector fields with some Hörmander-type properties [9, 10, 24, 31–36, 40].
For these reasons we think it is worthwhile to focus on conditions under which we
can guarantee the existence in Ω of vector fields with the desired regularity just
looking at the quadratic form A(x).

Before stating our results, let us be more precise about the PDE setting we are
dealing with. In [39] Phillips and Sarason showed that if x �→ A(x) is a C2 map,
then its (symmetric, nonnegative definite) square root S(x) has locally Lipschitz-
continuous entries. Then we can identify the N columns of S with N locally
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Lipschitz-continuous vector fields X1, . . . , XN . Up to lower order terms we can
write L as the sum of their squares. The fact they are locally Lipschitz allows us
to consider their integral curves and to look at the Carnot-Carathéodory distance
dCC . Essential tools in order to trigger some PDE methods are the X-connectivity
(which makes dCC an actual distance), the doubling condition for the metric balls,
and Poincaré inequalities. These properties provide Sobolev embeddings (see [17,
18,20]) and the possibility to develop the De Giorgi-Moser technique for the Hölder
regularity of the solutions. In this perspective there is the study of operators, even
with possibly very rough coefficients, as the X-elliptic operators in the sense of
[19, 27], where the existence of Lipschitz vector fields with doubling and Poincaré
properties controlling the degeneracy are required axiomatically [19, 26, 27, 44, 46]
(see the subsection below; see also [25, 27, 28] for a more general condition about
an X-controllable almost exponential map). On the other hand, one can ask for
which families of vector fields the connectivity/doubling/Poincaré properties are
satisfied. It is very well-known that such properties hold true for smooth vector
fields satisfying the Hörmander condition thanks to the milestones [23, 37]. In the
case of nonsmooth vector fields, it is known for vector fields in specific diagonal
forms since the pioneering works [15, 16]; see also the results and the references in
[43]. For nonsmooth vector fields in general form there has been a renewed interest,
as we mentioned, in step-r Hörmander-type conditions with minimal regularity
assumptions (such as Cr−1,1 or peculiar intrinsic regularities) in order to have
doubling conditions [10, 33, 36] and Poincaré inequalities [4, 10, 13, 28, 30, 33, 36].

Let us denote, for any x ∈ Ω, by X1(x), . . . , XN (x) the vector fields identified
with the columns of the square root S(x) of A(x). In general it is not possible
to improve the Phillips-Sarason result either for the Lipschitz outcome or for the
C2-assumption, as we can trivially show respectively with the examples

A(x) =

(
1 0
0 x2

)
or A(x) =

(
1 0

0 |x|2−ε

)
.

Nevertheless, in the first section of his celebrated paper [6] Bony quickly stated that
it is possible to have smooth vector fields as soon as we have a smooth A(x) with
constant rank. This is our starting point. Thus, throughout the paper we assume
that

there exists m ∈{1, . . . , N} such that

rk (A(x)) ≡ m for all x ∈ Ω.(2)

Under this constant rank condition we can prove the following:

Theorem 1.1. The vector fields X1, . . . , XN have the same regularity as A; that
is, if A satisfies (2) and A ∈ Ck,α(Ω) for some α ∈ [0, 1] and k ∈ N ∪ {0,∞, ω},
then every Xj ∈ Ck,α(Ω).

In our hypotheses, the N vectors X1(x), . . . , XN (x) span at any x an m-dimen-
sional subspace of RN , and they are thus linearly dependent (in the meaningful
case m < N). In the applications it might be useful to have m linearly independent
vector fields and to have information about their regularity. We can consider, at
any fixed x, the decomposition

A(x) = R(x)Rt(x),
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for some N × m matrix R(x) with maximal rank. We may denote by X̃1(x), . . . ,

X̃m(x) the linearly independent vector fields identified with the m columns of R(x).
The decomposition (and hence the possible choice for the vector fields at any x) is,
of course, not unique. We can prove the following:

Theorem 1.2. Let Ω be a contractible open subset of RN . Suppose A satisfies (2)
and A ∈ Ck(Ω) for some k ∈ N∪ {0,∞}. Then, there exist m linearly independent

vector fields X̃1, . . . , X̃m ∈ Ck(Ω) such that A(x) = R(x)Rt(x) for all x ∈ Ω.

