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Abstract. The vertex operator algebra structure of a strongly regular holo-
morphic vertex operator algebra V of central charge 24 is proved to be uniquely
determined by the Lie algebra structure of its weight one space V1 if V1 is a Lie
algebra of the type A12
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1. Introduction

The classification of holomorphic vertex operator algebras (VOAs) of central
charge 24 is one of the important problems in the theory of VOAs and conformal
field theories. In 1993, Schellekens [Sch] obtained a partial classification of holomor-
phic VOAs of central charge 24 and showed that there are 71 possible Lie algebra
structures for the weight one spaces of holomorphic VOAs of central charge 24 (see
also [EMS]). Recently, holomorphic VOAs of central charge 24 corresponding to all
71 Lie algebras in Schellekens’s list have been explicitly constructed (see [EMS],
[LS16], [LLin] and [SS]). To finish the classification of holomorphic VOAs of central
charge 24, it remains to show that there is a unique holomorphic VOA of central
charge 24 corresponding to each Lie algebra in Schellekens’s list. Motivated by the
fact that the unimodular lattices of rank 24 (Niemeier lattices) are determined by
their root systems, it is believed that the following conjecture is true.

Conjecture 1.1. The VOA structure of a strongly regular holomorphic VOA V of
central charge 24 is uniquely determined by its weight one Lie algebra V1.

Until now, Conjecture 1.1 has been verified in the following cases: (i) the weight
one Lie algebras of the 24 Niemeier lattice VOAs (24 cases) [DM04b]; (ii) A16

1,2 and

E8,2B8,1[LS1]; (iii) E6,3G
3
2,1, A6

2,3, and A5,3D4,3A
3
1,1 [LS4]; (iv) A8,3A

2
2,1 [LLin].

In this paper, we will consider 13 other Lie algebras in Schellekens’s list. More
precisely, we will prove the following result.
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Theorem 1.2. The structure of a strongly regular holomorphic VOA V of central
charge 24 is uniquely determined by its weight one Lie algebra V1 if V1 has the type

A12
1,4, B6

2,2, B4
3,2, B3

4,2, B2
6,2, B12,2, D2

4,2B
4
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4
1,1, D2

5,2A
2
3,1, D9,2A7,1, C4

4,1, or D6,2B
2
3,1C4,1.

The holomorphic VOAs in Theorem 1.2 can be obtained by applying Z2-orbifold
construction to Niemeier lattice VOAs and lifts of the (−1)-isometry of the lattices
[DGM]. To apply the “reverse orbifold construction” method proposed in [LS4],
there are two key steps. The first step is to find an appropriate semisimple element
h ∈ V1 such that the VOA obtained by applying Z2-orbifold construction to V
and the inner automorphism σh is isomorphic to a Niemeier lattice VOA VN (see
Lemma 4.7). Since σh acts trivially on the weight one subspace V1 in our cases,
the non-trivial part is to show that σh has order 2 on V (cf. Lemma 4.5). We
also show a technical lemma (see Lemma 4.3), which helps us to determine the
lowest conformal weight of the irreducible twisted module and greatly reduces the
amount of calculations in our cases. The second main step is to show that any
order 2 automorphism μ of the Niemeier lattice VOA satisfying (VN )μ1

∼= (V1)
σh is

conjugate to θ (cf. Eq. (2.2)). Although such kinds of results are not easy to show
in general, we manage to find an efficient way for proving them in our cases (see
Theorems 3.5 and 3.6).

The following is the organization of the paper. In Section 2, we recall some
facts about orbifold construction associated with inner automorphisms and reverse
orbifold construction. We also prove several lemmas which will be used to determine
the lowest conformal weights of twisted modules. In Section 3, we determine the
conjugacy class of the automorphism θ of the Niemeier lattice VOA. In Section 4,
we determine the appropriate semisimple element h ∈ V1 and then prove our main
theorem.

2. Prelimaries

2.1. Basic facts about VOAs. In this subsection, we recall some basic facts
about VOAs from [DM04a,DM04b,FLM]. A VOA V is called strongly regular if V
is self-dual, rational, C2-cofinite and of CFT-type (cf. [DM04a,DM04b]). We call
a VOA V a holomorphic VOA if V is rational and has a unique irreducible module
up to isomorphisms.

Let V =
⊕∞

n=0 Vn be a strongly regular VOA. Here Vn is the subspace of V
of conformal weight n ∈ Z≥0. It then follows that the weight one space V1 is
a Lie algebra with respect to the bracket [u, v] = u(0)v for any u, v ∈ V1, where
u(n) : V → V denotes the n-th product of u in V for each n ∈ Z (see [DM04b]).
Moreover, for any simple Lie subalgebra s ⊂ V1, the subVOA of V generated by
s is isomorphic to the affine VOA Ls(k, 0) for some positive integer k [DM04b].
We then call s a simple Lie subalgebra of V1 with level k and write s = sk ⊂ V1.
Assume further that V is a holomorphic VOA of central charge 24; we then have
the following result.

Proposition 2.1 ([DM04a, Theorem 3, (1.1)]). Let V be a holomorphic VOA
of central charge 24. If the Lie algebra V1 is neither {0} nor abelian, then V1 is
semisimple and the conformal vectors of V and the subVOA generated by V1 are the
same. If V1 is semisimple, then for any simple ideal s of V1 with the level k ∈ Z>0,
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the identity h∨/k = (dimV1 − 24)/24 holds, where h∨ is the dual Coxeter number
of s.

