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ABSTRACT. We study the Beurling-Selberg problem of finding band-limited
L'-functions that lie below the indicator function of an Euclidean ball. We
compute the critical radius of the support of the Fourier transform for which
such construction can have a positive integral.

1. INTRODUCTION

For a given r > 0 we denote by B¢(r) the closed Euclidean ball in R? centered at
the origin with radius r > 0. We simply write B¢ when r = 1. Define the following
quantity:

(1.1) B(d,r) = sup /Rd F(x)dx,

F

where the supremum is taken among functions F' € L!(R?) such that:
(1) The Fourier transform of F(z),

Flo) = [ Pa)emeaa,

is supported in B4(r);
(2) F(x) < 1ga(z) for all z € R,
We call such a function 8(d,r)-admissible. A trivial observation is that F' = 0 is
B(d, r)-admissible, hence 3(d,r) > 0. Heuristically, such function F(z) should exist
and its mass should be close to vol(B?) when r is large. On the other hand, if r is
small, the mass of F'(x) should be close to zero and a critical r4 > 0 should exist
such that no function can beat the identically zero function for r» < r4. For this
reason we define
rq =inf{r > 0: B(d,r) > 0}

and it is this critical radius that we want to study in this paper.

The problem stated in (ILI)) has its origins with Beurling and Selberg which
studied one-sided band-limited approximations for many different functions other
than indicator functions with the purpose of using them to derive sharp estimates in
analytic number theory (see the introduction of [9] for a nice first view). Although
Selberg was one of the first to study the higher dimensional problem, it was first
systematically analyzed by Holt and Vaaler in the remarkable paper [7]. They were
able to construct non-zero 3(d,r)-admissible functions for any r > 0 and, most
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importantly, they established a fascinating connection of the d-dimensional problem
with the theory of Hilbert spaces of entire functions contructed by de Branges (see
[1). They reduced the higher dimensional problem, after a radialization argument,
to a weighted one-dimensional problem where the weight was given by a special
function of Hermite-Biehler class, which in turn allowed them to use the machinery
of homogeneous de Branges spaces to attack the problem. This new connection
established by Holt and Vaaler started a new way of thinking about problems of
this kind and ultimately inspired Littmann to completely solve the one-dimensional
problem in [§] by using a cleaver argument based on a special structure of certain
de Branges spaces. Finally, using the ideas introduced by Littmann in [g], the
problem of minorizing the indicator function of a symmetric interval was completely
solved in [2] in the de Branges space setting.

This paper was mainly motivated by the related problem where balls are sub-
stituted by boxes Q(r) = [~r,7]% and where practically nothing is known (see
[B]). The box minorant problem is harder since it is a truly higher dimensional
problem, whereas for the ball we can make radial reductions that transform it in
a one-dimensional problem. Another interesting similar question, connected with
upper bounds for sphere packings in R?, is studied in [6] (see also [4]), where the
author constructs a minorant F(x) < 1ga(x) with Fourier transform non-negative
and supported in B (j, /2,1) and such that it maximizes a (0) among all functions
with these properties!!

1.1. Main result. For any given parameter v > —1 let J, denote the classical
Bessel function of the first kind. We also denote by {j,n}n>1 its positive zeros
listed in increasing order. The Bessel function of the first kind J,, can be defined in
a number of ways. We follow the treatise [L0] and define it for v > —1 and R(z) > 0
by

o L (1) (2)2
(1.2) Jy(2) = (5) ;ﬁ%
For these values of v, one can check that on the half space {R(z) > 0} the Bessel
functions defined by (L.2) satisfy the differential equation

2J(2) 4 20 (2) + (22 — v} J,(2) = 0,
and that the following recursion relations hold:

Ju-1(2) = Ju11(2) = 2J,(2),

Jo—1(2) + Jug1(2) = ?J,,(z).

In particular we have J_;/5(z) = \/g cos(z) and Jy/o(2) = \/g sin(z), which
implies that j_1/91 = /2 and j; /21 = m. The following is the main result of this
paper.

Theorem 1. We have .

_Jdj2-11

i

Td

Tt is not the intention of this paper to give a survey of related articles on the subject, which is
very rich and full of subtleties; the purpose here is to draw a straight line between what we have
so far and what we want to show.
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Moreover, if jqjp—1,1 < 71 < jase,1 then

_ (2/T)d Yrr
A= B T

wrdg o1 (mr)

where Ypp = — Taaler) > 0. In particular we have
29d ; ; 2
T2 Jdj2—1,1 Jd/2—1,1
ﬂ(d,’f')m<r— . )-’—Od(T—T
Jd/2—1,1

for r close to

Remarks.

(1) Tt is known that j,1 = v + 1.855757v/3 + O(v=1/3) as v — oo (see [5,
Section 1.3]). This implies that rq = 4=+ L8357 q1/3 4 O(d~1/3) as d — oo.
Heuristically, this means that if one wishes to non-trivially minorate (that
is, beat the zero function) the indicator function of a ball of radius of order
V/d, then one needs frequencies of order at least v/d.

(2) The first 5 values of r4 rounded up to 4 significant digits are the following:
r1 =1/2, ro =0.7655, r3 = 1, ry = 1.220 and r5 = 1.431.

(3) Explicit expressions for §(d, r) can also be tracked from [2, Theorem 5], but
they involve sums of Bessel functions evaluated at Bessel zeros that can be
quite complicated to grasp. Moreover, this is the case only when 7r is a
zero of Jgq/o_1(2) or Jg2(z). If that is not the case, then writing a formula
for B(d,r) becomes pointless, since it will involve zeros of more complicated
functions related to Bessel functions and this is not the purpose here.

