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Abstract. I. J. Schoenberg showed the following result in his celebrated paper
[Schoenberg, I. J., Positive definite functions on spheres. Duke Math. J. 9
(1942), 96-108]: let · and Sd denote the usual inner product and the unit
sphere in Rd+1, respectively. If Fd stands for the class of real continuous
functions f with domain [−1, 1] defining positive definite kernels (x, y) ∈ Sd ×
Sd → f(x · y), then the class

⋂
d≥1 Fd coincides with the class of probability

generating functions on [−1, 1]. In this paper, we present an extension of this
result to classes of continuous functions defined by Fourier-Jacobi expansions
with nonnegative coefficients. In particular, we establish a version of the above
result in the case in which the spheres Sd are replaced with compact two-point
homogeneous spaces.

1. Introduction

Decades ago, I. J. Schoenberg ([16]) presented his famous characterization for
positive definite functions on the unit sphere Sd in Rd+1. If f is a real continuous
function on [−1, 1] and · denotes the usual inner product of Rd+1, his result can be
described as follows: the kernel (x, y) ∈ Sd × Sd → f(x · y) is positive definite if,
and only if, the function f has a Fourier-Gegenbauer series representation in the
form

f(t) =

∞∑
k=0

a
(d−2)/2,(d−2)/2
k P

((d−2)/2,(d−2)/2)
k (t), t ∈ [−1, 1],

in which all the coefficients a
(d−2)/2,(d−2)/2
k are nonnegative and the series is con-

vergent at t = 1. Here, the symbol P
(α,β)
k stands for the usual Jacobi polynomial

of degree k associated with the pair (α, β) ∈ (−1,∞)2, as discussed in [1, 18]. As
usual, the normalization for the Jacobi polynomials is

P
(α,β)
k (1) =

(
k + α
k

)
:=

Γ(k + α+ 1)

k!Γ(α+ 1)
,

in which Γ stands for the usual gamma function.
It is worth mentioning that, if X is a nonempty set, the positive definiteness

of a symmetric kernel K : X × X → R refers to the fact that for any positive
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integer n and any distinct points x1, x2, . . . , xn in X, the n× n matrix [K(xi, xj)]
is nonnegative definite.

The result just described is far-reaching and enters as a basic foundation in
the analysis of a number of problems in many areas of mathematics: radial basis
interpolation in approximation theory ([7]), covariance functions in statistics ([11]),
special series expansions in Fourier analysis ([17]), matrix transforms and distance
geometry ([14]), etc.

An interesting consequence of Schoenberg’s result, also described in ([16]), pro-
vides the motivation for writing this paper. For α ≥ β > −1/2, let Fα,β denote the
family of all real continuous functions f on [−1, 1] having a series representation in
the form

f(t) =

∞∑
k=0

aα,βk P
(α,β)
k (t), t ∈ [−1, 1],

in which all the coefficients aα,βk are assumed nonnegative and the series is assumed
to converge at t = 1. Since

|P (α,β)
k (t)| ≤ P

(α,β)
k (1), t ∈ [−1, 1], k ≥ 0,

holds under the same restriction on α and β, actually, one has uniform convergence
of the series above on the whole interval [−1, 1]. Hylleraas linearization formula
proved in [12] and its enhancement obtained by Gasper in [9, 10] assert that Fα,β

is a semigroup under pointwise multiplication, as long as,

(α+ β + 1)(α+ β + 4)2(α+ β + 6) ≥ (α− β)2[(α+ β + 1)2 − 7(α+ β + 1)− 24].