It is also known [DM04b] that there exists a unique symmetric invariant bilinear
form 〈 · | · 〉 on V such that 〈1|1〉 = −1, where 1 is the vacuum vector of V .
Furthermore, for each simple Lie subalgebra s of V1 with the level k, we have
〈·|·〉|s = k(·|·)s, where (·|·)s denotes the normalized Killing form of s (see [LS16]).

Let R be a subVOA of V . We consider the commutant ComV (R) of R in V ,
that is, ComV (R) = {v ∈ V |w(n)v = 0, w ∈ R, n ≥ 0}.

Lemma 2.2 ([KM15, Theorem 2]). Suppose that both R and ComV (R) are strongly
regular VOAs and satisfy ComV (ComV (R)) = R. Then any irreducible R-module
is embedded in some irreducible V -module as an R-submodule.

We also need the following result.

Lemma 2.3 ([HKL, Theorem 3.5]). Let T be a C2-cofinite, simple VOA of CFT-
type and S a full sub VOA of T . Assume that S is strongly regular and that
the lowest conformal weight of any irreducible S-module is positive except for the
vacuum module of S. Then T is rational.

2.2. Orbifold construction associated with inner automorphisms. In this
subsection, we recall from [LS16] some formulas about orbifold construction of
holomorphic VOAs of central charge 24.

Let V be a strongly regular holomorphic VOA of central charge 24 and g an
automorphism of V of prime order p. We then know that there is a unique gr-
twisted V -module V T(gr) for each 1 ≤ r ≤ p−1 [DLM00, Theorem 10.3]. Moreover,
the fixed point subspace V g of V with respect to g is a subVOA of V . The weight
n subspace of V g coincides with V g

n = Vn ∩V g (n ≥ 0). We say that the pair (V, g)

satisfies the orbifold condition if there exists a unique simple VOA Ṽ such that V g is

embedded in Ṽ and Ṽ ∼= V g⊕
⊕p−1

r=1 V
T(gr)Z as a V g-module, where V T(gr)Z is the

subspace of V T(gr) of integral conformal weights (cf. [EMS]). If (V, g) satisfies the

orbifold condition, the VOA Ṽ which satisfies the above assumptions is strongly
regular and holomorphic. We refer to Ṽ as the VOA obtained by applying the
Zp-orbifold construction to V and g, and we denote the VOA Ṽ by Ṽ (g).

Suppose that the Lie algebra V1 is semisimple. Then, V1 is isomorphic to g =
g(1),k1

⊕· · ·⊕g(t),kt
for some simple ideals g(1), . . . , g(t) with levels k1, . . . , kt ∈ Z>0,

respectively. Fix a Cartan subalgebra h of V1, and let h be a semisimple element
in h such that:

(i) Spec(h(0)) ⊂ (1/2)Z and Spec(h(0)) �⊂ Z;
(ii) 〈h|h〉 ∈ Z;
(iii) the lowest conformal weight of V (h) is positive.

Then the inner automorphism σh := exp(−2π
√
−1h(0)) of V is of order 2.

Theorem 2.4 ([LS16]). Let V and h be as above. Then (V, σh) satisfies the orbifold
condition.

Moreover, we have the following result.

Proposition 2.5 ([Mo] and [LS16]). Let V , h be as above. Then we have

dimV1 + dim Ṽ (σh)1 = 3dimV σh
1 + 24(1− dimV T(σh)1/2).
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In particular, if V σh
1 = V1 and V T(σh)1/2 = 0, then we have

(2.1) dim Ṽ (σh)1 = 2dimV1 + 24.

2.3. Reverse orbifold construction of holomorphic VOAs. In this subsec-
tion, we recall from [LS4] the method called “reverse orbifold construction”. Let
V be a strongly regular holomorphic VOA and let g be an automorphism of V of
prime order p such that (V, g) satisfies the orbifold condition. Let

W = Ṽ (g) = V g ⊕
p−1⊕
r=1

V T(gr)Z

be the VOA obtained by applying the Zp-orbifold construction to V and g. Define

an automorphism a = aV,g of W by a|V g = 1 and a|V T(gr)Z = e2π
√
−1r/p (1 ≤

r ≤ p− 1). It then follows that the pair (W,a) satisfies the orbifold condition and

W̃ (a) ∼= V (see [EMS]).
Let g be a semisimple Lie algebra and let h be a semisimple element of g. Assume

that there exists a strongly regular holomorphic VOA U such that for any strongly
regular holomorphic VOA V satisfying V1

∼= g, the following conditions hold:

(a) σh has prime order p on V and the pair (V, σh) satisfies the orbifold condi-
tion;

(b) Ṽ (σh) ∼= U ;
(c) for any automorphism g of U of order p, if Ug

1
∼= gσh , then g is conjugate

to the automorphism aV,σh
of Ṽ (σh) ∼= U in Aut (U).

Then we have the following result which was essentially obtained in [LS4].

Theorem 2.6. The structure of a strongly regular holomorphic VOA V such that
V1

∼= g is unique up to isomorphisms.

Proof. Let V and W be strongly regular holomorphic VOAs such that V1
∼= g ∼=

W1. By condition (b), we see that Ṽ (σh) ∼= U ∼= W̃ (σh). Let a and b be the

automorphisms of U induced from the automorphisms aV,σh
and aW,σh

of Ṽ (σh)

and W̃ (σh), respectively. It then follows from (c) that a is conjugate to b. By
applying the Zp-orbifold construction to (U, a) and (U, b), we see that V ∼= W . �

Remark 2.7. Although using condition (c) in Theorem 2.6 is sufficient for our pur-
pose in this paper, it is usually too strong. Note that there exist automorphisms
g and h of a lattice VOA VL such that (VL)

g
1
∼= (VL)

h
1 as Lie algebras but g and h

are not conjugate in Aut (VL) (see for example [LS3, p. 1583]). In this situation,
we may replace (c) by a weaker condition

(c′) any automorphism g of U of order p such that the pair (U, g) satisfies the

orbifold condition and Ũ(g)1 ∼= g is conjugate to aU,g .

