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PROBABILISTICALLY NILPOTENT GROUPS

ANER SHALEV

(Communicated by Pham Huu Tiep)

Abstract. We show that, for a finitely generated residually finite group Γ,
the word [x1, . . . , xk] is a probabilistic identity of Γ if and only if Γ has a finite
index subgroup which is nilpotent of class less than k.

Related results, generalizations and problems are also discussed.

1. Introduction

A well-known result of Peter Neumann [N] shows that a finite group G in which
the probability that two random elements commute is at least ε > 0 is bounded-by-
abelian-by-bounded; this means that there are normal subgroups N,K of G such
that K ≤ N , N/K is abelian, and both |G/N | and |K| are bounded above by some
function of ε.

The probability that two elements commute received considerable attention over
the years; see for instance [G], [J], [LP], [GR], [GS], [H], [NY], [E]. However, the
natural extension to longer commutators and the probability of them being 1 re-
mained unexplored. Here we shed some light on this problem, providing some
results, characterizations and directions for further investigations.

Neumann’s result, as well as a similar result of Mann on groups with many
involutions [M1], can be viewed in the wider context of the theory of word maps
(see for instance the survey paper [S] and the references therein) and the notion of
probabilistic identities.

A word w = w(x1, . . . , xk) is an element of the free group Fk on x1, . . . , xk. Given
a group G, the word w induces a word map wG : Gk → G induced by substitution.
We denote the image of this word map by w(G).

If G is finite, then w induces a probability distribution PG,w on G, given by

PG,w(g) = |w−1
G (g)|/|G|k.

A similar distribution is defined on profinite groups G, using their normalizer Haar
measure.

This distribution has been studied extensively in recent years, with particular
emphasis on the case where G is a finite simple group; see [DPSS], [GS], [LS1],
[LS2], [LS3], [LS4], [B]. Here we focus on general finite groups and residually finite
groups, and the proofs of our results do not use the Classification of finite simple
group.
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Let Γ be a residually finite group. Recall that a word w �= 1 is said to be a
probabilistic identity of Γ if there exists ε > 0 such that for each finite quotient
H = Γ/Δ of Γ we have PH,w(1) ≥ ε. This amounts to saying that, in the profinite

completion G = Γ̂ of Γ, we have PG,w(1) > 0. We shall also be interested in finite
and profinite groups G in which PG,w(g) ≥ ε > 0 for some element g ∈ G.

While Neumann’s result deals with the commutator word [x1, x2] of length two,
here we consider commutator words of arbitrary length. Define inductively w1 = x1

and wk+1 = [wk, xk+1]. Thus wk is the left normed commutator [x1, . . . , xk].
Our main result characterizes finitely generated residually finite groups in which

such a word is a probabilistic identity. Clearly, if Γ has a nilpotent normal subgroup

of finite index m and class < k, and G = Γ̂, then PG,wk
(1) ≥ m−k > 0, so wk is a

probabilistic identity of Γ. It turns out that the converse is also true.

Theorem 1.1. Let Γ be a finitely generated residually finite group, and let k be a
positive integer. Then the word [x1, . . . , xk] is a probabilistic identity of Γ if and
only if Γ has a finite index normal subgroup Δ which is nilpotent of class less than
k.

In fact our proof shows more, namely: if Γ (or its profinite completion) is gen-
erated by d elements, and for some fixed ε > 0 and every finite quotient H of Γ
there exists h ∈ H such that PH,wk

(h) ≥ ε, then the index |Γ : Δ| of the nilpotent

subgroup Δ above divides n!n!
d

, where n = �k/ε�.
Since a coset identity is a probabilistic identity we immediately obtain the fol-

lowing.

Corollary 1.2. Let Γ be a finitely generated residually finite group, and let k be
a positive integer. Suppose there exist a finite index subgroup Δ of Γ, and ele-
ments g1, . . . , gk ∈ Γ satisfying [g1Δ, . . . , gkΔ] = 1. Then there exists a finite index
subgroup Δ0 of Γ such that γk(Δ0) = 1.

Here and throughout this paper γk(G) denotes the kth term of the lower central
series of a group G. Theorem 1.1 follows from an effective result on finite groups,
which is of independent interest. To state it we need some notation.

For groups G and H we define

G(H) =
⋂

φ:G→H

kerφ,

namely, the intersection of all kernels of homomorphisms from G to H. Then
G(H) � G, G/G(H) ≤ H l for some l (which is finite if G is finite). Moreover,
G/G(H) satisfies all the identities of H, namely it lies in the variety generated by
H.