In particular, it holds when α ≥ β and α+ β ≥ −1.
After observing the validity of the inclusion (see Formula (7.34) in [1, P. 63])

Fγ,γ ⊂ Fα,α, γ > α,

Schoenberg demonstrated that a function f belongs to
⋂∞

d=1 F (d−2)/2,(d−2)/2 if, and
only if, it has a representation in the form

f(t) =

∞∑
k=0

akt
k, t ∈ [−1, 1],

in which all the coefficients ak are nonnegative and
∑∞

k=0 ak < ∞. Among other
things, this very same result provided a characterization for the positive definite
functions on the unit sphere in the real �2 ([16]) and established the converse of
Problem 37 of Pólya and Szegö ([15, P. 107]) on matrix transformations. In proba-
bility theory, the result above corresponds to stating that

⋂∞
d=1 F (d−2)/2,(d−2)/2 is

the class of probability generating functions on [−1, 1] ([5]).
Some other inclusions among the semigroup classes mentioned above hold. For

instance,

Fα,β−j ⊂ Fα,β , j ∈ Z+, β − j > −1/2,

follows from Formula (7.32) in [1, P. 63] while

Fγ,β ⊂ Fα,β , γ > α,

follows from Formula (7.33) in that same reference. Results proved in [19] imply
some other interesting relations among theses classes of functions, which are also
related to some early work of Gegenbauer. In particular, we may think of other
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decreasing sequences of semigroup classes and ask for a description of the intersec-
tion of them. For instance, the intersections

⋂∞
d=1 F (d−2)/2,−1/2,

⋂∞
d=2 F (d−2)/2,0

and
⋂∞

d=4 F (d−2)/2,1 are relevant in the analysis of positive definiteness and strict
positive definiteness of kernels on compact two-point homogeneous spaces ([2,3,6]).
Among other things, the general result to be proved in this paper will imply a
description for the classes quoted above.

The paper proceeds as follows. In Section 2, we introduce notation and prove all
the technical results on asymptotics for sequences of Jacobi polynomials needed in
the paper. In Section 3, we prove the main result of the paper, that is, a description
for the class

⋂∞
m=1 Fαm,βm , under specific assumptions on the sequences {αm}

and {βm}. In Section 4, we apply the main result in order to describe the three
intersection classes of functions mentioned in the previous paragraph.

2. Technical results

In this section, we will state and prove some specific limit formulas involving
Jacobi and normalized Jacobi polynomials. They will enter in a decisive manner in
the proof of the main result to be proved in Section 3.

Let us begin recalling one of the many generating formulas for Jacobi polynomi-
als. By expanding the n-th derivative in Rodrigues formula

(1− t)α(1 + t)βP (α,β)
n (t) =

(−1)n

2nn!

dn

dtn
[
(1− t)n+α(1 + t)n+β

]
,

one obtains the explicit relation

P (α,β)
n (t) =

1

2n

n∑
k=0

(
n+ α
k

)(
n+ β
n− k

)
(t− 1)n−k(t+ 1)k.

IfR
(α,β)
n denotes the normalized Jacobi polynomial P

(α,β)
n (1)−1P

(α,β)
n , it is promptly

seen that

R(α,β)
n (t) =

1

2n

n∑
k=0

(
n+ α

k

)(
n+ β

n− k

)(
n+ α

n

)−1

(t− 1)n−k(t+ 1)k

=
1

2n

n∑
k=0

(
n

n− k

)(
n+ β

n− k

)(
n− k + α

n− k

)−1

(t− 1)n−k(t+ 1)k.

Just for the record, we observe that(
n+ β

n− k

)(
n− k + α

n− k

)−1

=
(β + n)(β + n− 1) . . . (β + k + 1)

(α+ n− k)(α+ n− k − 1) . . . (α+ 1)
.

We now can prove the following limit formula for normalized Jacobi polynomials.

Theorem 2.1. Let {αm} and {βm} be sequences in (−1,∞) with {αm} → ∞. If
{βmα−1

m } → c ∈ R, then the following asymptotic formula holds:

lim
m→∞

R(αm,βm)
n (t) =

[
c(t− 1)

2
+

t+ 1

2

]n
, t ∈ [−1, 1], n ∈ Z+.

Proof. If {βmα−1
m } → c, there are just two cases to be considered: if c > 0, then

{βm} → ∞. In particular, since(
n+ βm

n− k

)(
n− k + αm

n− k

)−1

=
βn−k
m

αn−k
m

(1 + n/βm) . . . (1 + (k + 1)/βm)

(1 + (n− k)αm) . . . (1 + 1/αm)
,



2030 J. C. GUELLA AND V. A. MENEGATTO

then

lim
m→∞

(
n+ βm

n− k

)(
n− k + αm

n− k

)−1

= cn−k.