Then Theorem 2.6 still holds.

In Section 4, we will study the case that V is a holomorphic VOA of central
charge 24 with the Lie algebra V1 = g, where g is one of Lie algebras in Table 1. In
this case, the VOA U will be the lattice VOA VN associated with some Niemeier
lattice N . To verify condition (b) in this case, we will need the following result,
which can be deduced from [DM04b, Theorem 3].
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Proposition 2.8. Let N be a Niemeier lattice and let U be a strongly regular
holomorphic VOA of central charge 24 such that U1

∼= (VN )1. Then the vertex
operator algebra U is isomorphic to the lattice VOA VN .

We next recall some facts about automorphisms of lattice VOAs. Let L be
a positive definite even lattice. Set h = C ⊗Z L and view h as an abelian Lie

algebra equipped with a non-degenerate symmetric bilinear form. Let ĥ be the
corresponding Heisenberg Lie algebra and let M(1) be the highest weight module of

ĥ with the highest weight 0 (cf. [FLM]). Then the lattice VOA VL associated to L is
defined on the vector spaceM(1)⊗C[L], where C[L] = span {ex|x ∈ L} (cf. [FLM]).
In particular, VL is spanned by the vectors of the form h1(−n1) · · ·hk(−nk) ⊗ ex,
where h1, . . . , hk ∈ h, x ∈ L; and n1, . . . , nk are positive integers (cf. [FLM]). Let
θ : VL → VL be the linear map determined by

h1(−n1) · · ·hk(−nk)⊗ ex �→ (−1)kh1(−n1) · · ·hk(−nk)⊗ e−x.(2.2)

It was proved in [FLM] that θ is an automorphism of VL of order 2. Notice that θ
is a lift of the (−1)-isometry of L (cf. [DGH]).

To determine the conjugacy class of the automorphism θ, we also need the fol-
lowing result.

Proposition 2.9 ([DGH, Theorem D.6]). Any lifts of the (−1)-isometry of L are
conjugate under Aut(VL).

3. Uniqueness of automorphisms of Lie algebras

3.1. Automorphisms of Lie algebras. In this subsection, we recall some facts
about automorphisms of simple Lie algebras from [Hel78] and [DGM]. Let s be
a finite-dimensional simple Lie algebra of rank n with a Cartan subalgebra h of
s. For automorphisms g and g′ of s, we write g ∼ g′ if g is conjugate to g′ in
Aut (s). Let [x] denote the maximum integer less than or equal to a real number
x. The following proposition can be found in [Hel78, Theorem 6.1, TABLE II and
pp. 513–515].

Proposition 3.1. Let σ1 and σ2 be automorphisms of s of order 2. Then σ1 ∼
σ2 if and only if the Lie algebra sσ1 is isomorphic to sσ2 . Moreover, if σ is an
automorphism of s of order 2 and sσ is semisimple, then the fixed point Lie algebra
sσ is given by the following:
(1) (A2n)

σ ∼= Bn (n ≥ 1), (2) (A2n+1)
σ ∼= Cn+1 or Dn+1 (n ≥ 2), (3) (Bn)

σ ∼=
Bn−p ⊕Dp (n ≥ 3, 2 ≤ p ≤ n), (4) (Cn)

σ ∼= Cp ⊕ Cn−p (n ≥ 2, 1 ≤ p ≤ [n/2]),
(5) (Dn)

σ ∼= Dp⊕Dn−p (n ≥ 4, 2 ≤ p ≤ [n/2]) and (Dn)
σ ∼= Bp⊕Bn−p−1 (n ≥ 3,

0 ≤ p ≤ [(n− 1)/2]), (6) (E6)
σ ∼= F4, C4 or A1 ⊕A5, (7) (E7)

σ ∼= A7 or A1 ⊕D6,
(8) (E8)

σ ∼= D8 or A1 ⊕ E7, (9) (F4)
σ ∼= B4 or A1 ⊕ C3, (10) (G2)

σ ∼= A1 ⊕A1.

Let θ ∈ Aut(s) be a lift of the (−1)-automorphism of h. Then we have

Proposition 3.2 (cf. [DGM]). If s is simply laced, then the fixed point Lie algebra
sθ is given by the following:
(1) (A2n)

θ ∼= Bn, (2) (A2n+1)
θ ∼= Dn+1, (3) (D2n)

θ ∼= D2
n, (4) (D2n+1)

θ ∼= B2
n,

(5) (E6)
θ ∼= C4, (6) (E7)

θ ∼= A7, (7) (E8)
θ ∼= D8.
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3.2. Uniqueness of automorphisms of Lie algebras. In this subsection, we
will prove that the conjugacy class of the automorphism θ of the Niemeier lattice
VOA is uniquely determined by the Lie algebra structure of the fixed-point weight
one subspace. This will be used to verify condition (c) in Subsection 2.3 in the
proof of Theorem 1.2.

