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Abstract. The Gerdjikov-Ivanov (GI) type of derivative nonlinear Schrödin-
ger equation is considered on the quarter plane whose initial data vanish at
infinity while boundary data are time-periodic, of the form aeiδe2iωt. The
main purpose of this paper is to provide the long-time asymptotics of the
solution to the initial-boundary value problems for the equation. For ω <

a2( 1
4
a2 + 3b− 1) with 0 < b < a2

4
, our results show that different regions are

distinguished in the quarter plane Ω = {(x, t) ∈ R2|x > 0, t > 0}, on which
the asymptotics admit qualitatively different forms. In the region x > 4tb,
the solution is asymptotic to a slowly decaying self-similar wave of Zakharov-

Manakov type. In the region 0 < x < 4t

(
b−

√
2a2

(
a2

4
− b

))
, the solution

takes the form of a plane wave. In the region 4t

(
b−

√
2a2

(
a2

4
− b

))
< x <

4tb, the solution takes the form of a modulated elliptic wave.

1. Introduction

In 1993, Deift and Zhou [6] introduced the nonlinear steepest descent method to
analyze the long time asymptotics of initial value problems of integrable nonlinear
evolution equations. This approach was inspired by earlier works of Manakov [23]
and Its [14]; for a detailed historical review see [7], further extended by Deift, Ve-
nakides, and Zhou [8]. In the context of initial value problems, the Riemann-Hilbert
(RH) problem is formulated on the basis of certain spectral functions whose defi-
nitions involve the initial data of the solution [1, 6]. In the 1980-1990’s, Bikbaev,
Deift, Novokshenov, and Venakides had already developed the Riemann-Hilbert
method for solving the shock problems. An approach was recently developed by
Buckingham and Venakides [5] to study the problem of shock-type oscillating ini-
tial data for the focusing nonlinear Schrödinger equation. A central role in their
implementation is played by the so-called “g-function mechanism” [9] allowing one
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to deform the original Riemann-Hilbert problem to a form that can be asymptot-
ically treated with the help of associated singular integral equations. Using the
steepest descent method for oscillatory Riemann-Hilbert problems, the long-time
asymptotics of several initial-boundary value (IBV) problems have already been
studied in [10, 11, 22, 34].

It is well-known that the nonlinear Schrödinger equation (NLS)

(1.1) iqt + qxx +
1

2
|q|2q = 0

can be used to describe slowly varying wave envelopes in dispersive media from
water waves, plasma physics, and nonlinear optics. In [24, 25], Ma and his col-
laborator have provided a direct and effective method for finding exact solutions
to the NLS equation. Ma [26] has also proposed a generalized Wronskian method
to find the exact solution of some nonlinear integrable equations. Ismail and his
collaborator have provided the classical and quantum orthogonal polynomials in
one variable [15] and have also studied the spectral analysis of certain Schrödinger
operators [16, 17], etc. By considering a new construction of phase g-function, the
long-time asymptotics for the focusing NLS equation is solved by Boutet de Mon-
vel, Its, and Kotlyarov [2–4] on the quarter plane. They showed that the solution
of the equation is asymptotically periodic for large t with the same period T . The
given Dirichlet datum consisting of a single periodic exponential is investigated by
Lenells and Fokas for the NLS equation in [20,21]. Lenells [22] has also studied the
long-time asymptotics of its solution in the quarter plane.

To the best of the authors’ knowledge, the long-time asymptotics for the deriva-
tive nonlinear Schrödinger (DNLS) equation with time-periodic boundary condition
on the quarter plane has not been investigated before. The main purpose of this
paper is to study the following IBV problems for the Gerdjikov-Ivanov (GI) type
of derivative nonlinear Schrödinger equation [12, 13], whose form is

iqt + qxx − iq2q̄x +
1

2
|q|4q = 0,(1.2)

where q(x, t) is a complex-valued function of x and t, the overbar denotes the com-
plex conjugation (similarly hereinafter), and the subscripts denote differentiation
with respect to the corresponding variables. The GI equation (1.2) has several
applications in plasma physics. In plasma physics, it is a model for Alfvén waves
propagating parallel to the ambient magnetic field, q being the transverse mag-
netic field perturbation and x and t being space and time coordinates, respectively.
Kitaev and Vartanian obtained the leading order long-time asymptotic for the KN-
type DNLS equation with the decaying initial value [18, 19], and the higher order
long-time asymptotic in [31]. Xu, Fan, and Chen have studied the Cauchy prob-
lem for the GI equation with steplike initial data [33] and have also studied the
DNLS equation with decaying initial value problem [34]. Recently, we have stud-
ied the IBV problems for the general coupled nonlinear Schrödinger equation on
the interval and on the half-line [27,28]. We have also studied a generalized deriva-
tive nonlinear Schrödinger equation with time-periodic boundary condition [29] and
with step-like initial data [30], respectively. Very recently, we have provided the
characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear
Schrödinger equation [32]. In this paper, we will study the long-time asymptotics
of GI equation (1.2) with time-periodic boundary condition on the quarter plane.
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We consider the following IBV problems for the GI equation, whose form is

iqt + qxx − iq2q̄x +
1

2
|q|4q = 0,(1.3a)

q(x, 0) = q0(x),(1.3b)

q(0, t) = g0(t) = ae2iωt+iδ,(1.3c)

q0(0) = g0(0) = aeiδ,(1.3d)

on the quarter plane Ω:

Ω = {(x, t) ∈ R
2|x > 0, t > 0},(1.4)

where q0(x) vanishes for x → ∞, a > 0, δ and ω are real constants. Let q(x, t) be
the solution of the IBV problems for (x, t) ∈ Ω. Let q(x, t) be C∞, continuous with
all its derivatives up to the boundary {xt = 0} of Ω, and q(x, t), q0(x) ∈ S(R+) in
x for any fixed t ∈ R+, where S(R+) is the Schwartz space of rapidly decreasing
functions on R+:

(1.5) S(R+) = {u(x) ∈ C∞(R+)|xnu(m)(x) ∈ L∞(R+) for any n,m ≥ 0}.

Let the boundary condition (1.3c) be of its natural weaker version,

q(0, t) = g0(t) = ae2iωt+iδ + v0(t),(1.6)

with v0(t) ∈ S(R+). Then all the results provided here are actually valid.
In this paper, we mainly focus on the case ω < a2( 14a

2 + 3b− 1), where a and b
are the parameters of the following Floquet solution:

qp(x, t) = ae2ibx+2iωt+iδ, ω := −2b2 − a2b+
1

4
a4, a > 0.(1.7)

Assumptions. Throughout this paper, let the function q(x, t) be a global solution
of the Dirichlet IBV problems (1.3a)-(1.3d), sufficiently smooth and with sufficient
decay for x → +∞. We also take the Neumann boundary values in the following
form:

qx(0, t) := g1(t) = 2iabe2iωt + v1(t),(1.8a)

− a2b+
1

4
a4 − ω = 2b2 > 0,(1.8b)

with v1(t) ∈ S(R+).

Organization of this paper. In Sections 2 and 3, we provide the Lax repre-
sentation and a Floquet solution of (1.2), based on which we study its domains of
boundedness. Then, we use these functions in Section 4 to construct the Riemann-
Hilbert problem of the IBV problems (1.3a)-(1.3d). In Section 5, we study the
asymptotic analysis of this Riemann-Hilbert problem leading to asymptotic formu-
las for the solution of the IBV problems.
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2. Preliminaries

The GI equation (1.2) is lax integrable and admits a Lax spectral problem asso-
ciated with 2× 2 matrices for the linear x-equation,

Φx + ik2σ3Φ =

[
kQ(x, t) +

i

2
|q|2σ3

]
Φ,(2.1a)

Q(x, t) =

(
0 q(x, t)

−q̄(x, t) 0

)
with σ3 =

(
1 0
0 −1

)
,(2.1b)

and for the linear t-equation,

Φt + 2ik4σ3Φ = Q̃(x, t)Φ,

(2.2a)

Q̃(x, t) = 2k3Q(x, t) + ik2|q|2σ3 − ikQx(x, t)σ3 +
1

2
(qq̄x − q̄qx)σ3 +

i

4
|q|4σ3,

(2.2b)

where Φ(x, t, k) is a 2×2 matrix-valued function and k ∈ C is a spectral parameter.
The compatibility condition of Lax pair (2.1a) and (2.2a) gives the GI equation
(1.2).

The GI equation (1.3a) admits the Floquet solution (1.7), which is consistent
with (1.3b)-(1.3d) for x > 0.

Suppose Q̃p(t; k) = Q̃p(0, t; k), where Q̃p(x, t; k) is introduced as Q̃(t; k) by re-
placing q(x, t) with qp(x, t), i.e.,
(2.3)

Q̃p(x, t) = 2k3Qp(x, t) + ik2|qp|2σ3 − ikQp
x(x, t)σ3 +

1

2
(qpq̄px − q̄pqpx)σ3 +

i

4
|qp|4σ3,

where

Qp(t) := Qp(0, t) =

(
0 ae2iωt+iδ

−ae−2iωt−iδ 0

)
,

Qp
x(t) := Qp

x(0, t) =

(
0 2iabe2iωt+iδ

2iabe−2iωt−iδ 0

)
,

Qp(x, t) :=

(
0 qp(x, t)

−q̄p(x, t)

)
.