Therefore, in the case k ≥ 1, we can write L as the sum of X̃2
j up to adjusting

the first order terms. Let us explicitly remark that the reason for the Ck-regularity
and not for the Ck,α-regularity in Theorem 1.2 is technical: in our arguments we
exploit a differential topology tool for which we have found a clear reference just in
the Ck-smoothness category; as long as it holds true also with Lipschitz/Hölder/Cω

regularity, Theorem 1.2 applies even in those situations.
The plan of the paper is as follows. In Section 2 we prove Theorem 1.1, which will

readily follow from a simple differential geometry lemma. In Section 3 we finally
prove Theorem 1.2. Before doing this, let us add here some further comments on
our results.

1.1. Comments and consequences. In this subsection we denote, with abuse
of notation, by X1, . . . , Xr the vector fields whose existence and regularity in Ω is
ensured by Theorem 1.1 (r = N) or by Theorem 1.2 (r = m, with Ω contractible)

under the constant rank assumption (2). Let us write them as Xj =
∑N

i=1 σij(x)∂xi

(the N × r matrix σ(x) is S(x) or R(x), respectively).
We would like at first to give the details of the statement we already mentioned by

Bony in [6, p. 279], since it was the initial motivation for the present study. Suppose
we have a second order operator L as in (1), where the nonnegative matrix A(x)

and the first order terms (bh(x))
N
h=1 are C∞-smooth functions. Then our vector

fields X1, . . . , Xr are C∞-smooth. We have

(3) L =

r∑
j=1

X2
j +X0 in Ω,

where the C∞-smooth vector field X0 =
∑N

h=1

(
bh(x)−

∑r
j=1 Xj(σhj)(x)

)
∂xh

.

Thus, under our assumptions, it is completely equivalent to test the Hörmander con-
dition on X1, . . . , Xr or on the vector fields A1, . . . , AN identified with the columns
of A. In fact, at any x ∈ Ω, we have

(4) Lie {A1, . . . , AN} (x) = Lie {X1, . . . , Xr} (x) and

(5) Lie {A1, . . . , AN , B} (x) = Lie {X1, . . . , Xr, X0} (x),
where B(x) =

∑N
h=1

(
bh(x)−

∑N
j=1 ∂xj

(ajh)(x)
)
∂xh

. As is well-known, the fact that

such vector spaces coincide for every x with the whole R
N is a sufficient condition

for the hypoellipticity of L in Ω. In case of Cω-coefficients, the condition coming
from (5) is even necessary for the hypoellipticity [38] (see also [3,5] for discussions
and applications concerning connectivity properties for C∞-hypoellipticity).

Since we have been careful with the regularity properties, we can be more
precise. Suppose the nonnegative matrix A to be Ck, and the first order terms

(bh)
N
h=1 ∈ Ck−1, for some N 	 k ≥ 1. Then we have (3) with X1, . . . , Xr ∈ Ck,
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and X0 ∈ Ck−1. Moreover, if we define for s ∈ N the vector space Lies{Yj} =
span{Yj , [Yj1 , Yj2 ], . . . , [Yj1 , [Yj2 , [. . . , [Yjs−1

, Yjs ]], . . .]]}, for any x ∈ Ω we have

(6) Lies {A1, . . . , AN} (x) = Lies {X1, . . . , Xr} (x) for all s ≤ k + 1 and

(7) Lies {A1, . . . , AN , B} (x) = Lies {X1, . . . , Xr, X0} (x) for all s ≤ k.

Remark 1.3. For the reader’s convenience we provide here an outline of the proof
of (6) and (7). This will give a fortiori a proof of (4) and (5).

In the notation we are using, for any j ∈ {1, . . . , N} and l ∈ {1, . . . , r}, we

have Aj(x) =
∑N

i=1 aij(x)∂xi
, Xl(x) =

∑N
i=1 σil(x)∂xi

. We recall that the exis-
tence of the Ck-matrix valued function σ(·) globally defined in Ω with rank m
comes from our results. Since we have A(x) = σ(x)σt(x), we can write Aj(x) =∑r

l=1 σjl(x)Xl(x) for every j. This yields in particular (6) with s = 1, which reads
as

span {A1(x), . . . , AN (x)} = span {X1(x), . . . , Xr(x)} for all x,

since both vector spaces are m-dimensional. Let us now prove (6) with s = 2, which
means we have to prove for all x ∈ Ω that

span {Aj(x), [Aj , Ah](x), j, h=1, . . . , N}=span {Xl(x), [Xl, Xq](x), l, q=1, . . . , r} .
The inclusion ⊆ is trivial since

[Aj , Ah](x) =
r∑

l,q=1

σjl(x)σhq(x)[Xl, Xq](x) +
r∑

l,q=1

σjl(x)Xl(σhq)(x)Xq(x)

−
r∑

l,q=1

σhq(x)Xq(σjl)(x)Xl(x) for all x ∈ Ω.

