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HELSON SETS OF SYNTHESIS ARE DITKIN SETS

ANTONY TO-MING LAU AND ALI ÜLGER

(Communicated by Thomas Schlumprecht)

Abstract. Let G be a locally compact group and let A(G) be its Fourier
algebra. A closed subset H of G is said to be a Helson set if the restriction
homomorphism φ : A(G) → C0(H), φ(a) = a|H , is surjective. In this paper,
under the hypothesis that G is amenable, we prove that every Helson subset
H of G that is also a set of synthesis is a Ditkin set. This result is new even
for G = R.

Introduction

In this paper we present a proof of the result stated in the title. Let G be a locally
compact amenable group and A(G) its Fourier algebra as defined by Eymard [Ey].
The Fourier algebra A(G) of G is a commutative, semisimple, regular Tauberian
Banach function algebra on G with a bounded approximate identity. In the case

where G is abelian and Γ = Ĝ its dual group, the algebra A(G) is isometrically
isomorphic to the group algebra L1(Γ) of Γ under the Fourier transform. For the
abelian groups, ample information on the algebras A(G) and L1(Γ) can be found
in the classical book [Ru] by Rudin.

To any closed subset E of G, the following two ideals are associated:

k(E) = {a ∈ A(G) : a = 0 on E}
and

j(E) = {a ∈ A(G) : The support of a is compact and disjoint from E}.
The closed ideals J(E) = j(E) and k(E) are, respectively, the smallest and the

largest closed ideals with hull E. When these two ideals coincide the set E is said
to be a set of synthesis. A celebrated theorem due to Malliavin [Ma] states that
every nondiscrete locally compact abelian group G contains a closed set that is not
a set of synthesis for the algebra A(G). The same is true in the nonabelian case
too [Ka-La1]. If the following stronger condition:

for each a ∈ k(E), a ∈ aj(E)

holds, then E is said to be a Ditkin set. Two outstanding unsolved problems in the
subject are the following.

1. Union Problem. Is the union of two sets of synthesis a set of synthesis?
2. S-Set-D-Set Problem. Is every set of synthesis a Ditkin set?
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This paper is related, although in a very special case, to both problems. It is
well known and easy to see that the union of a set of synthesis and a Ditkin set is
a set of synthesis. In the rather old paper [Sa1, Theorem 4], Saeki proves that the
union of a Helson set of synthesis and a set of synthesis is a set of synthesis. These
two results led us to wonder whether every Helson set of synthesis is a Ditkin set.
It has turned out that this is the case.

Helson sets are thin sets, but topologically they can be quite substantial. For
instance, the infinite-dimensional torus G = Tω contains a closed arc (a homeo-
morphic image of the interval [0, 1]), so it is a connected set, that is, a Kronecker
set, and hence a Helson set [Ru, pp. 103 and 116]. On the other hand, every com-
pact scattered set in G is a Ditkin set but need not be a Helson set [Ru, p. 117].
Both classes of sets, Ditkin sets and Helson sets, are closed under the finite union.
For Helson sets this important result is due to Drury and Varopoulos ([Dr], [Va]).
Moreover every closed subset of a Helson set is a Helson set. Let us mention here
that a closed Helson set need not be a set of synthesis [Kö]. The main result of
this paper shows that Helson sets of synthesis are hereditarily Ditkin sets. That
is, every closed subset of a Helson set of synthesis is a Ditkin set. Except for the
obvious class of the closed scattered sets, we do not know of any other class of
hereditarily Ditkin sets.

In Section 1 we have gathered a few results and notation used in the paper.
In Section 2 we present the proof of the main result. The paper is essentially
self contained. Our main tool is the Arens multiplication on the Banach algebras
A(G)∗∗ and C0(G)∗∗.

1. Preliminaries

Our notation and terminology are standard. For any Banach space X, by X∗

we denote its dual space. For x ∈ X and f ∈ X∗, by 〈x, f〉 or 〈f, x〉 we denote the
natural duality between X and X∗. For any subspace Y of X, by Y ⊥ we denote
the annihilator of Y in X∗.

Arens product on A∗∗. Let A be a commutative Banach algebra. For a ∈ A and
f ∈ A∗, by a.f we denote the functional on A defined by

〈a.f, b〉 = 〈f, ab〉.