We now study the t-part (2.2a) of the Lax pair associated with Qp(t), i.e.,

(2.4) Ψt(t; k) + 2ik4σ3Ψ(t; k) = Q̃p(t; k)Ψ(t; k), t > 0, k ∈ C,
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where Ψ(t; k) is a 2× 2 matrix-valued function. A particular (Floquet) solution of
(2.4) is given by

Ψ(t; k) = E(t; k)ei(ω−Ω(k))σ3t,(2.5a)

E(t; k) = eiωσ̂3tE(k) := eiωσ3tE(k)e−iωσ3t,(2.5b)

E(k) =
1

2

⎛⎝ ϕ(k) + 1
ϕ(k) eiδ

(
ϕ(k)− 1

ϕ(k)

)
e−iδ

(
ϕ(k)− 1

ϕ(k)

)
ϕ(k) + 1

ϕ(k)

⎞⎠ ,(2.5c)

Ω(k) = (k2 − b)X(k),(2.5d)

X(k) = 2

√
(k2 + b)2 +

a2

4
− a2b,(2.5e)

ϕ(k) =

(
k2 + b− a2

2 − ika

k2 + b− a2

2 + ika

) 1
4

.(2.5f)

The branches of the square roots are fixed by their asymptotics, for k → ∞:

X(k) = 2

√
(k2 + b)2 +

a2

4
− a2b = 2(k2 + b) +O(k),

ϕ(k) =

(
k2 + b− a2

2 − ika

k2 + b− a2

2 + ika

) 1
4

= 1− ia

2k
+O

(
1

k2

)
,

(2.6)

on the complex k-plane cut along any curve connecting the two branch points E
and Ē.

In [29], we have derived the formulation of a Riemann-Hilbert problem whose
solution yields the solution of the IBV problems of the GI equation (1.3a)-(1.3d). In
this paper, we will study the asymptotic analysis of the Riemann-Hilbert problem
of the equation, which is formulated below.

3. Domains of boundedness

Let

(3.1) Σ := {k ∈ C|Im Ω(k) = 0}.
Introducing λ = k2 and taking λ1 = Re λ, λ2 = Im λ, the equation Im Ω(k) = 0
yields

λ2 = 0(3.2)

or
(3.3)

λ1λ
2
2 = (λ1−b)

(
λ2
1 + bλ1 +

a2

8
− a2b

2

)
= (λ1−b)(λ1−λ−)(λ1−λ+) with |λ1| ≤ |b|.

In what follows, let ω ≤ a2
(
1
4a

2 + 3b− 1
)
, i.e., b2 ≥ a2

2 −2a2b, and b > 0. Therefore,
one can see that λ± are both real and

(3.4) λ± = − b

2
± 1

2

√
b2 − 1

2
a2 + 2a2b,

with −b < λ− ≤ −b/2 ≤ λ+ < 0 as b < a2

4 (see Figure 1).
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λ1

λ2

E

−b

Ē

λ+λ−

O

a

-a

Γ

Γ̄

γ

γ̄

D1

D4

D2

D3

E = −b+ ia
Ē = −b− ia

Figure 1. The domains {Dj}41 for the case ω < a2
(
1
4a

2 + 3b− 1
)
,

a > 0, 0 < b < a2/4.

For such case, Σ includes the real axis R, the contour Γ ∪ Γ̄, and the finite arc
γ ∪ γ̄ with the endpoints E = −b + ia, Ē = −b − ia, which are both the branch
points

(3.5) Σ = R ∪ Γ ∪ Γ̄ ∪ γ ∪ γ̄,

where Γ = {λ ∈ C|λ1 = B, |λ2| ≤ D, Im λ2 > 0}, D2 = a4

4 − a2b, λ1 = Re λ and
λ2 = Im λ.

From above, one can see that the domains {Dj}41 are given by
(3.6){

D1 := {λ ∈ C|Im λ > 0, Im Ω(λ) > 0}, D2 := {λ ∈ C|Im λ > 0, Im Ω(λ) < 0},
D3 := {λ ∈ C|Im λ < 0, Im Ω(λ) > 0}, D4 := {λ ∈ C|Im λ < 0, Im Ω(λ) < 0}.

From the definition of the domains {Dj}41, one can further introduce D± as follows:
(3.7)
D+ := D1 ∪D3 = {λ ∈ C|Im Ω(λ) > 0}, D− := D2 ∪D4 = {λ ∈ C|Im Ω(λ) < 0}.

Then one can see that a partition of the complex k-plane C is of the form

(3.8) C = D1 ∪D2 ∪D3 ∪D4 ∪ Σ.

4. The basic Riemann-Hilbert problem

Suppose that the spectral functions a(k), b(k) and A(k), B(k) are defined in a
similar way (see [10,11]) by using initial function q(x, 0) and boundary data q(0, t),
qx(0, t). Then, we can define the following Riemann-Hilbert problem RHxt:

(4.1) N+(x, t;λ) = N−(x; t, λ)JN (x, t;λ),

where the functions N+(x, t;λ) and N−(x, t;λ) are the limiting values of the func-
tion N(x, t; z) from the left and right sides of Σ as z → k, respectively. The
Riemann-Hilbert problem RHxt can be introduced on the complex λ-plane C with
the oriented contour

(4.2) Σ = R ∪ Γ ∪ Γ̄ ∪ γ ∪ γ̄.



