Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Gromov-Hausdorff hyperspace of nonnegatively curved $ 2$-spheres


Author: Igor Belegradek
Journal: Proc. Amer. Math. Soc. 146 (2018), 1757-1764
MSC (2010): Primary 53C21; Secondary 52A20, 53C45, 54B20, 57N20
DOI: https://doi.org/10.1090/proc/13910
Published electronically: November 13, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study topological properties of the Gromov-Hausdorff metric on the set of isometry classes of nonnegatively curved $ 2$-spheres.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Aleksandrov, Vnutrennyaya Geometriya Vypuklyh Poverhnosteĭ, OGIZ, Moscow-Leningrad,], 1948 (Russian). MR 0029518
  • [2] P. Alestalo, D. A. Trotsenko, and J. Väisälä, Isometric approximation, Israel J. Math. 125 (2001), 61-82. MR 1853806, https://doi.org/10.1007/BF02773375
  • [3] A. D. Alexandrov, A. D. Alexandrov selected works. Part II, Chapman & Hall/CRC, Boca Raton, FL, 2006. Intrinsic geometry of convex surfaces; Edited by S. S. Kutateladze; Translated from the Russian by S. Vakhrameyev. MR 2193913
  • [4] Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), no. 3, 455-490. MR 999661, https://doi.org/10.2307/1990939
  • [5] T. Banakh, T. Radul, and M. Zarichnyi, Absorbing sets in infinite-dimensional manifolds, Mathematical Studies Monograph Series, vol. 1, VNTL Publishers, Lviv, 1996. MR 1719109
  • [6] I. Belegradek, Deformation spaces of convex bodies up to congruence. arXiv:1705.01220.
  • [7] Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
  • [8] Jean-Pierre Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41 (French). MR 0418147
  • [9] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
  • [10] Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418
  • [11] Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces [ MR1039818 (91d:53004)], Geometry, III, Encyclopaedia Math. Sci., vol. 48, Springer, Berlin, 1992, pp. 1-85, 251-256. MR 1306734, https://doi.org/10.1007/978-3-662-02751-6_1
  • [12] Mohammad Ghomi, Strictly convex submanifolds and hypersurfaces of positive curvature, J. Differential Geom. 57 (2001), no. 2, 239-271. MR 1879227
  • [13] Pengfei Guan and Yan Yan Li, The Weyl problem with nonnegative Gauss curvature, J. Differential Geom. 39 (1994), no. 2, 331-342. MR 1267893
  • [14] J. Hong and C. Zuily, Isometric embedding of the $ 2$-sphere with nonnegative curvature in $ {\bf R}^3$, Math. Z. 219 (1995), no. 3, 323-334. MR 1339708, https://doi.org/10.1007/BF02572368
  • [15] Joseph A. Iaia, The Weyl problem for surfaces of nonnegative curvature, Geometric analysis and nonlinear partial differential equations (Denton, TX, 1990) Lecture Notes in Pure and Appl. Math., vol. 144, Dekker, New York, 1993, pp. 213-220. MR 1207184
  • [16] Vitali Kapovitch, Perelman's stability theorem, Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville, MA, 2007, pp. 103-136. MR 2408265, https://doi.org/10.4310/SDG.2006.v11.n1.a5
  • [17] A. V. Pogorelov, Odnoznačnaya opredelennostobščih vypuklyh poverhnosteĭ, Monografii Instituta Matematiki, vyp. II, Akad. Nauk Ukrainskoĭ SSR, Kiev, 1952 (Russian). MR 0063681
  • [18] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
  • [19] Michael Spivak, A comprehensive introduction to differential geometry. Vol. III, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532832
  • [20] Ju. A. Volkov, An estimate of the deformation of a convex surface as a function of the change in its intrinsic metric, Ukrain. Geometr. Sb. Vyp. 5-6 (1968), 44-69 (Russian). MR 0283734

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C21, 52A20, 53C45, 54B20, 57N20

Retrieve articles in all journals with MSC (2010): 53C21, 52A20, 53C45, 54B20, 57N20


Additional Information

Igor Belegradek
Affiliation: School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160
Email: ib@math.gatech.edu

DOI: https://doi.org/10.1090/proc/13910
Keywords: Nonnegative curvature, convex body, hyperspace, space of metrics, Gromov-Hausdorff, infinite dimensional topology
Received by editor(s): June 7, 2017
Published electronically: November 13, 2017
Communicated by: Lei Ni
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society