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SUMS OF INVERSES IN THIN SETS OF FINITE FIELDS

IGOR E. SHPARLINSKI AND ANA ZUMALACÁRREGUI

(Communicated by Matthew A. Papanikolas)

Abstract. We obtain lower bounds for the cardinality of k-fold sum-sets of
reciprocals of elements of suitable defined short intervals in high degree ex-
tensions of finite fields. Combining our results with bounds for multilinear
character sums we obtain new results on incomplete multilinear Kloosterman
sums in finite fields.

1. Introduction

1.1. Background. Let p be a prime number and let Fp be the finite field of p
elements.

Bourgain and Garaev [4] have studied the additive properties of the multiple
sum-sets of reciprocals from a short interval, that is, sum-sets of

I−1
u,h =

{
x−1 : x ∈ Iu,h, x �= 0

}
,

where Iu,h is the reduction modulo p of the set {u + 1, . . . , u + h} of consecutive
integers for some integers h and u with p > h ≥ 1. In particular, by [4, Theorem 4]

there is an absolute constant c > 0 such that if h ≤ pc/k
2

, then for the k folded
sum-set of I−1

u,h, that is, for

k
(
I−1
u,h

)
=

{
x−1
1 + · · ·+ x−1

k : xj ∈ Iu,h, xj �= 0, i = 1, . . . , k
}
,

for any fixed k and h → ∞, we have

(1.1) #k
(
I−1
u,h

)
≥ hk+o(1).

Observe that this estimate is almost optimal, since we trivially have #k
(
I−1
u,h

)
≤hk.

Here we study an analogous problem in large extensions of finite fields. Namely,
let Fq be the finite field of q elements, of characteristic p, and let Fq be the algebraic

closure of Fq. We fix an algebraic element α ∈ Fq of degree n over Fq, and denote
by ψ(x) its characteristic polynomial (that is, ψ ∈ Fq[T ] is a monic irreducible
polynomial of degree n and ψ(α) = 0). Then we have that the finite extension
Fqn is isomorphic to Fq[α], or equivalently Fqn

∼= Fq[T ]/ψ(T ). In this setting the
natural generalization of a short interval is the shifted set of polynomials of small
degree.
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More precisely, for a given m ≤ n let us consider the following vector space of
dimension m:

Vm =
{
x : x = a0 + a1α+ · · ·+ am−1α

m−1, a0, . . . , am−1 ∈ Fq

}
.

Note that every element x in Vm can be identified with a polynomial x(T ) of degree
at most m− 1 in Fq[T ]/ψ(T ).

For a fixed element γ ∈ Fqn , we are interested in the additive properties of the
inverses of elements in the affine vector space Jγ,m = {γ}+Vm. It is also convenient
to define

J ∗
γ,m = Jγ,m \ {0},

which we call an interval in Fqn . In particular Vm plays the role of the initial
interval .

1.2. Sums of reciprocals from a short interval. We are interested in counting
the number of solutions to

1

x1 + γ
+ . . .+

1

xk + γ
=

1

xk+1 + γ
+ . . .+

1

x2k + γ
,

with x1, . . . , x2k ∈ Vm and fixed γ ∈ Fqn .
It is clear from the isomorphism Fqn

∼= Fq[T ]/ψ(T ) that this problem is equiva-
lent to counting the number Nk(γ,m, ψ) of solutions to

1

x1(T ) + γ(T )
+ . . .+

1

xk(T ) + γ(T )

≡ 1

xk+1(T ) + γ(T )
+ . . .+

1

x2k(T ) + γ(T )
(mod ψ(T ))

where x1, . . . , x2k ∈ Fq[T ], with degT (xi) ≤ m − 1 for i = 1, . . . , 2k, and a fixed
polynomial γ(T ) ∈ Fq[T ].

Theorem 1.1. Uniformly over q, γ ∈ Fq[T ] and fixed k ≥ 1, if m < n/(4k2 − 2k),
then

Nk(γ,m, ψ) ≤ q(k+o(1))m

as m → ∞.

More concretely, this result gives an equivalent of the bound (1.1) for the set

k
(
J−1
γ,m

)
=

{
x−1
1 + · · ·+ x−1

k : x1, . . . , xk ∈ J ∗
γ,m

}
.