ASYMPTOTIC BEHAVIOR FOR THE GERDJIKOV-IVANOV EQUATION 1719

λ1

λ2

E

−b

Ē

λ+λ− O

Γ

Γ̄

γ

γ̄

D1

D4

D2

D3

+
−

+
−

− +

+ −

+
−

a

-a

+−

+−

Figure 2. The oriented contour Σ for the case ω <
a2
(
1
4a

2 + 3b− 1
)
, a > 0, 0 < b < a2/4.

For the contour Σ (see Figure 2), the jump matrix JN (x, t;λ) can be written in
the following six different expressions:
(4.3)

JN (x, t;λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + λ|ρ̂(λ)|2 ρ̂(λ̄)e−2i[λx+(Ω(λ)−ω)t]

λρ̂(λ)e2i[λx+(Ω(k)−ω)t] 1

)
, λ∈(−∞, λ+),(

1 + λ|ρ̂(λ)|2 r̂(λ̄)e−2i[λx+(Ω(λ)−ω)t]

λr̂(λ)e2i[λx+(Ω(λ)−ω)t] 1

)
, λ∈(λ+,+∞),(

1 0

−λĉ(λ)e2i[λx+(Ω(λ)−ω)t] 1

)
, λ ∈ Γ,(

1 −ĉ(λ̄)e−2i[λx+(Ω(λ)−ω)t]

0 1

)
, λ ∈ Γ̄,(

e2iΩ
+λt 0

λf̂(λ)e2i[λx−ωt] e−2iΩ+kt

)
, λ ∈ γ,(

e2iΩ
+λt f̂(λ̄)e−2i[λx−ωt]

0 e−2iΩ+λt

)
, λ ∈ γ̄,

where the scattering date ρ̂(λ) = ρ(k)
k , r̂(λ) = r(k)

k , ĉ(λ) = c(k)
k and f̂(λ) = f(k)

k

with c(k) := T21(k)
T11(k)

− b(k̄)
a(k) , r(k) :=

b(k̄)
a(k) , ρ(k) := c(k)+r(k), f(λ) := c−(λ)−c+(λ) :=

−ie−iδ

T−
11(k)T

+
11(k)

, and

T11(k) = T22(k̄) = a(k)A(k̄) + b(k)B(k̄),(4.4)

T12(k) = −T21(k̄) = a(k)B(k)− b(k)A(k).
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The residue conditions at these zeros λj , zj , z̄j and λ̄j are determined by
(4.5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Resλ=λj
[M(x, t;λ)]1 =

e2i{λjx+[Ω(λj)−ω]t}

ȧ(λj)b(λj)
[M(x, t;λj)]2, λj ∈ D1,

Resλ=zj [M(x, t;λ)]1 = Resλ=zjc(k)e
2i{zjx+[Ω(zj)−ω]t}[M(x, t; zj)]2, zj ∈ D2,

Resλ=z̄j [M(x, t;λ)]2 = Resλ=z̄jc(λ̄)e
−2i{z̄jx+[Ω(z̄j)−ω]t}ȧ(λ̄j)b(λ̄j)[M(x, t; z̄j)]1,

z̄j ∈ D3,

Resλ=λ̄j
[M(x, t;λ)]2 = −e2i{λ̄jx+[Ω(λ̄j)−ω]t}

ȧ(λ̄j)b(λ̄j)
[M(x, t; λ̄j)]1, λ̄j ∈ D4.

Considering the off-diagonal elements of the spectral problems, we can derive the
solution q(x, t) of the IBV problems. Then, we have the following Riemann-Hilbert
problem:

Theorem 4.1. Let q(x, t) be a solution of (1.3a)-(1.3d) with sufficient smoothness
and decays as x → ∞. Then q(x, t) can be reformulated by the initial value q0(x)
and boundary values {g0(t), g1(t)}, which are defined by

q0(x) = q(x, t = 0),

g0(t) = q(x = 0, t) = ae2iωt+iδ + v0(t),

g1(t) = qx(x = 0, t) = 2iabe2iωt+iδ + v1(t),

q0(0) = g0(0) = aeiδ, q0x(0) = g1(0) = 2iabeiδ,

(4.6)

where v0(t) = 0, v1(t) = 0 for the Dirichlet IBV problem, and v0(t), v1(t) ∈ S(R+)
for the Neumann IBV problem.

Assume that the functions q0(x) ∈ S(R+), g0(t) and g1(t) satisfying the spectral
functions {a(λ), b(λ), A(λ), B(λ)} admit the global relation

(4.7) b(λ)A(λ)− a(λ)B(λ) = 0, λ ∈ D1,

where the domain D1 is defined in (3.6).
Then the solution q(x, t) of (1.3a) with IBV problems (1.3b)-(1.3d) is given by

(4.8) q(x, t) = 2i lim
λ→∞

(λN(x, t;λ))12

where N(x, t;λ) admits the following 2×2 matrix Riemann-Hilbert problem: Given
the spectral functions ρ(λ), r(λ), f(λ), c(λ) = c−(λ) − c+(λ), and the contour Σ,
find a 2× 2 matrix-value function N(x, t;λ) such that

(i) N(x, t;λ) is sectionally meromorphic in λ ∈ C\Σ or λ ∈ R\Σ, where R is
the Riemann of genus zero.