It is immediate to see that ||a.f || ≤ ||a||.||f ||. We consider A∗∗ as a Banach
algebra equipped with the first Arens product, which is defined as follows. For a, b
in A, f in A∗, and m,n in A∗∗, the product nm is defined in three steps by

〈a, b.f〉 = 〈ab, f〉, 〈a, n.f〉 = 〈n, a.f〉

and

〈mn, f〉 = 〈m,n.f〉.

In the book [Da, Chapter 3] and the memoir [Da-La], the reader can find ample
information on this notion. We note that, the algebra A being commutative, for
a ∈ A and m ∈ A∗∗, am = ma. We denote by ΦA the Gelfand spectrum of A and
by â the Gelfand transform of a.
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Sets of synthesis. Suppose now that the algebra A is semisimple, regular, Taube-
rian and, for a ∈ A, a ∈ aA. This latter condition holds if, for instance, A has an
approximate identity. The term Tauberian means that the ideal Ac = {a ∈ A :
Supp(â) is compact} is dense in A. To any closed subset E of ΦA, the ideals

k(E) = {a ∈ A : â = 0 on E}

and

j(E) = {a ∈ A : Supp(â) is compact and disjoint from E}

are associated. Let J(E) be the closure in A of the ideal j(E). The ideals J(E)
and k(E) are, respectively, the smallest and the largest closed ideals with hull E.
As in the case of the algebra A(G), when the ideals J(E) and k(E) coincide, the
set E is said to be a set of synthesis for the algebra A.

The spectrum (or support) of a functional f . Suppose again that the algebra
A is semisimple, regular, Tauberian and is such that, for each a ∈ A, a ∈ aA.
For f ∈ A∗, the spectrum (or the support) σ(f) of f can be defined in several
ways. Below we state two of them. The set σ(f) is a closed subset of the Gelfand
spectrum of A, defined in the following equivalent ways. For more on this notion,
see [Ru, Chapter 5] and [Ey, Proposition 4.4].

1. For γ ∈ ΦA, γ ∈ σ(f) iff, for any a ∈ A, a.f = 0 implies that â(γ) = 0.
2. For γ ∈ ΦA, γ ∈ σ(f) iff, for each neigbourhood V of γ, there is an a ∈ A

such that Supp(â) ⊆ V and 〈a, f〉 �= 0.

The properties of the spectrum that we need are:

1. σ(f) = ∅ iff f = 0.
2. For any a ∈ A and any f ∈ A∗, σ(a.f) ⊆ σ(f) ∩ Supp(â).
3. For any closed subset E of ΦA, σ(f) ⊆ E iff f ∈ J(E)⊥.
4. If E is a closed subset of ΦA and if (fi)i∈I is a weak∗ convergent net in

A∗ converging to some f , the inclusions σ(fi) ⊆ E for all i ∈ I imply that
σ(f) ⊆ E too.

Let E a closed subset of ΦA, let a ∈ k(E), and let f ∈ J(E)⊥. We note that, since
for each a ∈ A, a ∈ aA, the equality a.f = 0 implies that 〈a, f〉 = 0. Conversely,
if a.f �= 0, then, for some b ∈ A, 〈ab, f〉 �= 0 so that f /∈ k(E)⊥. Thus E is a
set of synthesis iff, for each a ∈ k(E) and f ∈ J(E)⊥, a.f = 0. We shall use this
observation freely through the paper.

Fourier algebra A(G). Concerning the Fourier algebra A(G) and its dual V N(G),
our main references are Eymard’s paper [Ey] and [Ka-La2]. Let G be a locally
compact group and A(G) its Fourier algebra. The dual space V N(G) of A(G) is
the von Neumann algebra of G. This is the closure in the weak operator topology
of the operator algebra B(L2(G)) of the subspace generated by left translations
operators �t : L2(G) → L2(G), defined by �t(f)(s) = f(t−1s), for t ∈ G. We
shall denote the elements of A(G) by the letters a, b and those of A(G)∗ = V N(G)
by f, g. The Gelfand spectrum of A(G) is (homeomorphic to) G. For t ∈ G, we
shall denote the corresponding evaluation functional by ρt. Thus, for a ∈ A(G),
〈ρt, a〉 = a(t).
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Helson sets. A closed subset H of G is said to be a Helson set if the space
A(G)|H = {a|H : a ∈ A(G)} is the whole of the space C0(H), the space of the
continuous functions ϕ : H → C that vanish at infinity. The origin of this notion
goes back to Helson’s paper [He]. In the case where G is abelian, in Rudin’s book
[Ru, Chapter 5] the reader can find some examples of Helson sets. For instance,
every Kronecker set is a Helson set. Certain (but not all) Cantor sets (the sets
that are compact, metrizable, perfect, and totally disconnected) are also Helson
sets [Ru, p. 100].