Observe that the trivial bound in this case is

#k
(
J −1
γ,m

)
≤ (#Jγ,m)

k
= qmk.

Now, using the Cauchy inequality we immediately derive Theorem 1.1 (see a short
standard proof in Section 3.2).

Corollary 1.2. Uniformly over q, γ ∈ Fqn and fixed k ≥ 1, if m < n/(4k2 − 2k),
then

#k
(
J−1
γ,m

)
≥ q(k+o(1))m

as m → ∞.
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1.3. Bounds of character sums. As it has been noticed by Karatsuba [9], see
also [8, 11], bounds on the number of solutions of equations with reciprocals can
be translated into bounds for short multiple Kloosterman sums. In particular, we
obtain an analogue of a similar result of Bourgain and Garaev [4, Theorem 12].
We note however that our estimate is weaker since the underlying tool, the bound
on multilinear additive character sums in arbitrary finite fields, due to Bourgain
and Glibichuk [7, Theorem 4] is weaker than its counterpart over prime fields given
by Bourgain [3, Theorem 3] (but is somewhat more explicit, similarly to [3, Theo-
rem 5]).

Besides, in the case of arbitrary finite fields Fqn there are some necessary re-
strictions on the size of the intersections of the sets involved with proper subfields
of Fqn . Within the above approach, these sets are related to the initial data in a
rather complicated way so to avoid this difficulty we impose the primality condition
on both q and n. These conditions can be relaxed, but they allow us to exhibit the
ideas in the simplest form.

Theorem 1.3. Let Fpn be a finite field with a fixed prime p and a sufficiently large
prime n. Assume that positive integers m and d satisfy

m < n/4 and d ≥ 302900n

(m1/2n1/2 − 2m)
.

There exists δ > 0 depending only on d, such that for any intervals J1, . . . ,Jd ⊆ Fpn

of dimension m, an additive character χ in Fpn and complex weights αi(xi) defined
on xi ∈ Ji with

|αi(xi)| ≤ 1, xi ∈ Ji,

for i = 1, . . . , d, we have∣∣∣∣∣
∑

x1∈J1

· · ·
∑

xd∈Jd

α1(x1) · · ·αd(xd)χ
(
(x1 · · ·xd)

−1
)∣∣∣∣∣ ≤ pdm−δn.

2. Preliminary results

2.1. Some general results. Since we have polynomials in variables T and also in
Z, to avoid any confusion we always write degT to denote the degree in T (even
when Z is not present).

The following result is necessary for the proof of Theorem 1.1 and can be found
in [12, Corollary 3].

Lemma 2.1. Let 2 ≤ s, � ≤ k be fixed integers. Let f(Z) and g(Z) be polynomials

f(Z) =

s−1∑
i=1

aiZ
i and g(Z) =

�−1∑
i=1

biZ
i,

with polynomial coefficients ai(T ), bi(T ) ∈ Fq[T ], such that as−1, b�−1 �= 0 and

degT ai, degT bi < (k − i)M, i = 1, . . . , k − 1,

for some integer M ≥ 1. Then, the degree of the resultant Res (f, g) of f and g
satisfies that

degT Res (f, g) ≤ (k2 − 1)M.

The following result can be found in [12, Lemma 1] and it is useful in the proof
of Theorem 1.1.
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Lemma 2.2. The number of divisors of a polynomial f ∈ Fq[T ] of degree s is at

most qc0s/ log s for some absolute constant c0.

The following result is a modification of [4, Lemma 5], but the proof is completely
analogous and therefore it is omitted.

Lemma 2.3. Let S be a finite subset of a field K, c ∈ K and c1, . . . , ck ∈ K∗. Let
Tr denote the number of solutions of the equation

c1x1 + · · ·+ crxr = c, x1, . . . , xr ∈ S,

and J2s the number of solutions of the equation

x1 + · · ·+ xs = xs+1 + · · ·+ x2s, x1, . . . , x2s ∈ S.

If r = 2k for some integer k, then Tr ≤ J2k. If r = 2k+1 for some integer k, then
T 2
r ≤ J2k−2J2k.

Note that Lemma 2.3 is used to exclude degenerate cases when counting solutions
to our equation.