(ii) Its first column [N(x, t;λ)]1 admits simple poles at λj ∈ D1 and zj ∈ D2;
the second column [N(x, t;λ)]2 has simple poles at z̄j ∈ D3 and λ̄j ∈ D4.
Here the domains {Dj}41 are determined in (3.6). The associated residues
admit the relations (4.5).

(iii) The boundary value N±(x, t;λ) at Σ admits the jump condition

(4.9) N+(x, t;λ) = N−(x, t;λ)JN(x, t;λ), λ ∈ Σ,

where the jump matrix J(x, t;λ) can be defined in terms of the spectral
functions by (4.3).
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(iv) Behavior at ∞ is

(4.10) N(x, t;λ) = I+O

(
1

λ

)
, as λ → ∞.

(v) detN(x, t;λ) = 1.

Proof. From the spectral analysis of (2.1a) and (2.2a), it only remains to prove (4.8)
and (4.9), which follow from the large λ asymptotics of the eigenfunctions. �

5. Long-time asymptotic analysis

In order to analyze the long-time asymptotic behavior of the solution q(x, t), let
the spectral functions ρ(λ), r(λ), c(λ) and f(λ) admit the following properties:

(a) The function c(λ) satisfies analytic continuation across the cut γ ∪ γ̄ con-
necting E and Ē on the second sheet of the Riemann surface of the function
X(λ).

(b) The function f(λ) satisfies the following expansion at λ = E = −b+ ia:

(5.1) f(λ) =

∞∑
j=0

cj(λ− E)
2j+1

2 .

(c) The discrete spectrum of the problem is empty; i.e., (i) a(λ) does not vanish

in D1; (ii) T11(λ) = a(λ)A(λ̄) + b(λ)B(λ̄) does not vanish in D2.

In what follows, in order to describe the long-time behavior of the solution q(x, t)
of the IBV problem, in this section some different asymptotic formulae are derived
by the following three theorems in different regions of the first quarter of the xt-
plane; see Figure 3.

x

t

x = 4t

(
b−

√
2a2

(
a2

4 − b
))

x = 4tb

O

(i)
Zakharov-Manakov

region

(ii)
Elliptic wave region

(iii)
Plane wave

region

Figure 3. The different regions of the (x, t)-quarter-plane under
the condition 2b2 + a2b− 1

4a
4 + ω = 0, 0 < b < a2/4.

Theorem 5.1 (The Zakharov-Manakov region, x > 4tb). Let all conditions of
Theorem 4.1 and assumption (c) be satisfied.

In the region x > 4tb, the asymptotics, as t → +∞, of the solution q(x, t) for
the IBV problems of (1.3a)-(1.3d) takes the form of the Zakharov-Manakov type



1722 SHOU-FU TIAN AND TIAN-TIAN ZHANG

formula

(5.2) q(x, t) =
1√
t
q̃asy(λ0)e

ix
2

4t −iν(λ0) log t +O

(
log t

t

)
,

with

|q̃asy(λ0)|2 =
ν(λ0)

2
= − 1

4π
log

(
1− λ0|ρ(λ0)|2

)
,

arg q̃asy(λ0) = arg Γ(iν(λ0))− arg ρ(λ0)− 3ν(λ0) log 2−
π

4

+
1

π

∫ λ0

−∞
log(|λ− λ0|)d log(1− λ|ρ(λ)|2),(5.3)

where ν(λ0) = − 1
2π log(1 − λ0|ρ(λ0)|2), ρ(λ) = r(k)

k , and Γ(·) implies Euler’s
gamma-function, and λ0 = − x

4t .

Proof. In what follows, we can follow the technique of asymptotic analysis proposed
for the first time in [6] to study the asymptotic behavior of the Riemann-Hilbert
problem (4.9) in the region x > 4tb. We introduce the first transformation

(5.4) N (1)(x, t, λ) = N(x, t, λ)δσ3(λ),

with

(5.5) δ(λ) = exp

{
1

2πi

∫ λ0

−∞

log(1− λ′|ρ(λ′)|2)
λ′ − λ

dλ′

}
,

where λ0 = − x
4t . Next, the new jump matrix J

(1)
N (x, t, λ) is analytically extended

from Σ. It yields the second transformation

(5.6) N (2)(x, t, λ) = N (1)(x, t, λ)G(λ),
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with G(λ) defined by

G(λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 r̂(λ̄)δ2e−2itθ

0 1

)
, λ ∈ D1, arg(λ− λ0) ∈ (0, π/4),(

1 0
−λr̂(λ)δ−2e2itθ 1

)
, λ ∈ D4, arg(λ− λ0) ∈ (7π/4, 2π),

(5.7a)

G(λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 0
−λδ−2ĉ(λ)e2itθ 1

)
, λ ∈ D1, arg(λ− λ0) ∈ (0, π/4),(

1 δ2ĉ(λ̄)e−2itθ

0 1

)
, λ ∈ D4, arg(λ− λ0) ∈ (3π/2, 7π/4),

(5.7b)