Let V be a strongly regular simple VOA and let g be an automorphism of V of
order 2. Assume that the Lie algebra V1 is semisimple and let V1 =

⊕p
i=1 s(i),�i

be the decomposition of V1 into the sum of simple ideals s(1), . . . , s(p) with levels
�1, . . . , �p, respectively. Then g acts on {s(i) | 1 ≤ i ≤ p} as a permutation. Without
loss of generality, we may assume that there exists a non-negative integer q such
that 2q ≤ p, g(s(i)) = s(i+q) if 1 ≤ i ≤ q, g(s(i)) = s(i−q) if q + 1 ≤ i ≤ 2q, and
g(s(i)) = s(i) if 2q+1 ≤ i ≤ p. The following result can be established by the same
argument as in [LS4].

Proposition 3.3 (cf. [LS4, Proposition 3.7]). The fixed point Lie algebra V g
1 is

isomorphic to a sum of ideals
q⊕

i=1

(s(i) ⊕ s(i+q))
g ⊕

p⊕
i=2q+1

s
g
(i).

For any 1 ≤ i ≤ q, we have �i = �i+q. In addition, the Lie subalgebra (s(i)⊕s(i+q))
g

is a simple ideal of V g
1 isomorphic to s(i) and its level is 2�i.

Let f be a semisimple Lie algebra with the decomposition f =
⊕t

i=1 f(j) into

simple ideals. Let σ be an automorphism of f of order 2 and fσ =
⊕s

i=1 g(i) the
decomposition of fσ into simple ideals.

Corollary 3.4. If f(j) �∼= g(i) for all 1 ≤ j ≤ t and 1 ≤ i ≤ s, then fσ decomposes

into the sum of ideals fσ =
⊕t

j=1 f
σ
(j).

Proof. Let V =
⊗t

j=1 Lfj (1, 0). It then follows that σ induces an order 2 automor-

phism g of V such that g|V1
= σ. Since V is a strongly regular VOA and V1

∼= f,
we can get the result by Proposition 3.3. �

We are now ready to describe our main result in this subsection. We consider a
pair of Lie algebras (g, f) as in Table 1.

Table 1. Lie algebras (g, f).

Cases g f

(A) (n|12) B
12/n
n,2 A

12/n
2n,1

(B) (n|4) D
4/n
2n,2B

8/n
n,1 A

4/n
4n−1,1D

4/n
2n+1,1

(C) (n|4) D
4/n
2n+1,2A

4/n
2n−1,1 A

4/n
4n+1,1Xn,1 (X1 = D4, X2 = D6, X4 = E7)

(D) C4
4,1 E4

6,1

(E) D6,2B
2
3,1C4,1 A11,1D7,1E6,1

Here n|N denotes the condition that the positive integer n divides N . We also use
the identifications D2,k = A2

1,k, D3,k = A3,k, and B1,k = A1,2k.

The following is the main result of this subsection.
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Theorem 3.5. Let (g, f) be a pair of semisimple Lie algebras listed in Table 1.
Then any automorphism σ of f of order 2 such that fσ ∼= g is conjugate to θ in
Aut (f).

Proof. By using Corollary 3.4, we see that fσ =
⊕t

j=1 f
σ
(j). We prove the assertion

using case-by-case analysis.

(A) Let (g, f) = (B
12/n
n,2 , A

12/n
2n,1 ), where n ∈ Z>0 and n|12. It then follows by

Propositions 3.1 and 3.2 that Aσ
2n

∼= Bn and σ is conjugate to θ.

(B) Let (g, f) = (D
4/n
2n,2B

8/n
n,1 , A

4/n
4n−1,1D

4/n
2n+1,1), where n ∈ Z>0 and n|4. If n = 1,

it follows that g = A16
1,2 and f = D8

3 = A8
3. By Propositions 3.1 and 3.2, we

have fσ ∼= A16
1,2 and σ ∼ θ. Suppose that n = 2 or 4. By Proposition 3.1, we

see that Dσ
2n+1

∼= B2
n and that σ|D2n+1

is unique up to conjugate. Therefore,

(Aσ
4n−1)

4/n ∼= D
4/n
2n , and σ|A4n−1

is unique up to conjugate. Finally, we have σ ∼ θ
by Proposition 3.2.

(C) Let (g, f) = (D
4/n
2n+1,2A

4/n
2n−1,1, A

4/n
4n+1,1Xn,1), where n ∈ Z>0, n|4, X1 = D4,

X2 = D6, and X4 = E7. It then follows that Aσ
4n+1

∼= D2n+1 and σ|A4n+1
∼ θ.

Moreover, Xσ
n
∼= A

4/n
2n−1, and σ ∼ θ by Propositions 3.1 and 3.2.

(D) Let (g, f) = (C4
4,1, E

4
6,1). In a similar way, we see that Eσ

6 = C4 and σ|E6
∼ θ.

Hence, σ is conjugate to θ.
(E) Let (g, f) = (D6,2B

2
3,1C4,1, A11,1D7,1E6,1). By Proposition 3.1, we see that

Aσ
11

∼= D6 and σ|A11
is conjugate to θ. Similarly, Eσ

6
∼= C4 and σ|E6

∼ θ. Therefore,
we have Dσ

7
∼= B2

3 , and hence σ|D7
∼ θ. Thus, σ is conjugate to θ. �

Combining Proposition 2.9 and Theorem 3.5, we immediately obtain the second
main result in this subsection.

Theorem 3.6. Let (g, f) be one of the pairs of semisimple Lie algebras listed in
Table 1, let N(f) be a Niemeier lattice such that (VN(f))1 = f, and let θ be the
automorphism of VN(f) defined above. Then any automorphism μ of VN(f) of order
2 such that (VN(f))

μ
1
∼= g is conjugate to θ under Aut (VN(f)).