2. PrRoOF oF THEOREM [

Step 1. The first step is to reduce the higher dimensional by considering only radial
functions. We can apply [7, Lemmas 18 and 19] to reduce the d-dimensional problem
to the following weighted one-dimensional problem:

(21) st.r) = E - sup [ payel s

where [S9~1| denotes the surface area of the unit sphere in R¢ and the supremum
is taken among functions F € L!(R, |z|¢~1dz) such that:

(1) F(x) is the restriction to the real axis of an even entire function F(z) of
exponential type at most 27r, that is,

|F(z)] < ce*™ml - 2 e,

for some constant C' > 0;
(2) F(z) <1[—13(z) for all z € R.

In this framework the problem becomes treatable with the theory of
de Branges spaces of entire functions. The latter generalize the well-known Paley-
Wiener spaces by using weighted norms given by Hermite-Biehler functions. In
what follows we briefly review the construction of a special family of de Branges
spaces called homogeneous spaces which were introduced by de Branges (see [I Sec-
tion 50] and [7, Section 5]). We refer to [T, Section 3] for a brief description of the
general theory and also to [I, Chapter 2] for the full theory.
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Step 2. Let v > —1 be a parameter and consider the real entire functions A, (z)
and B, (z) given by

s (0397 1)
Au(z) 7;71!(1/—%1)(1/—1—2)...(1/4—71) =Tw+1)(32) " Jule)
and
RS (1" (32" _ Ly
B.(2) Zn'(l/+1)(u+2) Grnrn DG ).
If we write

E,(z) = A,(z) —iB,(2),

then F,(z) is a Hermite-Biehler function, that is, it satisfies the following funda-
mental inequality:

B (2)] < [Ew(2)|

for all z € C with Im z > 0. It is also known that this function does not have real
zeros, that E(iy) € R for all real y (that is, B,(z) is odd and A, (z) is even), that
E,(z) is of bounded type in the upper-half plane (that is, log |E, (z)| has a positive
harmonic majorant in the upper-half plane) and E,(z) is of exponential type 1. We
also have that

e[+ < |By(2)] 7 < Claf

for all |z| > 1 and for some ¢, C' > 0. The homogeneous space H(E, ) is then defined
as the space of entire functions F(z) of exponential type at most 1 and such that?

/ |F(2))?|E, ()| "2 dz < oc.
R

Using standard asymptotic expansions for Bessel functions one can show that
Ay, B, ¢ H(E,). As a particular case, observing that E_; /5 = e~ we can deduce
that H(E_; ;) coincides with the Paley-Wiener space of square integrable entire
functions of exponential type at most 1.

These spaces are relevant to our problem since we have the following magical
identity:

(2.2) al,/R‘F(x)F‘Ey(l.)‘—le.:/R‘F(x)F ‘.’E|2U+1d1’

for each F € H(E,), where a,, = 22’71 T'(v+1)? /7. For our purposes we will need
an identity analogous of (2:2), but which allows us to compute integrals instead of
L?-norms. Tt can be derived as follows. Let F'(2) be an entire function of exponential
type at most 2 such that F(z) < 1j_4(x) for some t > 0 and F € L'(R, |z[***!dx).

Since G, (z) = (M)” belongs to H(FE,) for large n and it converges to 1

z/n
uniformly in compact sets as n — 0o, we have that 4G, (z)? — F(z) > 0 for all
real z (if n is large and even) and this function has exponential type at most 2.

This implies that 4G, (z)? — F(z) = H,(2)H,(z) for all z € C, for some entire

2 As a historical note, de Branges originally defined this space in another way but, in [7}, Lemma
16], the authors showed that this is an equivalent definition.
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function H,(z) of exponential type at most 1 (see [I, Theorem 13]). We conclude
that H,, € H(E,) and we obtain

/ F(2) |E, ()| 2z = a, / (4G, (2)? — [H, (2)2} |Ey ()| 2dx
R R
(2.3) ~ [ 146G @) = Ha @) Yol o

= / F(2)|z|* T dz.
R

Step 3. Taking v = d/2 — 1, we can apply the change of variables z — z/(7r)
in (ZI) and use identity (23] to reduce the problem of minorizing the indicator
function of an Euclidean ball to the following final form:

r d
B = SEIAG,, o),

where

Ag,, (ar) = sup / F(@)|Eajar(2)| 2da
F JR

and the supremum is taken among functions F' € L' (R, |Eq/>_1(z)|~?dx) such that:

(1) F(z) is the restriction to the real axis of an even entire function F(z) of

exponential type at most 2;

(2) F(z) < 1—rpqr(x) for all z € R.
The above problem was completely solved in [2]. By all the previous discussion
in Step 2, we can apply [2, Theorem 5 (i) and (iv)] to the function Eg/5_1(z) (it
actually can be applied to any E,(z)) to derive that mrq = ji/2—1,1. Moreover, if
Jajz—1,1 < 7T < jasa,1, then [2, Theorem 5 (iv)] also give us that

_ Ty
Ao M) = T T

mrdg o1 (mr)

TaraGer) > 0. A simple Taylor expansion leads to

where v, = —

Eaj2-1 (7r) = 7r(7r — jaja—1,1) + O(7r = jaja—1,1)°

and we finally obtain that

Bd,r) = n224 . Jaj2—1,1 2o (r— Jap-11\
ST Td—l‘gd—1| . d —
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