To deal with the opposite inclusion, we can fix any x0 ∈ Ω and find an open neigh-
borhood of x0 where span {A1(x), . . . , AN (x)} = span {Aj1(x), . . . , Ajm(x)} and
span {X1(x), . . . , Xr(x)} = span {Xl1(x), . . . , Xlm(x)} (recall that r can be either
m or N). Thus, in such a neighborhood, we can write Ajp(x) =

∑m
i=1 σ̂pi(x)Xli(x)

for all p ∈ {1, . . . ,m} for some σ̂(·) ∈ Ck. By construction σ̂(x) is invertible and
the inverse has to be Ck. Hence, we have an open neighborhood Ux0

⊂ Ω of x0

such that Xli(x) =
∑m

p=1 cip(x)Ajp(x) for all i ∈ {1, . . . ,m} and x ∈ Ux0
, where

c(·) ∈ Ck(Ux0
). This is enough to prove that Lie2 {Xl} (x) = Lie2 {Xli} (x) ⊆

Lie2
{
Ajp

}
(x) ⊆ Lie2 {Aj} (x) for all x ∈ Ux0

. The arbitrariness of x0 completes
the proof of the (s = 2)-case in (6). We can proceed in the same way for higher
s, until the coefficients are differentiable (that is, s ≤ k + 1). The proof of (7)

is completely analogous since X0(x) = B(x) +
∑N

j=1

∑r
l=1 ∂xj

(σjl)(x)Xl(x) for all
x ∈ Ω.

The identifications in (6) and (7) might be useful (in the operative sense) in order
to check quantitative properties of the distances related to the vector fields under
the assumptions of Hörmander condition or involutive properties. The quantitative
properties we are referring to are related to the analysis of the exponential map
and almost-exponential maps carried out in [10, 33–35,37].

Finally we would like to mention that, under our constant rank assumption,
every operator L in (1) can be seen as an X-elliptic operator as long as we can
control the first order term given by X0. Let us clarify this point while recalling
the definition in [19]. Suppose A to be C1 and the first order terms bk’s to be
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measurable. We can write, besides (3), the operator as L = div(A∇) + B. By the
definition of our vector fields, we get

〈A(x)ξ, ξ〉 =
∥∥σt(x)ξ

∥∥2 =
r∑

j=1

〈Xj(x), ξ〉2 ∀ ξ ∈ R
N and ∀x ∈ Ω,

which gives at one time the conditions (1.2) and (1.5) in [19]. If we want L to be
X-elliptic in Ω, we are thus left to satisfy the condition (1.4) in [19]; i.e. there has

to exist a measurable function γ such that 〈B(x), ξ〉2 ≤ γ2(x)
∑r

j=1 〈Xj(x), ξ〉2.
Comparing B(x) and X0(x) we have

〈B(x)−X0(x), ξ〉2 ≤ rN2 max
jl

∣∣∂xj
(σjl)(x)

∣∣2 r∑
j=1

〈Xj(x), ξ〉2 .

Hence, according to the definition in [19], L is uniformly X-elliptic in Ω if there
exists a function γ0 such that

〈X0(x), ξ〉2 ≤ γ2
0(x)

r∑
j=1

〈Xj(x), ξ〉2 ∀ ξ ∈ R
N and ∀x ∈ Ω.

The results proved in [19, 46] for such operators require the metric, doubling, and
Poincaré properties we mentioned in the Introduction, as well as some integrability
conditions for the function γ. In the case of the vector fields considered in Theorem
1.1, we can assume A to be locally Lipschitz in Ω and the conditions we have just
seen regarding the X-ellipticity are meant to be satisfied almost everywhere.

2. The squared case

Theorem 1.1 concerns the regularity of the square root S(x) of A(x). The square
root of a nonnegative definite matrix is easily defined via diagonalization. One could
think, in a naive way, to look separately at the regularity of the eigenvalues and of
the eigenvectors as functions of x. Unfortunately, there are well-known examples
of smooth matrices for which it is not possible to find an even continuous choice of
eigenvectors (see e.g. [41]). In this direction, let us give here the example (often
used in the PDE-setting we deal with) of the Heisenberg Laplacian in R

3 for which

(8) A(x1, x2, x3) =

⎛
⎝ 1 0 x2

0 1 −x1

x2 −x1 x2
1 + x2

2

⎞
⎠ .