G(λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 ρ̂(λ̄)δ2e−2itθ

0 1

)
, λ ∈ D2, arg(λ− λ0) ∈ (0, π/4),(

1 0
−λρ̂(λ)δ−2e2itθ 1

)
, λ ∈ D3, arg(λ− λ0) ∈ (7π/4, 2π),

(5.7c)

G(λ) =

(
1 0
0 1

)
,

λ ∈ D2, arg(λ− λ0) ∈ (π/4, 3π/4),
λ ∈ D3, arg(λ− λ0) ∈ (5π/4, 7π/4),

(5.7d)

G(λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 0
λρ̂′(λ)δ−2e2itθ 1

)
, λ ∈ D2, arg(λ− λ0) ∈ (3π/4, π),(

1 −ρ̂′(λ̄)δ2e−2itθ

0 1

)
, λ ∈ D3, arg(λ− λ0) ∈ (π, 5π/4),

(5.7e)

where r̂(λ), ĉ(λ), ρ̂(λ) and ρ̂′(λ) are suitable analytic approximations of the func-
tions r(λ), c(λ), ρ(λ), ρ′(λ) = ρ(λ)/(1 + |ρ(λ)|2). From above, we have the final
transformation

(5.8) N (2)(x, t, λ) = Z(x, t, λ)Nasy(x, t, λ),

where the function Nasy(x, t, λ) solves the model problem explicitly presented in
terms of parabolic cylinder functions, whereas Z(x, t, λ) can be estimated:

(5.9) Z(x, t, λ) = I+O

(
log t

t
1
2

)
.

Then, the asymptotic result of Nasy(x, t, λ) yields the Zakharov-Manakov wave
(5.2). �

Theorem 5.2 (Plane wave region, 0 ≤ x < 4t

(
b−

√
2a2

(
a2

4 − b
))

). Let all

conditions of Theorem 4.1 and assumptions (a), (b), (c) be satisfied.

Then in the region 0 ≤ x < 4t

(
b−

√
2a2

(
a2

4 − b
))

, the asymptotics, as t →
+∞, of the solution q(x, t) for the IBV problems of (1.3a)-(1.3d) is described by a
plane wave:

(5.10) q(x, t) = aeiδe2i[ωt+bx−φ(ξ)] +O
(
t−1/2

)
, as t → +∞,
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where

φ(ξ) =
1

2π

{∫ μ−(ξ)

−∞
log

[
1 + λ|ρ̂(λ)|2

] dλ

X(λ)
+

∫
γg∪γ̄g

log[h(s)eiδδ−2(s, ξ)]
ds

X+(s)

}
,

μ−(ξ) = − b

2
− ξ −

√(
ξ − b

2

)2

− a2e2iδ

2

(
a2e2iδ

4
− b

)
, γg ∪ γ̄g = γ ∪ γ̄, ξ =

x

4t
.

(5.11)

Proof. For the region 0 ≤ x < 4t

(
b−

√
2a2

(
a2

4 − b
))

, we take the g-function as

follows:

(5.12) g(x, t, λ) = xX(λ) + tΩ(λ),

where the functions Ω(λ) and X(λ) are determined by (2.5d) and (2.5e). The
g-function admits the following asymptotic behavior:

g(λ; ξ) = t
(
2λ2 + 4ξλ+ g(∞; ξ)

)
+O

(
1

λ

)
, λ → ∞, with g(∞; ξ) = t(ω + 4ξB).

We make the following three transforms:

N (1)(x, t, λ) = e−itg(∞;ξ)σ3N(x, t, λ)e−i[λx+4λ2t−g(λ)]σ3 ,(5.13)

N (2)(x, t, λ) = N (1)(x, t, λ)δ−σ3(λ),(5.14)

N (3)(x, t, λ) = N (2)(x, t, λ)G(λ),(5.15)

where δ is introduced in (5.5), and G(λ) is introduced similarly to (5.7a), with tθ(k)
instead of g(λ). Next, we make a fourth transformation:
(5.16)

N (4)(x, t, λ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F σ3(∞, ξ)N (3)(x, t, λ)F−σ3(λ, ξ), λ outside the lenses,

F σ3(∞, ξ)N (3)(x, t, λ)F−σ3(λ, ξ)N̂low(λ),

λ inside the lower right lens,

F σ3(∞, ξ)N (3)(x, t, λ)F−σ3(λ, ξ)N−1

low
(λ),

λ inside the lower left lens,

F σ3(∞, ξ)N (3)(x, t, λ)F−σ3(λ, ξ)N̂up(λ),

λ inside the upper right lens,

F σ3(∞, ξ)N (3)(x, t, λ)F−σ3(λ, ξ)N−1
up(λ),

λ inside the upper left lens,

where F (λ) = exp
{

X(λ)
2πi

∫
γg∪γ̄g

log
[
h(s)eiδδ−2(s)

]
ds

(s−λ)X+(s)