If H is a Helson, the restriction homomorphism φ : A(G) → C0(H), φ(a) = a|H ,
being onto, there is constant β > 0, a Helson constant of H, such that for any
ϕ ∈ C0(H) there is an a ∈ A(G) such that a|H = ϕ and ||a|| ≤ β||ϕ||∞.

In connection with the Helson constant, we recall the following result. Let X,
Y be two Banach spaces and T : X → Y be a bounded onto linear operator. As a
consequence of the Open Mapping Theorem, there is a constant β > 0 such that,
given any y ∈ Y , there is an x ∈ X such that ||x|| ≤ β||y|| and T (x) = y. The
second adjoint T ∗∗ of T is also onto and, as one can easily see, given any n ∈ Y ∗∗,
there is an m ∈ X∗∗ such that ||m|| ≤ β||n|| (with the same constant β) and
T ∗∗(m) = n. In the proof of Lemma 2.2 below we use this fact.

In the paper [Sa2] the reader can find a characterization of the compact Helson
sets of synthesis. Every closed subset of a Helson set of synthesis is a Helson set
of synthesis; so is the union of the finitely many Helson sets of synthesis [Sa1]. As
proved in [Sa3], the compact extremally disconnected subsets of G are Helson sets
of synthesis. In [Sa2] and [Sa3] these are proved for abelian groups, but the proofs
are also valid for the Fourier algebra A(G) of a nonabelian group G. In connection
with these results, see Corollary 2.6 below.

Throughout the paper G will be a locally compact amenable group.
Finally, we recall that, as proved by Leptin [Le], the algebra A(G) has a bounded

approximate identity if and only if the group G is amenable. We note that, the
group G being amenable and the algebra A(G) being Tauberian, the algebra A(G)
has a bounded approximate identity consisting of functions with compact supports.

2. Helson sets of synthesis are hereditary Ditkin

In this section we present the proof of the main result.
Let H be a locally compact space and let C0(H) be the commutative C∗-algebra

of the complex-valued continuous functions on the locally compact space H van-
ishing at infinity. The second dual C0(H)∗∗ of C0(H) is supposed to be equipped
with the Arens product as defined in the preceding section. We note that, for
μ ∈ M(H) = C0(H)∗, the spectrum of μ is the same as the support of the measure
μ (i.e., σ(μ) = Supp(μ)). For any closed subset F of H, we regard the characteristic
function χF of F as an element of C0(H)∗∗. If μ ∈ M(H), then χF .μ is just the
pointwise product defined, for ϕ ∈ C0(H), by

〈ϕ, χF .μ〉 = 〈ϕχF , μ〉 =
∫
Ω

χF (t)ϕ(t)dμ.

In particular, if F = Supp(μ), then χF .μ = μ.
For later use, we record this as a lemma.

Lemma 2.1. Let H be a locally compact space, let μ ∈ M(H) be a given measure
and let F = σ(μ). Then, χF .μ = μ.
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We need an analogue of this lemma for the algebra A(G) in the case where F is
a subset of a Helson set H. We first prove the following lemma.

Lemma 2.2. Let H ⊆ G be a Helson set with the Helson constant β. Then, for
any closed subset F of H, there is an m ∈ A(G)∗∗ such that

||m|| ≤ β and, for t ∈ H, 〈m, ρt〉 = 1 if t ∈ F ;(♣)

and 〈m, ρt〉 = 0 if t ∈ H\F.