The following result can be found in [7, Theorem 4] and it is a generalization
of [4, Lemma 1] for finite fields.

We define ω = 156450 (related to the constant that appears in the formulation
of Theorem 1.3).

Lemma 2.4. Let r be a sufficiently large prime power and let d be any integer with
3 ≤ d ≤ 0.9 log2 log2 r. For 0 < η ≤ 1 define τ = min(1/ω, η/120). Suppose that the
sets A1, · · · ,Ad ⊆ F

∗
r, with at least 3 elements are such that for every i = 3, . . . , d,

for any element t ∈ F
∗
r and proper subfield L ⊆ F

∗
r we have #(Ai ∩ tL) ≤ #A1−η

i .
Assume further that for some ε > 0,

#A1 ·#A2 (#A3 · · ·#Ad)
τ > r1+ε.

Then, for any nontrivial additive character χ of Fr we have∣∣∣∣∣
∑

a1∈A1

· · ·
∑

ad∈Ad

χ(a1 · · · ad)
∣∣∣∣∣ < 100#A1 · · ·#Ad · r−0.45ε/2d .

In order to effectively apply Lemma 2.4 one has to study carefully the elements
of k(J−1

γ,m) in subfields. We restrict the study to the simplest case, where there is
only one proper subfield.

Corollary 2.5. Let A1, · · · ,Ad ⊆ F
∗
pn , with p and n prime, of cardinality #Ai ≥

pσ, i = 1, . . . , d, for some real σ with

ωn

2ω + d− 2
< σ ≤ n.

Then, there exist δ > 0 that depends only on d and σ such that for sufficiently large
n, we have ∣∣∣∣∣

∑
a1∈A1

· · ·
∑

ad∈Ad

χ(a1 · · · ad)
∣∣∣∣∣ < 100#A1 · · ·#Ad · p−nδ.

Proof. The only proper subfield in Fpn is Fp, therefore it is clear that

#(Ai ∩ tFp) ≤ p ≤ pσ(1−η) ≤ #A1−η
i
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for any 0 < η < 1− 1/σ. Furthermore, from the hypothesis

#A1 ·#A2 (#A3 · · ·#Ad)
1/ω ≥ pσ(2+(d−2)/ω) > pn(1+ε),

for any

0 < ε <
σ(2ω + d− 2)

ωn
− 1.

The result now follows from Lemma 2.4 for δ = 0.45ε/2d. �

2.2. Sums of inverses in function fields. We now establish an analogue of [4,
Lemma 6], which is the main ingredient in the proof of Theorem 1.1 and which we
believe is of independent interest.

Let Pm be the set of polynomials x ∈ Fq[T ] of degree degT x < m. In particular
#Pm = qm.

For a fixed β ∈ Fq(T ), where K denotes the algebraic closure of the field K, and
positive integers k and m we now define Nk(β,m) as the number of solutions to
the equation

1

x1(T ) + β(T )
+ · · ·+ 1

xk(T ) + β(T )

=
1

xk+1(T ) + β(T )
+ · · ·+ 1

x2k(T ) + β(T )
,

(2.1)

with xi ∈ Pm for i = 1, . . . , 2k.

Lemma 2.6. Let k ≥ 1. Then uniformly over q and β ∈ Fq(T ) we have

Nk(β,m) ≤ q(k+o(1))m

as m → ∞.

Proof. To simplify the counting, we split the total number of solutions Nk(β,m)
separating the contribution N=

k (β,m) from the solutions satisfying xi = xj for some

i �= j, and the contribution N �=
k (β,m) from the solutions

x = (x1, . . . , x2k) ∈ P2k
m , with xi �= xj for 1 ≤ i �= j ≤ 2k.

We derive this bound by induction on k. It is clear that if k = 1 the assertion is
trivial. Suppose that k ≥ 2. It follows from Lemma 2.3 that the number N=

k (β,m)
of solutions satisfying xi = xj for some i �= j contributes to the total number of
solutions Nk(β,m) at most

N=
k (β,m) = O

(√
Nk−1(β,m)Nk(β,m) + qmNk−1(β,m)

)
(note that the first term is responsible for coincidences between the variables on
the same side of the equation, while the second term comes from coincidences on
the opposite sides).