If c = 0, then the same conclusion holds. Indeed, otherwise, by passing to a
subsequence if necessary, we could assume the existence of ε > 0 so that

(βm + n)(βm + n− 1) . . . (βm + k + 1)

(αm + n− k)(αm + n− k − 1) . . . (αm + 1)
> ε, m = 1, 2, . . . .

Hence, we would have

lim
m→∞

(βm + n)(βm + n− 1) . . . (βm + k + 1) = ∞,

and, consequently, {βm} → ∞. This would generate the contradiction

0 = lim
m→∞

(
βm

αm

)n−k

lim
m→∞

(1 + n/βm) . . . (1 + (k + 1)/βm)

(1 + (n− k)αm) . . . (1 + 1/αm)

= lim
m→∞

(
n+ βm

n− k

)(
n− k + αm

n− k

)−1

> 0.

Returning to the expression for R
(α,β)
n previously deduced, we have that

lim
m→∞

R(αm,βm)
n (t) =

1

2n

n∑
k=0

(
n

n− k

)
cn−k(t− 1)n−k(t+ 1)k,

and the assertion of the theorem follows. �

If αm = βm, m = 1, 2, . . . , then the normalized Jacobi polynomials become
normalized Gegenbauer polynomials, c = 1, and we recover (4.4) in [16].

Next, restricting ourselves a little bit, we intend to show that the convergence in
the previous theorem is uniform in m, whenever t is fixed (see Theorem 2.4 ahead).
In order to achieve that, we will employ a Laplace-type integral representation for
Jacobi polynomials, the one formulated in [18, P. 98].

Lemma 2.2. For α > β > −1/2 and θ ∈ [0, π], it holds

R(α,β)
n (cos θ) = Aβ

α

∫ 1

0

∫ π

0

[
cos2

θ

2
− r2 sin2

θ

2
+ ir cosφ sin θ

]n

×(1− r2)α−β−1r2β+1 sin2β φ dφ dr,

in which

Aβ
α =

[∫ 1

0

∫ π

0

(1− r2)α−β−1r2β+1 sin2β φ dφ dr

]−1

=
2Γ(α+ 1)

π1/2Γ(α− β)Γ(β + 1/2)
.

The next lemma is concerned with the estimation of an expression related to the
integrand appearing in the statement of Lemma 2.2. Precisely, for θ, φ ∈ [0, π] and
r ∈ (0, 1), we will deal with

En(θ, φ, r) :=

[
cos2

θ

2
− r2 sin2

θ

2
+ ir cosφ sin θ

]n
− cos2n

θ

2
, n = 0, 1, . . . .
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Some of the arguments in its proof will demand the usual beta function B given by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, Rex,Re y > 0,

and two of its alternative formulations:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
= 2

∫ π/2

0

sin 2x−1φ cos2y−1 φdφ, Rex,Re y > 0.

Lemma 2.3. For α > β > −1/2, define

Dα,β
n (θ) := Aβ

α

∫ 1

1/2

∫ π

0

En(θ, φ, r)(1− r2)α−β−1r2β+1 sin2β φ dφ dr, θ ∈ [0, π].

Then

|Dα,β
n (θ)| ≤ 8

β + 1

α+ 1
, n = 0, 1, . . . .

Proof. The proof begins with a crude estimation of En(θ, φ, r) in the range (φ, r) ∈
[0, π]× [0, 1], keeping θ fixed:

|En(θ, φ, r)| ≤
∣∣∣∣cos2 θ

2
− r2 sin2

θ

2
+ ir cosφ sin θ

∣∣∣∣
n

+ cos2n
θ

2

≤
∣∣∣∣∣
(
cos

θ

2
+ ir sin

θ

2

)2
∣∣∣∣∣
n

+ cos2n
θ

2

=

(
cos2

θ

2
+ r2 sin2

θ

2

)n

+ cos2n
θ

2
.