The case H = Sn, the symmetric group of degree n, will play a role below. For
a positive integer n define

L(n) = lcm(1, 2, . . . , n),

where lcm stands for the least common multiple. Clearly, L(n) is the exponent of
Sn. It is well known (and easy to verify using the Prime Number Theorem) that
L(n) = e(1+o(1))n. There are considerably shorter identities for Sn, but the length
of its shortest identity is still unknown.

Theorem 1.3. Fix a positive integer k and a real number ε > 0.
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Let wk = [x1, . . . , xk]. Let G be a finite group and suppose that for some g ∈ G
we have PG,wk

(g) ≥ ε. Set n = �k/ε� and let N = G(Sn). Then N is nilpotent of
class less than k.

Furthermore, G/N ≤ Sl
n for some l, and it satisfies all the identities of Sn. In

particular, G/N has exponent dividing L(�k/ε�).

The following is an immediate consequence for residually finite groups which are
not necessarily finitely generated.

Corollary 1.4. If wk is a probabilistic identity of a residually finite group Γ, then
Γ is an extension of a nilpotent group of class less than k by a group of finite
exponent.

In [LS3] the following problem is posed.

Problem 1.5. Do all finitely generated residually finite groups Γ which satisfy a
probabilistic identity w satisfy an identity?

This seems to be a rather challenging problem. Till recently the only non-trivial
cases where a positive answer was known were w = [x1, x2] and w = x2

1.
In [LS3] an affirmative answer to Problem 1.5 is given for all words w, provided

the group Γ is linear.
In [LS4] it is shown that, if a residually finite group Γ (not necessarily finitely

generated) satisfies a probabilistic identity, then the non-abelian upper composition
factors of Γ have bounded size. This leads to solutions of problems from [DPSS]
and [B].

The next result provides a positive answer to Problem 1.5 for additional words
w; it also deals with groups which are not finitely generated.

Corollary 1.6. Every residually finite group which satisfies the probabilistic iden-
tity wk satisfies an identity.

Indeed, Corollary 1.4 shows that our group satisfies the identity [xc
1, . . . , x

c
k] for

some positive integer c.

Definition 1.7. A word w ∈ Fk is said to be good if for any real number ε > 0
there exists a word 1 �= v ∈ Fm (for some m) depending only on w and ε such that,
if G is a finite group satisfying PG,w(g) ≥ ε for some g ∈ G, then v is an identity of
G.

For example, results from [N], [M1] and [M2] imply that the words [x1, x2] and
x2
1 are good. It is easy to see that, if w is a good word, and v is any word disjoint

from w (namely, their sets of variables are disjoint), then the words wv and vw are
also good.

Theorem 1.3 above shows that the words [x1, . . . , xk] are good for all k. In fact,
we can generalize the latter result as follows.

Proposition 1.8. Let w(x1, . . . , xk) be a word, and let

w′(x1, . . . , xk+1) = [w(x1, . . . , xk), xk+1].

Suppose w is good. Then so is w′.

Induction on k immediately yields the following.

Corollary 1.9. The words [x2
1, x2, . . . , xk] (k ≥ 2) are good.
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In fact we also obtain a related structure theorem as follows.

Theorem 1.10. (i) Let G be a finite group, let w = [x2
1, x2, . . . , xk], and suppose

PG,w(g) ≥ ε > 0 for some g ∈ G. Then there exists n = n(k, ε) depending only on
k and ε, such that G(Sn) is nilpotent of class at most k.

(ii) If w above is a probabilistic identity of a finitely generated residually finite
group Γ, then Γ has a finite index subgroup which is nilpotent of class at most k.

2. Proofs

In this section we prove Proposition 1.8, Theorem 1.3, Theorem 1.1 and Theorem
1.10, which in turn imply the other results stated in the Introduction.

Lemma 2.1. Let w(x1, . . . , xk) be a word, and let

w′(x1, . . . , xk+1) = [w(x1, . . . , xk), xk+1].

Let G be a finite group, and suppose PG,w′(g) ≥ ε > 0 for some g ∈ G. Choose
g1, . . . , gk ∈ G uniformly and independently. Then, for every 0 < δ < ε,

Prob(|G : CG(w(g1, . . . , gk))| < 1/δ) > ε− δ.

Proof. Choose gk+1 ∈ G also uniformly and independently. Then

Prob([w(g1, . . . , gk), gk+1] = g) = PG,w′(g) ≥ ε.

Given g1, . . . , gk, g ∈ G, the number of elements gk+1 ∈ G satisfying

[w(g1, . . . , gk), gk+1] = g

is at most |CG(w(g1, . . . , gk))|. This yields

ε|G|k+1 ≤
∑

g1,...,gk∈G

|CG(w(g1, . . . , gk))|.

Let

p = Prob(|CG(w(g1, . . . , gk))| > δ|G|) = Prob(|G : CG(w(g1, . . . , gk))| < 1/δ).