Hence, by the induction hypothesis

N=
k (β,m) = O

(
q(k/2+o(1))m

√
Nk(β,m) + q(k+o(1))m

)
= O

(
q(k/2+o(1))m

√
N=

k (β,m) +N �=
k (β,m) + q(k+o(1))m

)
.

Clearly it suffices to show that N �=
k (β,m) ≤ q(k+o(1))m.
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We must now count the number of solutions in Fq(T ) to

(2.2)
∏
i �=1

(xi + β) + · · ·+
∏
i �=k

(xi + β) =
∏

i �=k+1

(xi + β) + · · ·+
∏
i �=2k

(xi + β)

with xi ∈ Fq[T ], xi �= xj and degT (xi) < m, for 1 ≤ i �= j ≤ 2k.
Observe that if follows from (2.2) that β is algebraic over Fq(T ) of degree d,

with 1 ≤ d ≤ 2k − 2. Therefore, it can be written as β = ξ/μ with μ ∈ Fq[T ]
a polynomial of degree at most m(2k − 2) = O(m) and ξ an algebraic integer of
degree d over Fq[T ].

From (2.2), the polynomial

q2k−1
∏
j �=i

(xj − xi) =
∏
j �=i

((μxj + ξ)− (μxi + ξ))

= (μxi + ξ) ·H(x1, . . . , x2k) +
∏
j �=i

(μxj + ξ)

(for some polynomialH in 2k variables) is divisible by (μxi+ξ) in a certain algebraic
extension of the function field Fq(T ) and is nonzero since xi �= xj for every i �= j.

In particular the norm

(2.3) Nm(μxi + ξ) | q(2k−1)d
∏
j �=i

(xj − xi)
d

as a polynomial in Fq[T ].
We now fix x1. Recalling (2.3), we see that we can decompose the polynomial

Nm(μx1 + ξ) = F1G1 with G1 | μ and gcd(F1, q) = 1, also

degT F1, degT G1 ≤ d(2k − 1)m = O(m).

For every divisor f1 =
∏

j≥2 rj of F1, with F1 | fd
1 , we can construct the arith-

metic progressions L2,j

(2.4) xj ≡ x1 (mod rj), 2 ≤ j ≤ 2k.

Since the degT (xj − x1) < m the number of elements in L2,j is at most qm−deg rj

and therefore

(2.5)
∏
j≥2

#L2,j < qm−deg r2 · · · qm−deg r2k =
qm(2k−1)

qdeg f1
.

For any of the qm possibilities for x1 it follows from Lemma 2.2 that there are at
most qo(m) choices for f1 and thus, from (2.5),

(2.6) N �=
k (β,m) ≤ q2km+o(m)

qm1
,

where m1 is the most popular degree amongst all the polynomials f1.
On the next step for every x2 ∈ L2,2 we can factor the norm Nm(μx2 + ξ) as

Nm(μx2 + ξ) = F2G2

where the irreducible factors of G2 either divide μ or Nm(μx1 + ξ), and F2 is not
only coprime with μ but also with Nm(ξ+μx1) (and in particular with (x2 − x1)).
Once again, from (2.3) it follows that

F2 |
∏
j≥3

(xj − x2)
d.
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Once again, every divisor f2 of F2 with F2 | fd
2 can be written as

f2 =
∏
j≥3

sj ,

with sj |(xj − x2). For every such divisor we can construct arithmetic progressions
L3,j ⊆ L2,j , satisfying both (2.4) and

xj ≡ x2 (mod sj), 3 ≤ j ≤ 2k,

where gcd(rj , sj) = 1. In particular, this implies that

#L3,j ≤ q− deg sj#L2,j

and thus

(2.7)
∏
j≥3

#L2,j ≤
1

qdeg f2

∏
j≥3

#L3,j .

As before, if we denote by m2 the most popular degree amongst all the polynomials
f2 it follows from (2.6) and (2.7)

N �=
k (β,m) ≤ q2km+o(m)

qm1qm2
.

For every x3 ∈ L3,3 once again we can factorize Nm(μx3 + ξ) = F3G3 where the
irreducible factors of G3 either divide μ, Nm(μx1 + ξ) or Nm(μx2 + ξ) and F3 is
coprime to them. For each divisor f3 of F3, with F3 | fd

3 , we can define arithmetic
progressions L4,j ⊂ L3,j for 4 ≤ j ≤ 2k as we did before so

∏
j≥4

#L3,j ≤
1

qdeg f3

∏
j≥4

#L4,j .