In particular,

|En(θ, φ, r)| ≤ 2, φ ∈ [0, π], r ∈ [0, 1],

and, consequently,

|Dα,β
n (θ)| ≤ 2Aβ

α

∫ 1

1/2

∫ π

0

(1− r2)α−β−1r2β+1 sin2β φdφdr, n = 0, 1, . . . .

A change of variables in the integral leads to

|Dα,β
n (θ)| ≤ Aβ

α

∫ 1

1/4

∫ π

0

(1− u)α−β−1uβ sin2β φdφdu, n = 0, 1, . . . ,

while additional adjustments produce the inequalities

|Dα,β
n (θ)| ≤ 4Aβ

α

∫ 1

1/4

∫ π

0

(1− u)α−β−1uβ+1 sin2β φdφdu

≤ 4Aβ
α

∫ 1

0

(1− u)α−β−1uβ+1du

∫ π

0

sin2β φdφ, n = 0, 1, . . . .

It is now clear that

|Dα,β
n (θ)| ≤ 4Aβ

αB(β + 2, α− β)B(β + 1/2, 1/2), n = 0, 1, . . . .

The estimate in the statement of the lemma follows after we introduce the value of
the constant Aβ

α given in Lemma 2.2 and simplify. �
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It is worth mentioning that the upper bound for |Dα,β
n (θ)| provided by the pre-

vious lemma does not depend upon n. We close the section proving the following
key result.

Theorem 2.4. Let θ be a fixed real number in [0, π] and {αm} and {βm} sequences
in (−1/2,∞) with {αm} → ∞ and {βmα−1

m } → 0. If ε > 0, then∣∣∣∣R(αm,βm)
n (cos θ)−

(
1 + cos θ

2

)n∣∣∣∣ < ε, n = 0, 1, . . . ,

provided m is large enough.

Proof. The inequality in the statement of the theorem is trivially true for θ = 0.
We will proceed assuming that θ > 0. Let us write

Cαm,βm
n (θ) := R(αm,βm)

n (cos θ)−
(
1 + cos θ

2

)n

,

and
Cαm,βm

n (θ) =
[
Cαm,βm

n (θ)−Dαm,βm
n (θ)

]
+Dαm,βm

n (θ),

with Dαm,βm
n defined via the formula in the previous lemma. Since {αm} → ∞

and {βmα−1
m } → 0, there exists an index m0 so that αm > βm when m ≥ m0. The

estimate in Lemma 2.3 implies that

lim
m→∞

|Dαm,βm
n (θ)| = 0, n = 1, 2, . . . .

In order to complete the proof, let ε > 0 be given. We can find n0 = n0(ε, θ) > 0
so that (

cos2
θ

2
+

1

4
sin2

θ

2

)n

+ cos2n
θ

2
<

ε

2
, n ≥ n0.

Since (
cos2

θ

2
+ r2 sin2

θ

2

)n

≤
(
cos2

θ

2
+

1

4
sin2

θ

2

)n

, r ∈ (0, 1/2),

the arguments in the proof of Lemma 2.3 lead to

|Cαm,βm
n (θ)−Dαm,βm

n (θ)|

≤
εAβm

αm

2

∫ 1/2

0

∫ π

0

(1− r2)αm−βm−1r2βm+1 sin2βm φ dφ dr,

for n ≥ n0 and m ≥ m0. Recalling the definition of Aβ
α in Lemma 2.2, we finally

deduce that

|Cαm,βm
n (θ)−Dαm,βm

n (θ)| ≤ ε

2
, n ≥ n0, m ≥ m0.

By increasing m0 if necessary, we can assume that

|Dαm,βm
n (θ)| < ε

2
, m ≥ m0, n ≥ n0,

and, consequently, to conclude that

|Cαm,βm
n (θ)| < ε, m ≥ m0, n ≥ n0.

However, since {βmα−1
m } → 0, we may invoke Theorem 2.1 in order to find an

integer m1 > m0 so that

|Cαm,βm
n (θ)| < ε, m ≥ m1, n = 0, 1, . . . , n0.

