Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A cohomological characterization of nilpotent fusion systems


Authors: Antonio Díaz Ramos, Arturo Espinosa Baro and Antonio Viruel
Journal: Proc. Amer. Math. Soc. 146 (2018), 1447-1450
MSC (2010): Primary 20D15, 20D20, 55N25, 55R40
DOI: https://doi.org/10.1090/proc/13884
Published electronically: November 10, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a nilpotency criterion for fusion systems in terms of the vanishing of its cohomology with twisted coefficients.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834
  • [2] Adolfo Ballester-Bolinches, Luis M. Ezquerro, Ning Su, and Yanming Wang, On the focal subgroup of a saturated fusion system, J. Algebra 468 (2016), 72-79. MR 3550858, https://doi.org/10.1016/j.jalgebra.2016.07.034
  • [3] David J. Benson, Jesper Grodal, and Ellen Henke, Group cohomology and control of $ p$-fusion, Invent. Math. 197 (2014), no. 3, 491-507. MR 3251827, https://doi.org/10.1007/s00222-013-0489-5
  • [4] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • [5] C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Extensions of $ p$-local finite groups, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3791-3858. MR 2302515, https://doi.org/10.1090/S0002-9947-07-04225-0
  • [6] Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779-856. MR 1992826, https://doi.org/10.1090/S0894-0347-03-00434-X
  • [7] José Cantarero, Jérôme Scherer, and Antonio Viruel, Nilpotent $ p$-local finite groups, Ark. Mat. 52 (2014), no. 2, 203-225. MR 3255138, https://doi.org/10.1007/s11512-013-0181-4
  • [8] Andrew Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47-139. MR 3118305, https://doi.org/10.1007/s11511-013-0099-5
  • [9] Antonio Díaz Ramos, A spectral sequence for fusion systems, Algebr. Geom. Topol. 14 (2014), no. 1, 349-378. MR 3158762, https://doi.org/10.2140/agt.2014.14.349
  • [10] Antonio Díaz, Adam Glesser, Sejong Park, and Radu Stancu, Tate's and Yoshida's theorems on control of transfer for fusion systems, J. Lond. Math. Soc. (2) 84 (2011), no. 2, 475-494. MR 2835340, https://doi.org/10.1112/jlms/jdr019
  • [11] Jon González-Sánchez, Albert Ruiz, and Antonio Viruel, On Thompson's $ p$-complement theorems for saturated fusion systems, Kyoto J. Math. 55 (2015), no. 3, 617-626. MR 3395982, https://doi.org/10.1215/21562261-3089100
  • [12] K. Hoechsmann, P. Roquette, and H. Zassenhaus, A cohomological characterization of finite nilpotent groups, Arch. Math. (Basel) 19 (1968), 225-244. MR 0227278, https://doi.org/10.1007/BF01899499
  • [13] Radha Kessar, Markus Linckelmann, and Gabriel Navarro, A characterisation of nilpotent blocks, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5129-5138. MR 3411131, https://doi.org/10.1090/proc/12646
  • [14] Jun Liao and Jiping Zhang, Nilpotent fusion systems, J. Algebra 442 (2015), 438-454. MR 3395068, https://doi.org/10.1016/j.jalgebra.2015.03.002
  • [15] Rémi Molinier, Cohomology with twisted coefficients of the classifying space of a fusion system, Topology Appl. 212 (2016), 1-18. MR 3553745, https://doi.org/10.1016/j.topol.2016.09.001
  • [16] W. J. Wong, A cohomological characterization of finite nilpotent groups, Proc. Amer. Math. Soc. 19 (1968), 689-691. MR 0229728, https://doi.org/10.2307/2035865

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20D15, 20D20, 55N25, 55R40

Retrieve articles in all journals with MSC (2010): 20D15, 20D20, 55N25, 55R40


Additional Information

Antonio Díaz Ramos
Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apdo correos 59, 29080 Málaga, Spain
Email: adiazramos@uma.es

Arturo Espinosa Baro
Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland
Email: arturo.espinosabaro@gmail.com

Antonio Viruel
Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apdo correos 59, 29080 Málaga, Spain
Email: viruel@uma.es

DOI: https://doi.org/10.1090/proc/13884
Received by editor(s): March 31, 2017
Received by editor(s) in revised form: May 24, 2017
Published electronically: November 10, 2017
Additional Notes: The authors were partially supported by MEC grants MTM2013-41768-P and MTM2016-78647-P and Junta de Andalucía grant FQM-213.
The second author was supported by Polish National Science Centre grant 2016/21/P/ST1/03460 within the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society