The process is now clear: we subsequently fix x1 ∈ Pm; then x2 ∈ L2,2, then
x3 ∈ L3,3, and so on, and estimate the number of solutions as

(2.8) N �=
k (β,m) ≤ q2km+o(m)

qm1+···+m2k−1
.

On the other hand, since G1 | μd and degμd = O(m), it is clear that
degG1 = O(m). It follows from Lemma 2.2 that the number of possibilities for
G1 is, independently of x1, at most qo(m).

Since F1 | fd
1 there are at most qo(m) possibilities for F1 once f1 is fixed. Thus,

for any given f1 there exist at most qo(m) possible values for x1. Taking into account
that the degree m1 is chosen so the number of possible polynomials f1 with degree
different from m1 is O(mqm1) (that is, it is the most popular degree amongst all
the possible choices) we have that there are at most qm1+o(m) possible values for
x1. For any fixed x1, following the same arguments, we have that the number of
possibilities for x2 is at most qm2+o(m). Thus, continuing this procedure

N �=
k (β,m) ≤ qm1+···+m2k−1+o(1).

Combining this bound with (2.8), the result follows. �
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3. Proofs on main results

3.1. Proof of Theorem 1.1. Within the proof, we consider the elements in Fqn as
classes of polynomials x(T ) in Fq[T ]/ψ(T ), where ψ(T ) is an irreducible polynomial
of degree n. Elements xi ∈ Vm can be identified precisely with polynomials in
Pm ⊆ Fq[T ].

Let us denote by Nk(γ,m, ψ) the number of solutions to

(3.1)
k∑

i=1

1

xi(T ) + γ(T )
≡

2k∑
j=k+1

1

xj(T ) + γ(T )
(mod ψ(T )),

with x1, . . . , x2k ∈ Fq[x] with degT (xi) < m, and N �=
k (γ,m, ψ) the number of solu-

tions with xi �= xj for 1 ≤ i �= j ≤ 2k. As in the proof of Lemma 3.1 it suffices to

show that N �=
k (γ,m, ψ) ≤ q(k+o(1))m.

For every solution x = (x1, . . . , x2k) contributing to N �=
k (γ,m, ψ) we construct

the polynomial

Px(Z) =
k∑

s=1

∏
j �=s

(xj(T ) + Z)−
2k∑

s=k+1

k∏
i �=s

(xi(T ) + Z)

= A0(T ) +A1(T )Z + · · ·+A2k−2(T )Z
2k−2 ∈ Fq[T ][Z].

(3.2)

It follows from (3.1) that Px(γ(T )) ≡ 0 (mod ψ(T )). Furthermore, since by hy-
pothesis x1(T ) �= xi(T ) for i = 2, . . . , 2k, it is clear that

Px(−x1(T )) =
∏
i �=1

(xi(T )− x1(T )) �= 0,

and the polynomial is nonconstant in Fq[T ][Z]. In fact, the polynomial is noncon-
stant modulo ψ(T ) either, since

degT Px(−x1) < (2k − 1)m < n = degT ψ

by hypothesis.
Observe that since for every 1 ≤ i ≤ 2k we have degT xi < m, the coefficients of

Px satisfy

degT Aj < (2k − 1− j)m, for j = 0, . . . , 2k − 2.

For any x,y two solutions the corresponding polynomials Px, Py satisfy: Px(γ) ≡
Py(γ) ≡ 0 (mod ψ(T )) and hence its resultant

Res (Px, Py) ≡ 0 (mod ψ(T )).

Furthermore, it follows from Lemma 2.1 that

degT Res (Px, Py) ≤ 4k(k − 1)m < n = degT (ψ)

so in fact Res (Px, Py) = 0 as a polynomial with coefficients in Fq[T ]. In particular,

this implies that any two polynomials Px, Py have a common root in Fq(T ).
We fix a solution c = (c1, . . . , c2k) and consider the set {β1, . . . , βs} of all s ≤

2k− 2 roots of Pc(Z) in Fq(T ), Then, for every solution x the polynomial Px has a
common root with Pc. Hence, the number of solutions to (3.1) can be bounded by

(2k − 2) max
1≤i≤s

#{P ∈ Fq[T ][Z] : of the form (3.2) and P (βi) = 0}.