4. Uniqueness of holomorphic VOAs of central charge 24

4.1. Conformal weights of twisted modules of affine VOAs. To apply the
“reverse orbifold construction” method on a holomorphic VOA V , we need to choose
an appropriate semisimple element h ∈ V1. One of the restrictions on h concerns
the conformal weights of the irreducible σh-twisted V -modules. In this subsection,
we will prove some results about conformal weights of σh-twisted V -modules.

First, we recall some facts about simple Lie algebras. Let s be a finite-dimensional
simple Lie algebra and let h be a Cartan subalgebra of s with the simple roots
α1, . . . , αn and fundamental weights �1, . . . , �n labelled as in [Bou]. The highest
root of s is denoted by θ0. Let (·|·) be the normalized Killing form of s so that
(α|α) = 2 for any long root α. We identify h and h∗ via (·|·). A vector v ∈ s has
s-weight λ ∈ h if [x, v] = (x|λ)v for any x ∈ h, where [·, ·] is the Lie bracket of s.
The set of the dominant integral weights of s is denoted by P+(s). For any positive
integer k, we denote by P+(s, k) = {λ ∈ P+(s) | (λ|θ0) ≤ k} the set of all dominant
integral weights of s with the level k.

For a dominant integral weight λ of s, let L(λ) be the irreducible s-module with
highest weight λ. We denote by Π(λ) the set of all weights of L(λ). Let i be a node
of the Dynkin diagram of s.
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Lemma 4.1. (1) If s is of type D2n, then min{(�i|μ) |μ ∈ Π(λ)} = −(�i|λ).
(2) If i is fixed by any diagram automorphism of the Dynkin diagram of s, then
min{(�i|μ) |μ ∈ Π(λ)} = −(�i|λ).

Proof. Let w0 be the longest element of the Weyl group of s. Since the lowest weight
of L(λ) is w0(λ) and �i is a dominant weight, it follows that
min{(�i|μ) |μ ∈ Π(λ)} = (�i|w0(λ)). In the case that s is of type D2n, it is
known that w0 is equal to −1 (see [Hum90]), which shows (1). Suppose that i is
fixed by any diagram automorphism of s. We see that the automorphism −w0 is
(the standard lift of) a diagram automorphism as it permutes positive simple roots
of s and preserves the inner product. Since w0 is an involution, it follows that
(�i|w0(λ)) = (w0(�i)|λ) = −(�i|λ). Thus, we obtain (2), as desired. �

We next recall some facts about affine VOAs. Let k be a positive integer and let
Ls(k, 0) be the affine VOA associated with s and with level k. It is known [FZ92]
that Ls(k, 0) is a strongly regular VOA and the set of all irreducible modules over
Ls(k, 0) up to isomorphisms is given by {Ls(k, λ) |λ ∈ P+(s, k)}, where Ls(k, λ) is
the irreducible Ls(k, 0)-module of s-weight λ.

Consider the VOA W =
⊗t

i=1 Lg(i)
(ki, 0), where k1, . . . , kt are positive inte-

gers. Then any irreducible W -module is isomorphic to
⊗t

i=1 Lg(i)
(ki, λi) with

λi ∈ P+(g(i), ki) for each 1 ≤ i ≤ t. Let h = (h1, h2, . . . , ht) be a semisimple ele-
ment of W1 such that (h|α) ≥ −1 for any root α of W1 and the spectrum Spec(h(0))
of h(0) : W → W is contained in (1/T )Z for some positive integer T . Then we know

that σh is an inner automorphism of W such that σT
h = 1. Moreover, for each W -

module M , it is proved in [Li96] that
(
M (h), Y

(h)
M (·, z)

)
:= (M,YM (Δ(h, z)·, z))

is a σh-twisted W -module, where YM (·, z) is the vertex operator map of M and

Δ(h, z) = zh(0)exp
(∑∞

n=1
h(n)

−n (−z)−n
)
.

Lemma 4.2 ([LS4, Lemma 2.7]). Set Pg = P+(g(1), k1) × · · · × P+(g(t), kt) and
let λ = (λ1, λ2, . . . , λt) be an element of Pg. Then the lowest conformal weight of

(
⊗t

i=1 Lg(i)
(ki, λi))

(h) is equal to w(λ) = �(λ) +
∑t

i=1 min{(hi|μ) |μ ∈ Π(λi)} +

〈h|h〉/2, where �(λ) is the lowest conformal weight of
⊗t

i=1 Lg(i)
(ki, λi) and Π(λi)

is the set of all weights of the irreducible g(i)-module L(λi) with the highest weight
λi.

We now let V be a strongly regular, holomorphic VOA such that V1 is semisimple.
Let h = (h1, h2, . . . , ht) be a semisimple element of V1 such that (h|α) ≥ −1 for any
root α of V1 and the spectrum Spec(h(0)) of h(0) : V → V is contained in (1/T )Z
for some positive integer T . Then we know that σh is an inner automorphism of V
of finite order. Assume that V1 = g ∼= g(1) ⊕ · · · ⊕ g(t) for some simple Lie algebras
g(1), . . . , g(t). For each λ ∈ Pg, set d(λ) = w(λ)−�(λ) . Write 0 = (0, 0, . . . , 0) ∈ Pg

and L(λ) =
⊗t

i=1 Lg(i)
(ki, λi). We then have the following lemma.