}
, F (∞) = eiφ(ξ)

with φ(ξ) = 1
2π

∫
γg∪γ̄g

log
[
h(s)eiδδ−2(s, ξ)

]
ds

X+(s) , and N̂low(λ) =

(
1 0

N̂
(21)

low
1

)
,

Nlow(λ) =

(
1 0

N
(21)

low
1

)
, N̂up(λ) =

(
1 N̂

(12)
up

0 1

)
, Nup(λ) =

(
1 N

(12)
up

0 1

)
,
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with

N̂
(21)

low
= λδ−2(λ)F 2

−(λ)
[
ρ̂′−(λ)− f−1(λ)

]
e2ig+(λ),

N
(21)

low
= −λδ−2(λ)F 2

+(λ)
[
ρ̂′+(λ) + f−1(λ)

]
e−2ig+(λ),

N̂
(12)
up = −δ2(λ)F 2

−(λ)
[
ρ̂′−(λ̄)− f−1(λ̄)

]
e−2ig+(λ),

and N
(12)
up = δ2(λ)F 2

+(λ)
[
ρ̂′+(λ̄) + f−1(λ̄)

]
e2ig+(λ).

Then, we have the model problem

(5.17) N (4)(x, t, λ =
(
I+O(t−1/2)

)
Nmod(x, t, λ),

where Nmod(x, t, λ) satisfies the following zero-gap model problem RHmod:

(5.18) Nmod
+ (x, t, λ) = Nmod

− (x, t, λ)Jmod
N , λ ∈ γg ∪ γ̄g,

with constant jump matrix

(5.19) Jmod
N =

(
0 −ieiδ

−ie−iδ 0

)
.

From above, q(x, t) in terms of the solution of the basic Riemann-Hilbert problem
can be derived by q(x, t) = 2i(Nmod)12(x, t), which yields the plane wave (5.10). �

Remark 5.3. For the structure of the Dirichlet to Neumann map, equation (5.10)
satisfies the assumption (1.8a)-(1.8b). For the case of x = 0, the restrictions (a) and
(b) are not needed to further consider the Riemann-Hilbert data for researching the
asymptotic approach. In fact, this case yields γ = γg, which implies that it is not
needed to deform the contour γg ∪ γ̄g.

Theorem 5.4 (Modulated elliptic wave region, 4t

(
b−
√

2a2
(
a2

4 − b
))

<x<4tb).

Let all conditions of Theorem 4.1 and assumptions (a), (b), (c) be satisfied.

In the region 4t

(
b−

√
2a2

(
a2

4 − b
))

< x < 4tb, the asymptotics, as t → +∞,

of the solution q(x, t) for the initial value problem of (1.3a)-(1.3d) is described by
a modulated elliptic wave:

q(x, t) =

[√
a2
(
a2

4
− b

)
+ Im d(ξ)

]
(5.20)

× eiδ
θ3

[
Bgt
2π + BωΔ

2π − U−(ξ) +
τ
2 + 1

2

]
θ3
[
U+(ξ)− τ

2 − 1
2

]
θ3

[
Bgt
2π + BωΔ

2π − U+(ξ) +
τ
2 + 1

2

]
θ3
[
U−(ξ)− τ

2 − 1
2

]
× e2ig(∞,ξ)−2iφ(ξ) +O

(
t−

1
2

)
, t → +∞,

where Bg, Δ, and Bω are functions with respect to the variables ξ = x
4t , respectively,

and U±(ξ) = U0 ± U(∞) with U(λ) = 1
c

∫ λ

E
dλ′

ω(λ′) and E = −b+ iD. Moreover,

(5.21) θ3(z) =
∑
z∈Z

eπiτm
2+2πimz
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is the theta function of invariant τ = τ (ξ) introduced by τ = 2
c

∫ d

E
dλ′

ω(λ′) . The

function g = g(∞, ξ) is given by

g(∞, ξ) = t

(
2

(∫ ∞

E

+

∫ ∞

Ē

))[
(λ′ − μ(ξ))

√
(λ′ − d(ξ))(λ′ − d̄(ξ))

(λ′ − E)(λ′ − Ē)
− (λ′ + ξ)

]
dλ′

+ 2t

(
a4

4
− a2b− b2 + 2ξb

)
,

(5.22)

where d(ξ) = d1 + id2, c1 = −(b + ξ)d1 + bξ + 1
2

(
d22 +D2

)
, c2 = ξ − d1 + b,

c0 � c0(ξ, d1, d2) = −
∫ d
d̄ (λ

3+c2λ
2+c1λ) dλ

ω(λ)∫ d
d̄

dλ
ω(λ)

∈ R, with d1 = d1(ξ) = −μ − ξ − b,

d2 = d2(ξ) =
√
D2 − 2(b+ μ)(ξ + μ), and μ(ξ) =

I1

(
−μ−ξ−b,

√
D2−2(b+μ)(ξ+μ)

)

I0

(
−μ−ξ−b,

√
D2−2(b+μ)(ξ+μ)

) ,

with

I0(d1, d2) =
∫ d1+id2

d1−id2

√
(λ′ − d1)2 + d2

(λ′ + b)2
+D2dλ′,

I1(d1, d2) =
∫ d1+id2

d1−id2

λ′

√
(λ′ − d1)2 + d2

(λ′ + b)2
+D2dλ′.

