Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Monochromatic Finsler surfaces and a local ellipsoid characterization


Author: Sergei Ivanov
Journal: Proc. Amer. Math. Soc. 146 (2018), 1741-1755
MSC (2010): Primary 52A15, 53B40, 53B25, 52A21
DOI: https://doi.org/10.1090/proc/13894
Published electronically: December 18, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following localized version of a classical ellipsoid characterization: Let $ B\subset \mathbb{R}^3$ be a convex body with a smooth strictly convex boundary and 0 in the interior, and suppose that there is an open set of planes through 0 such that all sections of $ B$ by these planes are linearly equivalent. Then all these sections are ellipses and the corresponding part of $ B$ is a part of an ellipsoid.

We apply this to differential geometry of Finsler surfaces in normed spaces and show that in certain cases the intrinsic metric of a surface imposes restrictions on its extrinsic geometry similar to implications of Gauss' Theorema Egregium. As a corollary we construct 2-dimensional Finsler metrics that do not admit local isometric embeddings to dimension 3.


References [Enhancements On Off] (What's this?)

  • [1] H. Auerbach, S. Mazur, and S. Ulam, Sur une propriété caractéristique de l'ellipsoïde, Monatsh. Math. Phys. 42 (1935), no. 1, 45-48 (French). MR 1550413, https://doi.org/10.1007/BF01733278
  • [2] S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, vol. 1, Warszawa, 1932.
  • [3] N. Bartelmeß and V. S. Matveev, Monochromatic metrics are generalized Berwald, preprint, arXiv:1705.05721, to appear in J. Diff. Geom. Appl.
  • [4] David Bao, On two curvature-driven problems in Riemann-Finsler geometry, Finsler geometry, Sapporo 2005--in memory of Makoto Matsumoto, Adv. Stud. Pure Math., vol. 48, Math. Soc. Japan, Tokyo, 2007, pp. 19-71. MR 2389251
  • [5] D. Burago and S. Ivanov, Isometric embeddings of Finsler manifolds, Algebra i Analiz 5 (1993), no. 1, 179-192 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 5 (1994), no. 1, 159-169. MR 1220494
  • [6] Dmitri Burago and Sergei Ivanov, On intrinsic geometry of surfaces in normed spaces, Geom. Topol. 15 (2011), no. 4, 2275-2298. MR 2862157, https://doi.org/10.2140/gt.2011.15.2275
  • [7] Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese. MR 0394451
  • [8] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886
  • [9] M. L. Gromov, On a geometric hypothesis of Banach, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1105-1114 (Russian). MR 0217566
  • [10] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
  • [11] S. Kakutani, Some characterizations of Euclidean space, Jap. J. Math. 16 (1939), 93-97. MR 0000895
  • [12] Walter Prenowitz, The characterization of plane collineations in terms of homologous families of lines, Trans. Amer. Math. Soc. 38 (1935), no. 3, 564-599. MR 1501829, https://doi.org/10.2307/1989815
  • [13] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996. MR 1406315
  • [14] Zhongmin Shen, On Finsler geometry of submanifolds, Math. Ann. 311 (1998), no. 3, 549-576. MR 1637939, https://doi.org/10.1007/s002080050200

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A15, 53B40, 53B25, 52A21

Retrieve articles in all journals with MSC (2010): 52A15, 53B40, 53B25, 52A21


Additional Information

Sergei Ivanov
Affiliation: St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia – and –Saint Petersburg State University, 7/9 Universitetskaya emb., St. Petersburg 199034, Russia
Email: svivanov@pdmi.ras.ru

DOI: https://doi.org/10.1090/proc/13894
Keywords: Finsler surface, Banach-Minkowski space, second fundamental form, ellipsoid characterization
Received by editor(s): February 24, 2017
Published electronically: December 18, 2017
Additional Notes: This research was supported by the Russian Science Foundation grant 16-11-10039
Communicated by: Lei Ni
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society