Proof. Let φ : A(G) → C0(H) be the restriction homomorphism defined by φ(a) =
a|H . Then ker(ϕ) = k(H) and the second adjoint φ∗∗ maps A(G)∗∗ onto C0(H)∗∗.
Let χF be the characteristic function of the set F considered as a function on H.
As χF is in C0(H)∗∗ and ||χF ||C0(H)∗∗ = 1, there is an m ∈ A(G)∗∗ (unique modulo

k(H)∗∗) such such ||m|| ≤ β and φ∗∗(m) = χF . Since for t ∈ H, φ∗(ρt) ∈ k(H)⊥,
we have

〈m, ρt〉 = 1 if t ∈ F and 〈m, ρt〉 = 0 if t ∈ H\F.
�

For any m ∈ A(G)∗∗ and any subset E of G = ΦA(G), we write below

“m = 1 on E” instead of “for each t ∈ E, 〈m, ρt〉 = 1”.

Corollary 2.3. Let H ⊆ G be a Helson set of synthesis and let f ∈ V N(G) be a
functional with F = σ(f) ⊆ H. Then, for any m ∈ A(G)∗∗ such that m = 1 on F
and m = 0 on H\F , we have m.f = f .

Proof. We first note that, H being a set of synthesis, f ∈ k(H)⊥. Let m ∈ A(G)∗∗

be such that m = 1 on F and m = 0 on H\F . As above, let φ : A(G) → C0(H)
be the restriction homomorphism, φ(a) = a|H . The kernel of φ is k(H) so that

φ∗(M(H)) = k(H)⊥. Then, φ∗ being one-to-one and φ∗(M(H)) = k(H)⊥, there
is a unique μ ∈ M(H) such that φ∗(μ) = f . This implies that σ(μ) = F ; see

[Ka-Ü, Proposition 4.1] for a more general result. The element φ∗∗(m) of C0(H)∗∗,
as a function on H, is just the characteristic function of the set F . So, as noted in
Lemma 2.1, φ∗∗(m).μ = μ. Hence, applying φ∗ to the equality μ = φ∗∗(m).μ and
using the fact that φ is a homomorphism, we get that

f = φ∗(μ) = φ∗(φ∗∗(m).μ) = m.f.

Hence m.f = f . �

Next we “reduce” the spectrum of f ∈ k(H)⊥.

Lemma 2.4. Let H ⊆ G be a Helson set of synthesis with Helson constant β, let
f ∈ k(H)⊥ and let F ⊆ σ(f) be a nonempty closed set. Then, there is an m ∈ A∗∗

satisfying (♣) of Lemma 2.2 such that we have σ(m.f) ⊆ F .

Proof. Let φ : A(G) → C0(H) be the restriction homomorphism. Then, for a
uniquely determined μ ∈ M(H), f = φ∗(μ). As seen above, σ(f) = σ(μ) =
Supp(μ). We first assume that F is compact. Let (Vα)α∈I be a downward directed
(i.e., directed by the reverse inclusion) family of neighborhood system of F in G
such that

⋂
α∈I Vα =

⋂
α∈I Vα = F . Then (Vα ∩ H)α∈I is a directed family of

neighborhood system of F in H. For each α ∈ I, let ϕα ∈ C0(H) be a function
such that 0 ≤ ϕa ≤ 1 on H, ϕα = 1 on F , and Supp(ϕα) ⊆ Vα ∩ H. As H is a
Helson set with Helson constant β, for each α ∈ I, there is an aα in A(G) with
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||aα|| ≤ β such that aα = ϕα on H. In particular, aα = 1 on F . These, taking into
account the facts that f = φ∗(μ) and aα|H = ϕα, imply that

σ(aα.f) ⊆ σ(f) ∩ Supp(aα|H) ⊆ σ(f) ∩ Vα ⊆ Vα.

Now fix an α0 ∈ I arbitrarily. Since, for all α ≥ α0, Vα ⊆ Vα0
, the inclusion

σ(aα.f) ⊆ Vα0
holds. Passing to a subnet, we can assume that the net (aα)α∈I

converges in the weak∗ topology of A(G)∗∗ to some m. This m satisfies (♣) and,
since aα.f → m.f in the weak∗ topology of A(G)∗, σ(m.f) ⊆ Vα0

. This being
valid for each α0 ∈ I and

⋂
α∈I Vα =

⋂
α∈I Vα = F , we conclude that σ(m.f) ⊆ F .

