Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On concentration properties of disordered Hamiltonians


Authors: Antonio Auffinger and Wei-Kuo Chen
Journal: Proc. Amer. Math. Soc. 146 (2018), 1807-1815
MSC (2010): Primary 60K35, 60G15, 82B44
DOI: https://doi.org/10.1090/proc/13864
Published electronically: January 12, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary approach to concentration of disordered Hamiltonians. Assuming differentiability of the limiting free energy $ F$ with respect to the inverse temperature $ \beta $, we show that the Hamiltonian concentrates around the energy level $ F'(\beta )$ under the free energy and Gibbs average.


References [Enhancements On Off] (What's this?)

  • [1] Antonio Auffinger and Wei-Kuo Chen, Universality of chaos and ultrametricity in mixed $ p$-spin models, Comm. Pure Appl. Math. 69 (2016), no. 11, 2107-2130. MR 3552010, https://doi.org/10.1002/cpa.21617
  • [2] Sourav Chatterjee, Absence of replica symmetry breaking in the random field Ising model, Comm. Math. Phys. 337 (2015), no. 1, 93-102. MR 3324156, https://doi.org/10.1007/s00220-014-2269-5
  • [3] Wei-Kuo Chen and Dmitry Panchenko, Some examples of quenched self-averaging in models with Gaussian disorder, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 1, 243-258 (English, with English and French summaries). MR 3606741, https://doi.org/10.1214/15-AIHP715
  • [4] Stefano Ghirlanda and Francesco Guerra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A 31 (1998), no. 46, 9149-9155. MR 1662161, https://doi.org/10.1088/0305-4470/31/46/006
  • [5] Francesco Guerra and Fabio Lucio Toninelli, The thermodynamic limit in mean field spin glass models, Comm. Math. Phys. 230 (2002), no. 1, 71-79. MR 1930572, https://doi.org/10.1007/s00220-002-0699-y
  • [6] Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro, Spin glass theory and beyond, World Scientific Lecture Notes in Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1026102
  • [7] Dmitry Panchenko, The Ghirlanda-Guerra identities for mixed $ p$-spin model, C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 189-192 (English, with English and French summaries). MR 2600075, https://doi.org/10.1016/j.crma.2010.02.004
  • [8] Dmitry Panchenko, The Sherrington-Kirkpatrick model, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3052333
  • [9] G. Parisi, Infinite number of order parameters for spin-glasses. Phys. Rev. Lett., 43, 1754-1756 (1979)
  • [10] A. Wayne Roberts and Dale E. Varberg, Convex functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Pure and Applied Mathematics, Vol. 57. MR 0442824
  • [11] Michel Talagrand, The Parisi formula, Ann. of Math. (2) 163 (2006), no. 1, 221-263. MR 2195134, https://doi.org/10.4007/annals.2006.163.221
  • [12] M. Talagrand, Mean field models for spin glasses. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 55, Springer-Verlag, Berlin (2011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60K35, 60G15, 82B44

Retrieve articles in all journals with MSC (2010): 60K35, 60G15, 82B44


Additional Information

Antonio Auffinger
Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
Email: auffing@math.northwestern.edu

Wei-Kuo Chen
Affiliation: School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, Minnesota 55455
Email: wkchen@umn.edu

DOI: https://doi.org/10.1090/proc/13864
Received by editor(s): February 28, 2017
Received by editor(s) in revised form: June 17, 2017
Published electronically: January 12, 2018
Communicated by: Zhen-Qing Chen
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society