SUMS OF INVERSES IN THIN SETS OF FINITE FIELDS 1385

For any fixed root β ∈ {β1, . . . , βs} of Pc the number of polynomials of the
form (3.2) with P (β) = 0 is precisely the number Nk(β,m) of solutions to (2.1)
which, from Lemma 2.6, is at most q(k+o(1))m.

3.2. Proof of Corollary 1.2. Let T (λ) be the number of solutions to the equation

x−1
1 + · · ·+ x−1

k = λ, x1, . . . , xk ∈ J ∗
γ,m.

Obviously ∑
λ∈k(J−1

γ,m)

T (λ) =
(
#
(
J ∗
γ,m

))k ≥ (qm − 1)k

and ∑
λ∈k(J−1

γ,m)

T (λ)2 = Nk(γ,m, ψ).

Then, by the Cauchy inequality, we have

(qm − 1)2k ≤
(
#
(
J ∗
γ,m

))2k
≤ #k(J −1

γ,m)
∑

λ∈k(J−1
γ,m)

T (λ)2 = #k(J−1
γ,m)Nk(γ,m, ψ).

Using Theorem 1.1, we conclude the proof.

3.3. Proof of Theorem 1.3. For a nontrivial additive character χ, let

S =
∑

x1∈J1

· · ·
∑

xd∈Jd

α1(x1) · · ·αd(xd)χ
(
(x1 · · ·xd)

−1
)
.

It follows from the simple observation that for any complex number |z|2 = z · z, for
any sets U ,V ⊆ Fpn and the weights {α(v)}v∈V with |α(v)| ≤ 1, we have

(3.3)
∑
u∈U

∣∣∣∣∣
∑
v∈V

α(v)χ(uv)

∣∣∣∣∣
2k

≤
∑

v1,...,v2k∈V

∣∣∣∣∣
∑
u∈U

χ

(
u

2k∑
i=1

(−1)ivi

)∣∣∣∣∣ ,
for every integer k.

Let us denote J = #Ji = pm , to simplify the notation.
The bound (3.3), together with the Hölder inequality, applied d times, exactly

as in the proof of [4, Theorem 12], gives

|S|(2k)d ≤ Jd(2k)d−2kd
∑

xi,1∈J1

i=1,··· ,2k

· · ·
∑

xi,d,∈Jd

i=1,··· ,2k

d∏
j=1

χ

(
2k∑
i=1

(−1)ix−1
i,j

)
.

We can fix x2i−1,j for every i = 1, . . . , k and j = 1, . . . , d in such a way that for
some elements c1, . . . , cd we have

|S|(2k)d ≤ Jd(2k)d−kd

∣∣∣∣∣∣∣∣
∑

xi,1∈J1

i=1,··· ,k

· · ·
∑

xi,d∈Jd

i=1,··· ,k

χ

⎛
⎝ d∏

j=1

(
k∑

i=1

x−1
i,j − cj

)⎞
⎠
∣∣∣∣∣∣∣∣

≤ Jd(2k)d−kd

∣∣∣∣∣∣
∑

λ1∈Fpn

· · ·
∑

λd∈Fpn

T1(λ1) · · ·Td(λd)χ(λ1 · · ·λd)

∣∣∣∣∣∣ ,(3.4)



1386 IGOR E. SHPARLINSKI AND ANA ZUMALACÁRREGUI

where Tj(λ) denotes the number of solutions to

y−1
1 + · · ·+ y−1

k − cj = λ, y1, . . . , yk ∈ Jj .

For any k, to be chosen later, satisfying

(3.5) m <
n

4k2 − 2k

we have from Theorem 1.1 that the number of solutions to the congruence

y−1
1 + · · ·+ y−1

k = y−1
k+1 + · · ·+ y−1

2k , y1, . . . , y2k ∈ Jj ,

is bounded by Jk+o(1). Therefore, in particular, for every j = 1, . . . , d, for the
L2-norm of Tj we have

(3.6) ‖Tj‖22 =
∑

λ∈Fpn

Tj(λ)
2 ≤ Jk+o(1).