Lemma 4.3. Assume d(λ) > −3/2 for any λ ∈ Pg and d(0) > 1/2. Then the
lowest conformal weight of V T(σh) is greater than 1/2. In particular, V T(σh)1/2 =
0.

Proof. Note that the sub VOA of V generated by V1 is isomorphic to
⊗t

i=1 Lg(i)
(ki, 0)

for some positive integers k1, . . . , kt. Thus, V viewed as a
⊗t

i=1 Lg(i)
(ki, 0)-module
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has the decomposition V ∼=
⊕n

j=0 L(λ
(j)), where n ≥ 0, λ(0), . . . ,λ(n) ∈ Pg and

λ(j) = 0 if and only if j = 0. It then follows that V T (σh) =
⊕n

j=0 L(λ
(j))(h) (see

[Li96]). Therefore, it suffices to show w(λ(j)) > 1/2 for all 0 ≤ j ≤ n. By assump-
tion, d(0) > 1/2 and �(0) = 0; hence, we have w(0) > 1/2. Assume that 0 < j ≤ n.
Since V1

∼= g and dimV0 = 1, we have �(λ(j)) ≥ 2. It follows immediately from the
assumption d(λ(j)) > −3/2 that w(λ(j)) > 1/2. The proof is complete. �
4.2. Orbifold construction of holomorphic VOAs. In this subsection, we be-
gin to prove Theorem 1.2. To make the statement of Theorem 1.2 more precise, we
will prove the following theorem.

Theorem 4.4. Let (g, f) be a pair of Lie algebras listed in Table 1. Let V be a
strongly regular holomorphic VOA of central charge 24 such that V1 is isomorphic
to g. Then V is isomorphic to the VOA ṼN(f)(θ), where N(f) is the Niemeier lattice
such that (VN(f))1 = f and θ is the automorphism of the lattice VOA VN(f) defined
as in (2.2).

Note that Theorem 1.2 follows immediately from Theorem 4.4. We will prove
Theorem 4.4 after several lemmas. Our idea is to apply the “reverse orbifold con-
struction” method on the holomorphic VOA V . We start by choosing an appropri-
ate semisimple element h ∈ g. Let g = g(1),k1

⊕ · · · ⊕ g(t),kt
be a semisimple Lie

algebra listed, where the g(i),ki
’s are arranged in the same order as in Table 1. For

example, if g = D6,2B
2
3,1C4,1, then g(1) = D6, g(2) = B3, g(3) = B3, and g(4) = C4.

Table 2. Choice of h.

Cases g h

(A) (n|12) B
12/n
n,2 (�1, 0, . . . , 0) (12/n− 1 times 0’s)

(B) (n|4) D
4/n
2n,2B

8/n
n,1 (�1, 0, . . . , 0) (12/n− 1 times 0’s)

(C) (n|4) D
4/n
2n+1,2A

4/n
2n−1,1 (0, . . . , 0, �n, . . . , �n) (4/n times 0’s and �n’s)

(D) C4
4,1 (�4, 0, 0, 0)

(E) D6,2B
2
3,1C4,1 (�1, 0, 0, 0)

Lemma 4.5. Let V and (g, f) be as above and let h be the semisimple element of
g defined as in Table 2, where �1 of D2 means the weight (�1, �1) of A

2
1. Then h

satisfies 〈h|h〉 = 2, (h|λ) ∈ 1
2Z, d(0) = 1, and d(λ) > −3/2 for any λ ∈ Pg such

that λ �= 0. Moreover, σh is an automorphism of V of order 2 such that gσh = g.

Proof. Since h is a sum of fundamental weights corresponding to long roots, it
follows immediately that gσh = g. By direct calculations, it is also easy to verify
that 〈h|h〉 = 2 and (h|λ) ∈ 1

2Z for all λ ∈ P+(g(i), k) (1 ≤ i ≤ t). Moreover, for any

λ = (λ1, λ2, . . . , λt) ∈ Pg, we have d(λ) = −
∑t/2

i=1(�n|λt/2+i)+1 if g is in case (C),
and d(λ) = −(h|λ1) + 1 otherwise, by using Lemma 4.1. It is now straightforward
to show that d(0) = 1 and d(λ) > −3/2 for any λ ∈ Pg such that λ �= 0.

Finally, we show that the order of σh is 2. Set r = g(t/2+1),kt/2+1
⊕ · · · ⊕ g(t),kt

and s = g(1),k1
⊕ · · · ⊕ g(t/2),kt/2

when g is in case (C), and set r = g(1),k1
and

s = g(2),k2
⊕ · · · ⊕ g(t),kt

otherwise. Then h belongs to r. Let R and S be the
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subVOAs of V generated by r and s, respectively. It follows that R and S are
strongly regular. We divide the proof into 3 parts: (1◦) g �= B12,2 and D8,2B

2
4,1,

(2◦) g = B12,2, and (3◦) g = D8,2B
2
4,1.

(1◦) Suppose that g �= B12,2 and D8,2B
2
4,1. It then follows that the lowest

conformal weight of any irreducible R-module does not belong to Z≥2. Therefore,
we have ComV (ComV (R)) = R. Since T = ComV (R) is an extension of S, the
VOA T is C2-cofinite and of CFT-type. Since the commutant of a rational simple
subVOA in a rational simple VOA is also simple ([ACKL]), by Lemma 2.3, T
is rational. By applying Lemma 2.2 to R and T , we see that all the irreducible
modules of R must appear in V . Since there exists an irreducible R-module of
r-weight λ such that (λ|h) ∈ 1/2 + Z, the order of σh is 2.