Then we obtain
ε ≤ p+ (1− p)δ,

so p ≥ (ε− δ)/(1− δ) > ε− δ, as required. �

Proposition 2.2. Let G, k, w,w′, ε be as in Lemma 2.1. Suppose PG,w′(g) ≥ ε
for some g ∈ G and let 0 < δ < ε. Let N = G(Sn), where n = �1/δ�, and set
M = CG(N). Then PG/M,w(1) > ε− δ.

Proof. Using Lemma 2.1 we obtain

Prob(|G : CG(w(g1, . . . , gk))| < 1/δ) > ε− δ.

Clearly, if |G : CG(w(g1, . . . , gk))| < 1/δ, then the permutation representation of
G on the cosets of CG(w(g1, . . . , gk)) gives rise to a homomorphism φ : G → Sn

satisfying G(Sn) ≤ ker(φ) ≤ CG(w(g1, . . . , gk)). This implies that

Prob(N ≤ CG(w(g1, . . . , gk))) > ε− δ.

Since M = CG(N) we obtain

Prob(w(g1, . . . , gk) ∈ M) > ε− δ,

so PG/M,w(1) > ε− δ, as required. �
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We now prove Proposition 1.8.

Proof. Recall that w ∈ Fk is a good word and w′ = [w, xk+1].
To show that w′ is good, suppose PG,w′(g) ≥ ε > 0 for some g ∈ G. Set δ = ε/2,

n = �1/δ� = �2/ε� and apply Proposition 2.2. We obtain PG/M,w(1) > ε/2, where
M = CG(G(Sn)). Since w is good there is a word 1 �= v ∈ Fm depending on w and
ε such that v(G) ≤ M .

Since gL(n) ∈ G(Sn) for all g ∈ G, it follows that v′ = [v, x
L(n)
m+1] is an identity of

G, which depends on w′ and ε. Therefore w′ is good. �

Since x1 is a good word, it now follows from Proposition 1.8 by induction on k
that all commutator words [x1, . . . , xk] are good. We can now also prove the more
refined Theorem 1.3.

Proof. We prove, by induction on k ≥ 1, that, under the assumptions of the theo-
rem, for n = �k/ε� and N = G(Sn), we have γk(N) = 1. The other statements of
the theorem follow immediately.

If k = 1, then |G|−1 = PG,x1
(g) ≥ ε for some g ∈ G. This yields |G| ≤ 1/ε. Let

n = �1/ε�. Then N = G(Sn) = 1, which yields the induction base.
Now, suppose the theorem holds for k and we prove it for k + 1. We assume

PG,wk+1
(g) ≥ ε and let n = �(k + 1)/ε�, N = G(Sn) and M = CG(N).

Using Proposition 2.2 with w = wk, w
′ = wk+1 and δ = ε/(k + 1) we obtain

PG/M,wk
(1) > kε/(k + 1).

By induction hypothesis this implies that (G/M)(S�k/(kε/(k+1))�) is nilpotent of
class less than k. Since k/((kε/(k + 1)) = (k + 1)/ε we see that (G/M)(Sn) is
nilpotent of class less than k. Clearly (G/M)(Sn) ≥ G(Sn)M/M , and this yields

γk(G(Sn)) ≤ M.

Therefore
γk+1(N) = [γk(N), N ] ≤ [M,N ] = 1.

This completes the proof. �

We can now prove Theorem 1.1. This result follows easily from Corollary 1.4
using Zelmanov’s solution to the Restricted Burnside Problem, which, for general
exponents, also relies on the Classification of finite simple groups. However, we are
able to provide an elementary proof of Theorem 1.1 which avoids these very deep
results.

Proof. It suffices to show that, if G is a d-generated finite group satisfying PG,wk
(1)

≥ ε, then G has a normal subgroup N which is nilpotent of class less than k, such
that |G/N | is bounded above in terms of d, k, ε only.

Using Theorem 1.3 and its notation, N = G(Sn) is nilpotent of class less than
k. We also have G/N ≤ Sl

n for some l. Thus G/N is a d-generated group lying in
the variety generated by Sn.

A classical result of B. H. Neumann [Ne, 14.3] states that, for every finite group
H and a positive integer d, the free d-generated group in the variety generated by

H is finite of order dividing |H||H|d . This implies that

|G/N | ≤ n!n!
d

.

Since n = �k/ε�, |G/N | is bounded above in terms of d, k and ε.
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This completes the proof of Theorem 1.1. �
Note that the conclusion of Theorem 1.1 holds under the weaker assumption

that, for every finite quotient H of Γ there exists an element h ∈ H such that
PH,wk

(h) ≥ ε > 0. Indeed this follows from Theorem 1.3 as above, replacing
PG,wk

(1) by PG,wk
(g).