Now, let us estimate the sum in (3.4), that is,

W =
∑

λ1∈Fpn

· · ·
∑

λd−1∈Fpn

T1(λ1) · · ·Td(λd)χ(λ1 · · ·λd−1).

Let
Aj = {λ ∈ Fpn : λ = y−1

1 + · · ·+ y−1
k − cj , for y1, . . . , yk ∈ Jj}

be the set on which Tj(λ) is supported, j = 1, . . . , d. By the Cauchy inequality

|W |2 ≤ ‖T1‖22 · · · ‖Td−1‖22∣∣∣∣∣∣
∑

u,v∈Ad

∑
λ1∈A1

· · ·
∑

λd−1∈Ad−1

Td(u)Td(v)χ(λ1 · · ·λd−1(u− v))

∣∣∣∣∣∣ .
Hence, using the bounds in (3.6), we have

|W |2 ≤ J (d−1)k+o(1)
∑

u,v∈Ad

Td(u)Td(v)

∣∣∣∣∣∣
∑

λ1∈A1

· · ·
∑

λd−1∈Ad−1

χ (λ1 · · ·λd−1(u− v))

∣∣∣∣∣∣ .
(3.7)

Let us note that, to estimate the contribution from the inner sum in (3.7) we use
Corollary 2.5 with d − 1 and σ = m(k + o(1)). Clearly, from Corollary 1.2, which
applies due to the condition (3.5), we have #Aj = Jk+o(1), j = 1, . . . , d. Also, let
us further assume that k satisfies

(3.8) m >
ωn

k(2ω + d− 3)
.

Therefore, it follows from Corollary 2.5 that the contribution to (3.7) from diagonal
terms with u = v is precisely

(3.9) ‖Td‖22 #A1 · · ·#Ad−1 ≤ Jdk+o(1).

It follows from Corollary 2.5 that for some δ0 > 0, depending only on d, for every
t ∈ F

∗
pn we have

(3.10)

∣∣∣∣∣∣
∑

λ1∈A1

· · ·
∑

λd−1∈Ad−1

χ(λ1 · · ·λd−1t)

∣∣∣∣∣∣ ≤ J (d−1)kp−δ0n.
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The bound (3.10), together with the trivial observation∑
u∈Ad

Td(u) = Jk,

implies that the contribution to (3.7) from nondiagonal terms with u �= v is at most
J (d+1)kp−δ0n.

Combining this bound with (3.9) we see from (3.7) that for any choice of k
satisfying (3.5) and (3.8) we have

|W |2 ≤
(
J−k + p−δ0n

)
J2kd+o(1),

together with (3.4) implies that

|S| ≤ Jd+o(1)
(
J−k + p−δ0n

)1/2(2k)d ≤ pdm−δn

for some positive δ. To complete the proof it suffices to choose any integer k
satisfying the conditions (3.5) and (3.8). In fact it is more convenient to work with
a slightly more stringent condition than (3.8) and we choose k to satisfy

ω · n
(d+ 2ω − 3)m

<
ωn

dm
< k <

1

2

( n

m

)1/2

.

In particular, the existence of such a k ∈ N in the previous range can be guaranteed
if

1

2

( n

m

)1/2

− ωn

dm
≥ 1,

or equivalently

d ≥ 2ωn

(m1/2n1/2 − 2m)
,

which coincides with the hypothesis for d, m and n.

4. Comments

We note that it is not difficult to get an explicit (but rather cluttered) expression
for the saving δ in Theorem 1.3.

Although we have presented extensions to finite fields of only two selected results
of Bourgain and Garaev [4], one can easily check that our approach allows us to
get extensions of several other bounds from [4]. However, these methods do not
apply to yet another natural generalization of [4] when the role of short intervals
is played by arbitrary low-dimensional affine vector subspaces over Fqn (considered
as a vector space over Fq) rather than by very special affine spaces Jγ,m. We
recall that for additive character sums with polynomials such results are known;
see [10]. However character sums with rational functions, even in the simplest case
of multilinear sums with reciprocals, are not covered by this technique and seem to
require new ideas. We also remark that some of the motivation to question come
from the problem of constructing efficient affine dispersers and extractors over finite
fields; see [1, 2] for more details and further references.
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