(2◦) Suppose that g = B12,2. Then as a module of R ∼= LB12
(2, 0), V decomposes

as

V ∼= LB12
(2, 0)⊕

12⊕
i=1

aiLB12
(2, �i)⊕

⊕
i,j∈{1,12}, i≤j

bijLB12
(2, �i +�j)

with non-negative integers ai (1 ≤ i ≤ 12) and bij (i, j ∈ {1, 12}, i ≤ j). By
computing the lowest conformal weights of the irreducible R-modules, we see that

(4.1) dimV2 = dim(LB12
(2, 0))2 + a5 dimL(�5) + b1,12 dimL(�1 +�12).

Here, L(λ) is the irreducible B12-module of highest weight λ. Since V is a holo-
morphic VOA of central charge 24, the character of V coincides with j(τ )− 744 +
dimB12, where j(τ ) is the j-function. Therefore, we have dimV2 = 196884. We also
have dim(LB12

(2, 0))2 = 45450, dimL(�5) = 53130, and dimL(�1+�12) = 98304.
It then follows by (4.1) that a5 = b1,12 = 1. Since (�1 +�12|h) = 3/2, we see that
the order of σh is 2.

(3◦) Suppose that g = D8,2B
2
4,1. The set of all irreducible R = LD8

(2, 0)-
modules M such that the lowest conformal weight of M belongs to Z≥2 consists
of LD8

(2, 2�7) and LD8
(2, 2�8). They are self-dual simple current modules such

that LD8
(2, 2�7) � LD8

(2, 2�8) ∼= LD8
(2, 2�1), where � denotes the fusion prod-

uct of R-modules. Therefore, we see that either (i) ComV (ComV (R)) = R or
(ii) ComV (ComV (R)) = R ⊕ LD8

(2, 2�i) (i = 7, 8) holds. If (i) holds, then by
a similar argument to (1◦) above, we see that LD8

(2, �8) is a summand in the
decomposition of V as an R-module. Since (�8|h) = 1/2, the order of σh is 2.
Suppose that (ii) holds with i = 7 or 8. It then follows by the theory of sim-
ple current extensions that the irreducible ComV (ComV (R))-modules are given
by R ⊕ LD8

(2, 2�i), LD8
(2, 2�1) ⊕ LD8

(2, 2�j), LD8
(2, �i)

±, LD8
(2, �1 + �j)

±,
LD8

(2, �2)⊕ LD8
(2, �6), LD8

(2, �4)
±, where j satisfies {i, j} = {7, 8}. In partic-

ular, LD8
(2, �i)

+ ⊂ V as a module of ComV (ComV (R)). By a similar argument
as in (1◦), we see that both ComV (R) and ComV (ComV (R)) are regular. Since
(h|�i) = 1/2, by applying Lemma 2.2 to ComV (ComV (R)) and ComV (R), we have
shown that the order of σh is 2. �

Lemma 4.6. Let V , (g, f), and h be as in Lemma 4.5. Then (V, σh) satisfies the
orbifold condition, and V T(σh) 1

2
= 0.

Proof. By Lemmas 4.5 and 4.3, h satisfies conditions (i), (ii) and (iii) in Subsection
2.2. Hence, by Theorem 2.4, (V, σh) satisfies the orbifold condition. Moreover, we
have V T(σh)1/2 = 0 by Lemma 4.3. �
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By Lemmas 4.5 and 4.6, we have the strongly regular holomorphic VOA Ṽ (σh)
of central charge 24.

Lemma 4.7. Let V , (g, f), and h be as in Lemma 4.5. Then the holomorphic VOA

Ṽ (σh) is isomorphic to VN(f).

Proof. From now on, we set W = Ṽ (σh). Then since the Lie algebra W1 is semisim-
ple by Proposition 2.1, we have the decomposition W1 =

⊕r
i=1 s(i),�i of W1 into

simple ideals, where r ∈ Z>0 and s(i) is a simple ideal of W1 with the level �i ∈ Z>0

(1 ≤ i ≤ r). Let a = aV,σh
be the automorphism of W defined in Subsection 2.3,

which is of order 2. It then follows from gσh = g that W a
1
∼= g. We give a case-by-

case analysis to show the assertion.

(A) Let (g, f) = (B
12/n
n,2 , A

12/n
2n,1 ), where n|12. Since dim g = 12(2n+1), it follows

by (2.1) that W1 has dimension 48(n+1). Let i be an element of {1, . . . , r}. Then,
by Proposition 2.1, we have h∨

i /�i = (dimW1 − 24)/24 = 2n+1, where h∨
i denotes

the dual Coxeter number of s(i). Since �i is a positive integer, h∨
i is divisible by

2n+ 1. We now prove the assertion for each n.
(A.1) Case of n = 1. Since g = A12

1,4, by applying Propositions 3.3 and 3.1 to
W1 and a ∈ Aut(W1), we see that s(i) is of type A1, A2, B3, C2, D4, D3, or G2.

As 3|h∨
i , we have s(i)

∼= A2, C2, or D4. Since dim g = 96, W1 is of type D2
4,2C

4
2,1,

D4,2A2,1C
6
2,1, D4,2A

6
2,1C

2
2,1, A

2
2,1C

8
2,1, A

7
2,1C

4
2,1, or A12

2,1. Since g = A12
1 , it follows

by Proposition 3.1 that sa(i)
∼= A4

1, A
2
1, and A1 if s(i) ∼= D4, C2, and A2, respectively.