It is now clear that the assertion of the theorem is reached. �
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3. The main result

In this section, we describe the main contribution of the paper, that is, a char-
acterization for the semigroup class

⋂
m Fαm,βm , for sequences {αm} and {βm}

satisfying the assumptions of Theorem 2.4.
Taking into account Theorem 2.1, the first result in this section takes the follow-

ing form.

Theorem 3.1. Let {αm} and {βm} be sequences in (−1/2,∞) with {αm} → ∞
and {βmα−1

m } → 0 . If f : [−1, 1] → R is a continuous function belonging to⋂∞
m=1 Fαm,βm , then f is representable in the form

f(t) =

∞∑
n=0

an

(
1 + t

2

)n

, t ∈ [−1, 1],

in which all the an are nonnegative and
∑∞

n=0 an < ∞.

Proof. If f is a function in the intersection class quoted in the statement of the
theorem, then for each m, we can write

f(t) =

∞∑
n=0

amn P (αm,βm)
n (t), t ∈ [−1, 1],

in which the coefficients amn are all nonnegative and with convergence of the series
for t = 1. From the inequality

∣∣∣amn P (αm,βm)
n (1)

∣∣∣ ≤
∞∑
k=0

amk P
(αm,βm)
k (1) = f(1), m, n = 0, 1, . . . ,

it is promptly seen that the double indexed sequence {amn P
(αm,βm)
n (1)} is uniformly

bounded. Without loss of generality, we can assume that all the limits

lim
m→∞

amn P (αm,βm)
n (1), n = 0, 1, . . . ,

exist. Indeed, otherwise, we may use Cantor’s diagonal process to replace the
sequence with a convenient subsequence satisfying the above condition. If we put

an := lim
m→∞

amn P (αm,βm)
n (1), n = 0, 1, . . . ,

then we obviously have that an ≥ 0, n = 0, 1, . . .. On the other hand, for t ∈ [−1, 1),

the series
∑∞

n=0 a
m
n P

(αm,βm)
n (1)2−n(1 + t)n converges uniformly on m, due to the

inequality ∣∣∣∣∣
∞∑

n=0

amn P (αm,βm)
n (1)

(
1 + t

2

)n
∣∣∣∣∣ ≤

∞∑
n=0

f(1)

∣∣∣∣1 + t

2

∣∣∣∣
n

and the convergence of the series in the right hand side of the inequality. In par-
ticular, the formula

∞∑
n=0

an

(
1 + t

2

)n

:= lim
m→∞

∞∑
n=0

amn P (αm,βm)
n (1)

(
1 + t

2

)n

, t ∈ [−1, 1),

is meaningful. Next, we show that

lim
m→∞

∞∑
n=0

amn P (αm,βm)
n (1)

(
1 + t

2

)n

= f(t), t ∈ [−1, 1].
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First, we write (m ≥ 1)

f(t) =

∞∑
n=0

amn P (αm,βm)
n (1)

(
1 + t

2

)n

+

∞∑
n=0

amn P (αm,βm)
n (1)

[
R(αm,βm)

n (t)−
(
1 + t

2

)n]
, t ∈ [−1, 1].

For ε > 0 fixed, we may apply Theorem 2.4 to select m0 = m0(ε, t) > 0 so that∣∣∣∣R(αm,βm)
n (t)−

(
1 + t

2

)n∣∣∣∣ < ε

f(1) + 1
, m ≥ m0.

In particular,∣∣∣∣∣
∞∑

n=0

amn P (αm,βm)
n (1)

[
R(αm,βm)

n (t)−
(
1 + t

2

)n]∣∣∣∣∣ < ε, m ≥ m0,

and, consequently,

f(t) =
∞∑

n=0

an

(
1 + t

2

)n

, t ∈ [−1, 1).