If the set F is not compact, let (ei)i∈I be a bounded approximate identity such
that the support of each ei is compact. Let Fi = F∩Supp(ei). Then Fi ⊆ F ⊆ σ(f).
So, as in the preceding paragraph, for each i ∈ I, we can find an mi ∈ A(G)∗∗ such
that ||mi|| ≤ β,

for t ∈ H, 〈mi, ρt〉 = 1 if t ∈ Fi; and 〈mi, ρt〉 = 0 if t ∈ H\F,

and σ(mi.f) ⊆ Fi ⊆ F . Letm be a weak∗ cluster point of the net (mi)i∈I in A(G)∗∗.
Then, since ||m|| ≤ lim inf ||mi|| ≤ β and since

⋃
i∈I Supp(ei) = G, m satisfies (♣)

and σ(m.f) ⊆ F . �

Before the main result, we would like to note that, since every finite (and also
every closed scattered) subset of G is a Ditkin set and since the union of finitely
many Ditkin sets is a Ditkin set, every closed subset F of G can be written as a
union of an upward directed family of Ditkin sets. That is,

F =
⋃
α∈I

Dα, each Dα is a Ditkin set, and, for α ≤ β,Dα ⊆ Dβ .

The next result is the main result of this paper.

Theorem 2.5. Every Helson set of synthesis H in G is a hereditarily Ditkin set.

Proof. Let H be a Helson set of synthesis with Helson constant β. We have to
prove that, for any closed subset E of H and any a ∈ k(E), we have

a ∈ aJ(E).

For a contradiction, suppose that, for a closed subset E ofH and for some a ∈ k(E),

we have a /∈ aJ(E). Then, there is an f ∈ A(G)∗ such that 〈a, f〉 �= 0 and
σ(a.f) ⊆ E. Let F = σ(a.f). We write F as a union of an upward directed family
of nonempty Ditkin sets: F =

⋃
α∈I Dα. Since, for each α ∈ I, Dα ⊆ σ(a.f) ⊆

E ⊆ H, by the preceding lemma, for any α ∈ I, there is an element mα ∈ A(G)∗∗

such that ||mα|| ≤ β,

for t ∈ H, 〈mα, ρt〉 = 1 if t ∈ Dα; and 〈mα, ρt〉 = 0 if t ∈ H\Dα,

and σ(mαa.f) ⊆ Dα. Since Dα is a Ditkin set and a ∈ k(Dα), there is a sequence
(bn)n∈N in j(Dα) such that ||a−abn|| → 0. Then, as bnmαa.f = 0, we conclude that
mαa.f = 0. Let m be a weak∗ cluster point of the net (mα)α∈I in A(G)∗∗. Then
ma.f = 0 and m satisfies (♣). Since, by Corollary 2.3, ma.f = a.f , we see that
a.f = 0. This implies that 〈a, f〉 = 0. This contradiction proves the theorem. �

The following corollary is now obvious. In the case where G is abelian, see [Sa1]
and [Sa3] for the assertions (c) and (d), respectively.
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Corollary 2.6.
a) If the boundary of a closed set E ⊆ G is a Helson set of synthesis, then E is

a Ditkin set.
b) A Helson set H is a set of synthesis iff, for each a ∈ k(H) and f ∈ J(H)⊥,

the set σ(a.f) is a set of synthesis.
c) The union of a set of synthesis and a Helson set of synthesis is a set of

synthesis.
d) Every compact extremally disconnected subset of G is an hereditarily Ditkin

set.

Remark 2.7. The hypothesis that G is amenable is used only at two places: 1. in
the proof of Lemma 2.4 to pass from the compact case to the noncompact case;
2. in the proof of Theorem 2.5 to deduce from a.f = 0 that 〈a, f〉 = 0. If, instead

of amenability, we assume that, for each a ∈ A(G), a ∈ aA(G), then from a.f = 0
we can deduce that 〈a, f〉 = 0. It seems that no group G is known for which this
last condition fails. So, if we assume that H is compact and, for each a ∈ A(G),

a ∈ aA(G), we can drop the amenability hypothesis.
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