We note that, for such A, the condition (2) is satisfied with m = 2: in fact the
eigenvalues of A(x1, x2, x3) are 1+x2

1+x2
2, 1, 0. For x

2
1+x2

2 �= 0, the unit eigenvectors
(up to a sign choice) are respectively

v1+r(x)=
(x2,−x1, x

2
1 + x2

2)√
x2
1 + x2

2

√
1 + x2

1 + x2
2

, v1(x)=
(x1, x2, 0)√
x2
1 + x2

2

, and v0(x)=
(−x2, x1, 1)√
1 + x2

1 + x2
2

.

Thus, for any choice of an orthonormal basis of eigenvectors at a point (0, 0, x3),
v1+r and v1 cannot be continuous at that point. Nonetheless, denoting by Λ and
V the eigenvalue and eigenvector matrices, one can check that the square root
S(x) = V (x)

√
Λ(x)V t(x) is real-analytic in R

3 (see (10)), as it is also a consequence
of our result. In order to give a proof of Theorem 1.1, let us fix some notation.
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Let us fix the natural numbers N ≥ m ≥ 1. Denoting by SymN(R) the real
vector space of all N ×N symmetric matrices with real coefficients, let us put

S+N (m) = {A ∈ SymN(R) : A ≥ 0 and rk(A) = m}.
Let us consider the smooth (real-analytic) map

q : S+N (m) → S+N (m), q(M) = M2.

The square root function is, of course, the global inverse of q. In our notation, for
any x ∈ Ω, the vector fields X1(x), . . . , XN (x) are identified with the columns of
q−1(A(x)). The key assumption (2) ensures the well-position of this composition,
for all x ∈ Ω. The proof of Theorem 1.1 will thus be a straight consequence of the
following:

Lemma 2.1. The function q is a Cω-diffeomorphism.

Let us first recall that S+N (m) is an embedded smooth submanifold of SymN(R) ≡
R

N(N+1)/2, with dimension dN (m) = Nm− m(m−1)
2 . As a matter of fact, the Cω-

differentiable structure of S+N (m) locally around a matrix M0 (with a nonvanishing
m×m minor) is basically given by being the zero set of the minors of order (m+1)
(in the case m < N ; if m = N , it is just an open set of SymN(R)).

Proof of Lemma 2.1. By implicit function theorem, it is enough to show that the
differential of q at any point M ∈ S+N (m) is an isomorphism between TM (S+N (m))

and TM2(S+N (m)). Without loss of generality we can consider M in the diagonal
form diag(λ1, . . . , λm, 0, . . . , 0), for positive λ1, . . . , λm. For such diagonal matrices
it is easy to describe the tangent space. The map

Ψ : SymN(R) → R
N(N+1)

2 −dN (m), Ψ(A) =

(
det

(
aij

)
i∈{1,...,m}∪{p}
j∈{1,...,m}∪{q}

)
p,q=m+1,...,N
p≤q

can be used as a local defining function for S+N (m) around M . Hence, one has
(9)
TM (S+N (m)) = ker(dMΨ) = {H ∈ SymN(R) : hij = 0 for all i, j = m+ 1, . . . , N }.
For all H ∈ TM (S+N (m)), we have

dMq(H) =
d

dt |t=0
(M + tH)2 = MH +HM.

In order to show that dMq is an isomorphism, we may just prove the injectivity. If
dMq(H) = 0 for some H, then for every j = 1, . . . , N we have

0 = dMq(H) ej = M(Hej) +H(Mej).

When 1 ≤ j ≤ m, from the above identity we infer that Hej is an eigenvector for M
with corresponding eigenvalue (−λj): since M is nonnegative definite, this implies
that Hej = 0 for all j = 1, . . . ,m. On the other hand, if j ∈ {m + 1, . . . , N},
we get that Hej is in the kernel of M which is spanned by em+1, . . . , eN . Since

H ∈ TM (S+N (m)) and recalling (9), we immediately deduce that Hej = 0 even for
all j = m+ 1, . . . , N . This proves that H = 0 and the lemma. �

After having proved Theorem 1.1, let us give here a slight generalization of
the last lemma. As a matter of fact, all the pth-powers of a matrix give a Cω-
diffeomorphism if restricted to S+N (m). Even for the sake of more generalization, we
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could consider a real-analytic function f : R → R satisfying the following properties:

f(0) = 0, f �≡ 0, and the derivatives of f of every order are nonnegative.