As the Lie rank of g is 12, we have W1
∼= A12

2,1. It then follows by Proposition 2.8
that W is isomorphic to VN(f).

(A.2) Case of n = 2. Similarly, by Propositions 3.3 and 3.1, we have s(i) ∼= B2,

A4, C4, or D5. Since 5|h∨
i , it follows that s(i) ∼= A4 or C4. Therefore, W1 = C4

4,1,

C2
4,1A

3
4,1, or A6

4,1. Since g = B6
2 , we have sa(i)

∼= B2
2 if s(i) ∼= C4 and sa(i)

∼= B2

if s(i) ∼= A4. By using rank(g) = 6, we see that Ṽ1
∼= A6

4,1. As a result, W is
isomorphic to VN(f).

(A.3) Case of n ≥ 3, n|12. Since g = B
12/n
n , it follows by Propositions 3.3

and 3.1 that s(i) = Bn, A2n, or D2n+1. As (2n+ 1)|h∨
i , we have s(i) = A2n, which

forces that W1
∼= A

12/n
2n,1 . Hence, W ∼= VN(f).

By combining (A.1)–(A.3), we see that W ∼= VN(f) for each n|12.
(B) Let (g, f) = (D

4/n
2n,2B

8/n
n,1 , A

4/n
4n−1,1D

4/n
2n+1,1), where n|4. It follows by (2.1) that

W1 has dimension 96n+ 24. Then h∨
i /�i = (dimW1 − 24)/24 = 4n.

(B.1) Case of n = 1. Since 4|h∨
i and dim W1 = 120, it follows that s(i) is of

type A3, A7, C3, C7, D5, D7, E6, or G2. By applying Proposition 3.1 to W1 and a,
we see that s(i) must be A3 or G2. Since dimW1 = 120, it follows that W1

∼= A8
3,

and hence, W ∼= VN(f).
(B.2) Case of n = 2. We see that s(i) has type A7, C7, D5, or D9. Since

dim W1 = 216, we have W1 = A7,1D9,2 or A2
7,1D

2
5,1. Suppose that W1 = A7,1D9,2.

It then follows that Aa
7 = D4. Therefore, we have Da

9 = D4B
2
2 , which contradicts

Proposition 3.1. Hence, W1 must have type A2
7,1D

2
5,1. As a result, W is isomorphic

to VN(f).
(B.3) Case of n = 4. Then s(i) has type A15 or D9, which shows that W1 =

A15,1D9,1. As a result, W is isomorphic to VN(f).
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(C) Let (g, f) = (D
4/n
2n+1,2A

4/n
2n−1,1, A

4/n
4n+1,1Xn,1), where n|4. Since dim g =

24(2n + 1), it follows by (2.1) that W1 has dimension 24(4n + 3). Then we have
h∨
i /�i = (dimW1 − 24)/24 = 4n+ 2.
(C.1) Case of n = 1. Since dim(W1) = 168 and h∨

i /ki = 6, we see that s(i) has

type A11, D7, E6, C5, A5, D4, or E7. Since g = D4
3A

4
1, it follows by Proposition 3.1

that s(i) ∼= A5 or D4, which forces that W1 = A4
5,1D4,1 or D6

4,1. Since D3 ⊂ g, we

see that A5 ⊂ W , and hence W1 has the type A4
5,1D4,1. Therefore, W ∼= VN(f).

(C.2) Case of n = 2. We see that s(i) has type A9, C9, D6, D11, or E8, which

shows that W1 = D4
6,1 or A2

9,1D6,1. Since D5 ⊂ g, we have W1
∼= A2

9,1D6,1, and
hence, W ∼= VN(f).

(C.3) Case of n = 4. In this case, s(i) has type A17, D10, or E7, which forces

that W1 = A17,1E7,1 or D10,1E
2
7,1. Since g = D9A7, it follows by Proposition 3.1

that the multiplicity of the ideal E7 in W1 is less than 2. Therefore, W1 has type
A17,1E7,1. As a result, W is isomorphic to VN(f).

(D) Let (g, f) = (C4
4,1, E

4
6,1). By (2.1), we know that dim W1 = 312 and h∨

i /�i =
12. It follows that s(i) has type C11, A11, D7, or E6, which shows that W1 =

A11,1D7,1E6,1 or E
4
6,1. Since A

a
11 is isomorphic toD6 or C6, it follows by Proposition

3.1 and Corollary 3.4 that W1 �∼= A11,1D7,1E6,1. Thus, W1 has type E4
6,1. Hence,

W is isomorphic to VN(f).

(E) Let (g, f) = (D6,2B
2
3,1C4,1, A11,1D7,1E6,1). By the same argument, we have

dim(W1) = 312 and h∨
i /�i = (dimW1 − 24)/24 = 12. It follows that s(i) has

type A11, C11, D7, or E6, which forces that W1 = E4
6,1 or A11,1D7,1E6,1. Since

g = D6B
2
3C4, it follows by Proposition 3.1 that the multiplicity of the ideal E6 in

W1 is less than 2. Thus, W1 has type A11,1D7,1E6,1, and thus, W is isomorphic to
VN(f). �

To summarize, we have proved that there exists a semisimple element h ∈ V1

such that: (1) σh is an automorphism of V of order 2, and the pair (V, σh) satisfies

the orbifold condition; (2) The holomorphic VOA Ṽ (σh) = V σh ⊕ V T(σh)Z is
isomorphic to VN(f); (3) gσh = g. Taking U = VN(f), we can obtain Theorem 4.4
by Theorems 2.6 and 3.6.
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