Finally, we prove Theorem 1.10.

Proof. We prove part (i) of the theorem by induction on k, starting with k = 1 and
w = x2

1.
By Proposition 5 of [M2], if PG,x2

1
(g) ≥ ε > 0, then PG,[x1,x2](1) ≥ ε2.

By Theorem 1.3 this implies that G(Sn) is abelian, where n = �2/ε2�.
Now suppose the result holds for k ≥ 1 and let us prove it for k + 1. Set

w = [x2
1, x2, . . . , xk] and w′ = [w, xk+1].

We assume PG,w′(g) ≥ ε > 0. Choose 0 < δ < ε (depending on ε), and set
m = �1/δ� and M = CG(G(Sm)). Then, by Proposition 2.2 we have PG/M,w(1) >
ε− δ. By induction hypothesis there exists n = n(k, ε− δ) such that (G/M)(Sn) is
nilpotent of class at most k. This yields

γk+1(G(Sn)) ≤ M.

Therefore
[γk+1(G(Sn)), G(Sm)] ≤ [M,N ] = 1.

Define n(k + 1, ε) = max(n(k, ε− δ), �1/δ�). Then it follows that, for

n′ = n(k + 1, ε) = max(n,m)

we have
γk+2(G(Sn′)) = 1,

proving part (i).
Part (ii) follows from part (i) as in the proof of Theorem 1.1. �
By choosing δ to be a suitable function of ε (so thatm = n at each inductive step)

one may obtain explicit good bounds on n(k, ε). We leave this for the interested
reader.

3. Related problems

We conclude with some natural questions and directions for further research.

Problem 3.1. Characterize residually finite groups in which [x1, . . . , xk] is a prob-
abilistic identity.

In particular, do these groups have a finite index subgroup which is nilpotent of
class less than k?

The answer is positive for k = 2. Indeed, a result of Lévai and Pyber [LP, 1.1(iii)]
shows that a profinite group G in which [x1, x2] is a probabilistic identity has
an open abelian subgroup, whose finite index need not be bounded in terms of
PG,[x1,x2](1). This implies a similar result for residually finite groups.

By Theorem 1.1, the answer to the question above is positive for all k, provided
the ambient group Γ (or its profinite completion) is finitely generated. In the
general case it follows that, for some n, Γ(Sn) (which may have infinite index in Γ)
is nilpotent of class less than k. But the reverse implication does not hold, as the
product of infinitely many copies of Sn demonstrates.
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Recall that a word w is said to be good if for every ε > 0 there exists a word
v �= 1, depending only on w and ε, such that, for every finite group G, if PG,w(g) ≥ ε
for some g ∈ G, then v is an identity of G.

Problem 3.2. Are all non-identity words good?

This does not seem likely (or provable), so it would be nice to find an example
of a word which is not good.

Problem 3.3. Characterize the good words, or at least find more examples of
them.

This is particularly interesting for some specific words.

Problem 3.4. Are power words xk
1 good?

Let us say that general commutator words are words constructed from the vari-
ables xk (k ≥ 1) in finitely many steps in which we pass from previously constructed
words w1, w2 in disjoint sets of variables to the word [w1, w2].

For examples, let δ0(x1) = x1 and for k ≥ 1 set

δk(x1, . . . , x2k) = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

Thus a group satisfies the identity δk if and only if it is solvable of derived length
at most k.

Problem 3.5. Are general commutator words good? Are the words δk good?

A positive answer would of course follow from a positive answer to the following.

Problem 3.6. Suppose w1, w2 are good words in disjoint sets of variables. Does
it follow that the word [w1, w2] is good?

It would be nice to find analogues of Theorem 1.1 where we replace nilpotency
by solvability.

Problem 3.7. Let Γ be a finitely generated residually finite group and suppose
the word δk is a probabilistic identity of Γ. Does it follow that Γ has a solvable
subgroup Δ of finite index? Can we further require that the derived length of Δ is
at most k?

Finally, for a finite group G, set

Prk(G) = PG,wk
(1),

the probability that [g1, . . . , gk] = 1 in G. Note that Pr2(G), denoted in the
literature by Pr(G) and cp(G), was widely studied by various authors. It was
shown in [G] that the maximal value of Pr(G) for G non-abelian is 5/8.

Problem 3.8. Given k ≥ 3, find the maximal value of Prk(G) for finite groups G
satisfying γk(G) �= 1.

The set {Pr(G) : G a finite group} also received considerable attention; see [J],
[H] and [E]. In the latter paper, Eberhard shows that this set is well ordered by >
and that its limit points are all rational.

Problem 3.9. For k ≥ 3, study the set {Prk(G) : G a finite group}. Are its limit
points all rational? Is it well ordered by >?
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