Under these assumptions, Pringsheim’s theorem ensures that the Maclaurin series
of f converges to f itself for all x ∈ R, that is,

f(x) =
∞∑

n=1

f (n)(0)

n!
xn, for all x ∈ R.

Moreover, we have that f is (strictly) monotonically increasing on I := [0,+∞[,
and it restricts to a bijection from I to itself. Let us now define the real-analytic
map

qf : S+N (m) → S+N (m), qf (M) =

∞∑
n=1

f (n)(0)

n!
Mn.

If M ∈ S+N (m) and P is an orthogonal N × N matrix such that P tMP is the
diagonal matrix Λ = diag(λ1, . . . , λm, 0, . . . , 0), one can write qf (A) as

qf (M) = Pqf (Λ)P
t = Pdiag(f(λ1), . . . , f(λm), 0, . . . , 0)P t.

It is then easy to recognize that qf is globally invertible (for all m = 1, . . . , N).

Lemma 2.2. The map qf is a real-analytic diffeomorphism.

Proof. As in the proof of Lemma 2.1, we have to show that the differential of qf at
any point M ∈ S+N (m) is an isomorphism between TM (S+N (m)) and Tqf (M)(S

+
N (m)):

without loss of generality we can assume that M = diag(λ1, . . . , λm, 0, . . . , 0), for
positive λ1, . . . , λm. For H ∈ TM (S+N (m)) we have

dM (qf )(H) =
d

dt |t=0

∞∑
n=1

f (n)(0)

n!
(M + tH)n

=
∞∑

n=1

f (n)(0)

n!
(Mn−1H +Mn−2HM + · · ·+HMn−1),

by the uniform convergence of the power series. Let us prove the injectivity of
dM (qf ). To this aim, let dM (qf )(H) = 0 for some H ∈ TM (S+N (m)). For j ∈
{1, . . . ,m}, we have

0 = dM (qf )(H)ej =

∞∑
n=1

f (n)(0)

n!

[(
n−2∑
k=0

λk
jM

n−1−k

)
· (Hej) + λn−1

j · (Hej)

]
.

If we now define, for all n ∈ N, Bn :=
∑n−2

k=0 λ
k
jM

n−1−k ∈ S+N (m), then it is

immediate to see that the series
∑∞

n=1
f(n)(0)

n! Bn is absolutely convergent on the
Banach space SymN(R), and thus it converges to a matrix B0 which is actually
(symmetric and) nonnegative definite. We can then write the above equality in the
following way:

0 = B0(Hej) +

( ∞∑
n=1

f (n)(0)

n!
λn−1
j

)
(Hej) = B0(Hej) +

f(λj)

λj
(Hej).

It follows that Hej is an eigenvector of B0 ≥ 0 with eigenvalue (−f(λj)/λj) < 0,
and thus Hej = 0 for all j = 1, . . . ,m. On the other hand, for j ∈ {m+ 1, . . . , N},
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the vector ej is in the kernel of M . By setting

M0 :=
∞∑
n=1

f (n)(0)

n!
Mn−1 = diag(f(λ1)/λ1, . . . , f(λm)/λm, f ′(0), . . . , f ′(0)),

we get that 0 = dM (qf )(H)ej = M0(Hej); i.e. the vector Hej is in the kernel of
M0. There are two cases. If f ′(0) �= 0, this gives immediately Hej = 0 for all
j = m+1, . . . , N . If f ′(0) = 0, then the vectors Hem+1, . . . , HeN must be included
in the span{em+1, . . . , eN}: since H ∈ TM (S+N (m)), we obtain again Hej = 0 for
all j = m+ 1, . . . , N . In both cases we have H = 0, and the proof is complete. �

3. The rectangular case

Let us go back to the example of the quadratic formA(x) in (8) for the Heisenberg
Laplacian. In the previous section we dealt with its square root
(10)