The phase shift φ(ξ) is determined as follows:

(5.23) φ(ξ) =
1

2π

∫
Γd∪Γd̄

[λ′ + e1(ξ)− ω∞(ξ)] log
[
h(λ′)eiδδ−2(λ′, ξ)

][
(λ′ − E)(λ′ − Ē)(λ′ − d(ξ))(λ′ − d̄(ξ))

] 1
2

dλ′,

where h(λ), δ(λ, ξ) are given by

h(λ) =

⎧⎨⎩ iλf̂(λ), λ ∈ γd,

− iλf̂−1(λ̄), λ ∈ γd,
with γ0 ∪ γ̄0 = γd ∪ γd ∪ [d, d̄],(5.24)

δ(λ, ξ) = exp

{
1

2πi

∫ μ(ξ)

−∞

log
[
1 + λ′|r(λ′) + c(λ′)|2

]
λ′ − λ

dλ′

}
,(5.25)

and e1(ξ) = −E+Ē+d+d̄
2 , ω∞ =

∫∞
E

[
z2+e1z+e0

ω(z) − 1
]
dz − E.

Proof. In the region 4t

(
b−

√
2a2

(
a2

4 − b
))

< x < 4tb, by considering the sum of

two Abelian integrals, one can rewrite g(λ, ξ) and g(∞, ξ) as follows:

g(λ, ξ) = 2

(∫ λ

E

+

∫ λ

Ē

)
λ′3 + c2λ

′2 + c1λ
′ + c0√

(λ′ − E)(λ′ − Ē)(λ′ − d(ξ))(λ′ − d̄(ξ))
dλ′,

g(∞, ξ) =

t

[
2

(∫ ∞

E

+

∫ ∞

Ē

)(
λ′3 + c2λ

′2 + c1λ
′ + c0√

(λ′ − E)(λ′ − Ē)(λ′ − d(ξ))(λ′ − d̄(ξ))
− λ′ − ξ

)
dλ′

]
+ 2t(D2 − b2 + 2bξ).



ASYMPTOTIC BEHAVIOR FOR THE GERDJIKOV-IVANOV EQUATION 1727

The same transformations can be made as follows:

(5.26) N(x, t, λ) � N (1)(x, t, λ) � N (2)(x, t, λ) � N (3)(x, t, λ),

which are similar to ones for the plane wave region, but λ0 = μ(ξ), where μ(ξ) is
the real stationary point of g(λ). Following in the same way, we have the following
model problem:

Nmod
+ (x, t, λ) = Nmod

− (x, t, λ)Jmod
N (x, t, λ), λ ∈ γd ∪ γd ∪ [d, d̄],(5.27a)

Nmod(x, t, λ) = I+ O

(
1

λ

)
, λ → ∞.(5.27b)

The jump matrix reads

(5.27c) Jmod
N (x, t, λ) =

⎧⎪⎪⎨⎪⎪⎩
(

0 −ieiδ

−ie−iδ 0

)
, λ ∈ γd ∪ γd,(

e−itBg−iΔBω 0
0 eitBg+iΔBω

)
, λ ∈ [d, d̄],

where Bg, Δ and Bω are functions with respect to the variables ξ = x
4t . By using

elliptic theta functions, one can solve the model problem. In order to find such a
solution, let us consider the following elliptic Riemann surface of

ω(λ) =
√
(λ− E)(λ− Ē)(λ− d)(λ− d̄),

where d = d(ξ) and d̄ = d̄(ξ). Following the same method as in the plane wave
region, one has q(x, t) = 2i(Nmod)12(x, t), where

2i(Nmod)12(x, t, λ)

= [D + d2(ξ)]e
iδ
θ3

[
Bgt
2π + BωΔ

2π + U(∞)− U0 − τ
2 − 1

2

]
θ3[U(∞) + U0 +

τ
2 + 1

2 ]

θ3

[
Bgt
2π + BωΔ

2π − U(∞) + U0 +
τ
2 + 1

2

]
θ3[U(∞) + U0 +

τ
2 + 1

2 ]
,

which yields the modulated elliptic wave (5.20). �

Remark 5.5. In this paper, we study the long-time asymptotics of the solution to
the GI equation (1.2) with time-periodic boundary condition. For ξ = ξ0, one has
Im d(ξ0) = 0. Then gelliptic(∞, ξ0) = gplanewave(∞, ξ0), and θ(·, ξ0) = 1. It provides
matching at the interface between the plane wave (5.10) and the elliptic wave (5.20)
as ξ = ξ0.

Suppose that ξ0 = 0, i.e., b2 = a4

2 −2a2b. Then the plane wave region disappears,
and the asymptotic behavior of the solution is only described by elliptic functions
with modulated parameter.
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