S(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
x2
1+x2

2

(
x2
1 +

x2
2√

1+x2
1+x2

2

)
x1x2

x2
1+x2

2

(
1− 1√

1+x2
1+x2

2

)
x2√

1+x2
1+x2

2

x1x2

x2
1+x2

2

(
1− 1√

1+x2
1+x2

2

)
1

x2
1+x2

2

(
x2
2 +

x2
1√

1+x2
1+x2

2

)
− x1√

1+x2
1+x2

2

x2√
1+x2

1+x2
2

− x1√
1+x2

1+x2
2

x2
1+x2

2√
1+x2

1+x2
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The entries of S(x) have nothing to do with the usual Heisenberg vector fields
∂x1

+ x2∂x3
, ∂x2

− x1∂x3
, which are a couple of smooth and linearly independent

vector fields defined globally in R
3. In this section we thus want to deal with

the existence and the regularity of a global decomposition A = RRt, which in the
Heisenberg example can be seen, for example, as

R(x) =

⎛
⎝ 1 0

0 1
x2 −x1

⎞
⎠ .

Le us fix some notation. Fix two natural numbers N ≥ m ≥ 1. Denoting by
MN×m(R) the vector space of the N × m matrices with real coefficients, let us
define

ΩN (m) = {M ∈ MN×m(R) : rk(M) = m},
which is an open subset of MN×m(R) ≡ R

Nm. Let us restate Theorem 1.2 in this
notation.

Theorem 1.2. Let Ω ⊆ R
N be a contractible open set and let A : Ω → S+N (m) be

a map of class Ck (for some k ∈ N ∪ {0,∞}). Then there exists a map R : Ω →
ΩN (m) of class Ck such that

(11) A(x) = R(x)R(x)t for all x ∈ Ω.

In order to prove this theorem, we are going to exploit a smooth identification
between S+N (m) and the quotient of MN×m(R) by the action of the orthogonal
group. This is probably a known fact, but, since we want to use some specific
properties of this isomorphism and of the quotient manifold, we will briefly show
the construction for the sake of completeness. After that, we are going to invoke a
homotopy lifting property for the related principal bundle, which will allow us to
prove the desired theorem.
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Let us denote by O(m) the group of the m × m orthogonal matrices with real
coefficients, which is a Lie group of dimension m(m − 1)/2. There is a standard
real-analytic (right-)action of O(m) on the manifold ΩN (m), that is,

ρ : ΩN (m)×O(m) → ΩN (m), ρ(M,O) = MO.

It is not difficult to see that this action ρ is free and proper; i.e. (see also [29])

- if there exist M ∈ ΩN (m) and O ∈ O(m) such that MO = M , then
O = Idm;

- the map ΩN (m) × O(m) 	 (M,O) �→ (MO,M) ∈ ΩN (m) × ΩN (m) is
proper (by compactness of O(m)).

Therefore the orbit space

VN (m) = ΩN (m)/O(m)

is a topological manifold of dimension dim(ΩN (m)) − dim(O(m)) = dN (m) =
dim(S+N (m)). Moreover it has a unique smoothly differentiable structure with the
property that the quotient map π : ΩN (m) → VN (m) is a smooth submersion (see
e.g. [29, Theorem 21.10]). Let us now consider the real-analytic map Θ defined as
follows:

Θ : ΩN (m) → S+N (m), Θ(M) = MM t.

Since Θ is constant on each orbit of the action ρ, it defines a smooth map Θ on the
quotient VN (m):

Θ : VN (m) → S+N (m), Θ
(
[M ]

)
= Θ(M) = MM t.

In other words, Θ is the unique (smooth) map such that the following diagram
commutes:

ΩN (m)
Θ

��

π

��

S+N (m)

VN (m)

Θ

���������

Since it is easy to see (e.g. via diagonalization) that Θ is surjective, then Θ is sur-
jective as well. Concerning the injectivity of Θ, it is a straightforward consequence
of the following lemma.

Lemma 3.1. Let M,N ∈ ΩN (m) with MM t = NN t. Then there exists O ∈ O(m)
such that M = NO.

Proof. Considering A = MM t = NN t ∈ S+N (m), let λ1, . . . , λm be its strictly
positive eigenvalues. Let us take an orthonormal basis {x1, . . . , xN} of RN of eigen-
vectors of A such that Axi = λixi for i ∈ {1, . . . ,m}. Let us define two more
orthonormal bases B1 = {u1, . . . , um} and B2 = {v1, . . . , vm} of Rm as follows:

ui =
1√
λi

(M txi), vi =
1√
λi

(N txi) for all i = 1, . . . ,m.

Let us make O the orthogonal m × m matrix bringing B1 into B2. For any i ∈
{1, . . . ,m}, we get

Mui =
1√
λi

(MM t)xi =
1√
λi

(NN t)xi = Nvi = N(Oui).

This ends the proof. �
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Hence Θ is a smooth bijection from VN (m) to S+N (m). We want to see that it is
actually a smooth diffeomorphism.

Lemma 3.2. VN (m) and S+N (m) are smoothly diffeomorphic via Θ.

Proof. We have to show that the differential d[M ]Θ at any point [M ] ∈ VN (m) is

nonsingular. Since the VN (m) and S+N (m) have the same dimension, it is enough

to show the surjectivity of d[M ]Θ which is equivalent (π being a submersion) to the

surjectivity of dMΘ : TM (ΩN (m)) → TΘ(M)(S
+
N (m)) for any M ∈ ΩN (m).

We claim that, without loss of generality, we can just consider M ∈ ΩN (m) with
Θ(M) = diag(λ1, . . . , λm, 0, . . . , 0). Let us convince ourselves of this claim. Fix
M0 ∈ ΩN (m) and A = Θ(M0) and take an orthogonal N ×N matrix U such that

U tAU = (U tM0) · (U tM0)
t = Λ = diag(λ1, . . . , λm, 0, . . . , 0),

for some positive λ1, . . . , λm. Denote by LU the automorphism of MN×m(R) defined
by LU (M) = U tM , and by CU the automorphism of SymN(R) defined by CU (A) =
UAU t. For allM ∈ ΩN (m) we have by construction that (CU◦Θ◦LU )(M) = Θ(M).
We thus get

dM0
Θ = CU ◦ d(UtM0)Θ ◦ LU

on TM0
(ΩN (m)) = MN×m(R). By our choice of U , the matrix U tM ∈ ΩN (m) is

such that Θ(U tM) = Λ, and the claim is proved.
We can now fix M ∈ ΩN (m) with Θ(M) = diag(λ1, . . . , λm, 0, . . . , 0), and look

for the surjectivity of dMΘ. This assumption implies that Mij = 0 for all i =
m+ 1, . . . , N and j = 1, . . . ,m. For every H ∈ MN×m(R) ≡ TM (ΩN (m)), we get

dMΘ(H) =
d

dt |t=0
Θ(M + tH) = M ·Ht +H ·M t.

If we denote, for fixed i ∈ {1, . . . , N} and j ∈ {1, . . . ,m}, by E(ij) the standard
(i, j)-elementary matrix of the canonical basis of MN×m(R), we have (M(E(ij))t)hk
= Mhjδki and (E(ij)M t)hk = Mkjδhi. We can thus verify that, for every i ∈
{1, . . . , N} and j ∈ {1, . . . ,m},

dMΘ
(
E(ij)

)
=

(
M(E(ij))t

)
+
(
E(ij)M t

)
=

m∑
l=1

Mlj

(
Ẽ(li) + Ẽ(il)

)
where, for r, s ∈ {1, . . . , N}, Ẽ(rs) denotes the standard (r, s)-elementary matrix of
the canonical basis of MN (R). It is now quite easy to see that the image of dMΘ,
which is generated by the Nm vectors dMΘ(E(11)), . . . , dMΘ(E(Nm)), spans the
whole TΘ(M)(S

+
N (m)) (by recalling (9)). The proof is complete. �

Therefore, we can think of the Ck map A in Theorem 1.2 as a map which takes
value in the quotient manifold VN (m). Our aim is somehow to extract a map taking
value in ΩN (m). We can do that thanks to the structure of a principal O(m)-bundle.
Let us recall (we also refer to e.g. [21, Chapter IV] and [47, Chapter II]) that a
principal G-bundle is a (locally trivial) smooth fiber bundle with typical fiber a
Lie group G, for which the action preserves the fibers and there is an equivariance
property between the action and the bundle charts. Moreover, if M is a smooth
manifold and G is a Lie group acting smoothly, freely, and properly on M , then
the quadruple (M,M → M/G,M/G,G) is a principal G-bundle (see, for example,
[29, Exercise 21-6]). That is why the quadruple Fm = (ΩN (m), π, VN (m),O(m)) is
a principal O(m)-bundle.



ON THE REGULARITY OF VECTOR FIELDS UNDERLYING A PDE 1661

The main ingredient for our purposes is the following differential topology tool
for principal G-bundles:

let F = (E, p,M,G) be a principal G-bundle and let X be a manifold
of class Ck; then F satisfies the following homotopy lifting property with
respect to X:

if f ∈ Ck(X;E) and H : X × [0, 1] → M is a map of class
Ck(X × [0, 1]) such that H(·, 0) = p ◦ f , then there exists a map

H̃ : X × [0, 1] → E of class Ck(X × [0, 1]) satisfying H = p ◦ H̃ .

For a proof we refer the reader to [21, Chapter III, Theorem 2.4] (for a particular
class of fiber bundles), [2, Chapter III], and [47, Chapter II, Corollary 6.1]. Roughly
speaking, if we have a Ck-homotopy H : X × [0, 1] → M for which H(·, 0) admits
a Ck-lift to E, then the whole homotopy H admits a Ck-lift to E. We can now
complete the proof.

Proof of Theorem 1.2. Let us set

A : Ω → VN (m), A(x) = Θ
−1(

A(x)
)
.

Since Ω is contractible, we can find a point x0 ∈ Ω which is a deformation retract
of Ω; i.e. there exists a smooth map r : Ω × [0, 1] → Ω such that r(x, 0) = x0 and
r(x, 1) = x for all x ∈ Ω. Let us now consider the homotopy

H : Ω× [0, 1] → VN (m), H(x, t) = A
(
r(x, t)

)
.

Since r is smooth and A is Ck in Ω, we have H ∈ Ck(Ω× [0, 1];VN (m)). Moreover,
being H(·, 0) the constant map A(x0), it trivially admits a lift of class Ck from Ω
to ΩN (m) (namely, the constant map Ω 	 x �→ R0 ∈ ΩN (m), where R0 is some
matrix in ΩN (m) such that [R] = A(x0)). By the homotopy lifting property there
exists H : Ω× [0, 1] → ΩN (m) of class Ck such that H = π ◦H . We can then define
a map R from Ω to ΩN (m) in the following way:

R : Ω → ΩN (m), R(x) = H(x, 1).

By construction the map R is of class Ck on Ω, that is, the same regularity as A.
For every x ∈ Ω we also have

R(x)R(x)t = Θ
(
R(x)

)
= Θ

(
π ◦H(x, 1)

)
= Θ

(
H(x, 1)

)
= Θ

(
A(x)

)
= A(x),

which is exactly the desired identity (11). �

Let us remark explicitly that the map R (and therefore the vector fields) we have
constructed depends on A in a much stronger way with respect to the square-root
construction of Section 2. More precisely, we cannot hope to find a smooth map

σ : VN (m) → ΩN (m) (independent of A) in order to define R = σ
(
Θ

−1
(A)

)
. As

a matter of fact, if such a σ exists, then it would be a smooth global section of
our bundle Fm. Since Fm is a principal O(m)-bundle, it should be globally trivial
(see e.g. [47, Theorem 4.2]). This means, in particular, that ΩN (m) should be
diffeomorphic to the product manifold VN (m) × O(m), which is a contradiction
(if m < N the space ΩN (m) is indeed connected, whereas VN (m) × O(m) has at
least two connected components). The case m = N is slightly different. In fact,
the polar decomposition provides a global trivialization of the principal bundle
FN = (GLN (R), π, VN(N),O(N)), and the map

√
· : VN (N) ≡ S+N (N) → GLN (R)

defines a smooth global section.
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no. 688, x+101, DOI 10.1090/memo/0688. MR1683160

[21] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-
Verlag, New York-Heidelberg, 1976. MR0448362
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[40] Franco Rampazzo and Héctor J. Sussmann, Commutators of flow maps of nonsmooth vector
fields, J. Differential Equations 232 (2007), no. 1, 134–175, DOI 10.1016/j.jde.2006.04.016.
MR2281192

[41] Franz Rellich, Perturbation theory of eigenvalue problems, assisted by J. Berkowitz, with a
preface by Jacob T. Schwartz, Gordon and Breach Science Publishers, New York-London-
Paris, 1969. MR0240668

[42] Cristian Rios, Eric T. Sawyer, and Richard L. Wheeden, Regularity of subelliptic Monge-

Ampère equations, Adv. Math. 217 (2008), no. 3, 967–1026, DOI 10.1016/j.aim.2007.07.004.
MR2383892
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Padova, Via Trieste 63, 35121 Padova, Italy
E-mail address: erika.battaglia@math.unipd.it
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