In order to conclude the proof, we now handle the case in which t = 1, that is, we
show that

∑∞
n=0 an converges. If this were not the case, we could select n0 ≥ 0 so

that
∑n0

n=0 an ≥ 2f(1). But then, choosing t ∈ [0, 1) so that (1 + t)n0 ≥ 2n0−1, we
would reach

f(t) ≥
n0∑
n=0

an

(
1 + t

2

)n

≥ f(1),

a contradiction. �

To proceed, we now invoke Bateman’s formula quoted in [1, P. 11]. For α, β >
−1, it holds (

1 + t

2

)n

=
n∑

k=0

bα,βk,nP
(α,β)
k (t), n = 0, 1, . . . ,

in which all coefficients bα,βk,n are nonnegative. With the help of this formula, we can
prove the following result.

Theorem 3.2. Let f : [−1, 1] → R be a function representable in the form

f(t) =
∞∑

n=0

an

(
1 + t

2

)n

, t ∈ [−1, 1],

in which all the an are nonnegative and
∑∞

n=0 an < ∞. Then, f belongs to Fα,β ,
α ≥ β > −1/2.

Proof. Using Bateman’s formula, we have

f(1) =
∞∑

n=0

an =
∞∑
n=0

an

n∑
k=0

bα,βk,nP
(α,β)
k (1) =

∞∑
k=0

∞∑
n=k

anb
α,β
k,nP

(α,β)
k (1).
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Since |P (α,β)
k (t)| ≤ P

(α,β)
k (1), n ≥ 0, we may apply Fubini’s theorem for series to

deduce that

f(t) =
∞∑

n=0

an

(
1 + t

2

)n

=
∞∑

n=0

an

n∑
k=0

bα,βk,nP
α,β
k (t) =

∞∑
k=0

aα,βk Pα,β
k (t), t ∈ [−1, 1],

where

aα,βk =
∞∑

n=k

anb
α,β
k,n ≥ 0, k = 0, 1, . . . .

The proof is complete. �

This is the main result of the paper, which is now evident.

Theorem 3.3. Let {αm} and {βm} be sequences in (−1/2,∞) with {αm} → ∞
and {βmα−1

m } → 0. A continuous function f : [−1, 1] → R belongs to
⋂∞

m=1Fαm,βm

if, and only if, f has the representation

f(t) =

∞∑
n=0

an

(
1 + t

2

)n

, t ∈ [−1, 1],

in which all the an are nonnegative and
∑∞

n=0 an < ∞.

For α, β ∈ (−1/2,∞), an easy calculation reveals that the function

t ∈ [−1, 1] → 1

2
[c(t− 1) + t+ 1]

belongs to Fα,β if, and only if,

α− β

α+ β + 2
≤ 1− c

1 + c
.

Thus, under the assumptions of the previous theorem, if we replace the condition
{βmα−1

m } → 0 with {βmα−1
m } → c > 0, it may not be true that a continuous

function f : [−1, 1] → R will belong to
⋂∞

m=1 Fαm,βm if, and only if,

f(t) =
∞∑

n=0

an

[
c(t− 1)

2
+

t+ 1

2

]n
, t ∈ [−1, 1],

with all the an nonnegative and the series being convergent at t = 1. In the case
c = 1, the situation may be even worse because if βm < αm, m = 1, 2, . . ., then the
monomials tn, n ≥ 1, do not belong to any of the classes Fαm,βm .

4. Application to positive defineteness on manifolds

In this section, we will translate the main result of the paper into the setting
of positive definiteness on certain manifolds. Let us write H to denote a compact
two-point homogeneous space and assume that the geodesic distance on H fulfills
the following requirement: all geodesics have the same length 2π. We will consider
isotropic kernels on H, that is, kernels having the form

K(x, y) = Kd
i (cos |xy|/2), x, y ∈ H,

for some continuous function Kd
i : [−1, 1] → R, where |xy| denotes the geodesic
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distance from x to y on H. The function Kd
i is usually called the isotropic part of

K. The upper index d will refer to the dimension of the spaces in accordance with
the well-known classification for them provided by Wang in [20] a long time ago:
the unit spheres Sd, d = 1, 2, . . ., the real projective spaces Pd(R), d = 2, 3, . . ., the
complex projective spaces Pd(C), d = 4, 6, . . ., the quaternionic projective spaces
Pd(Q), d = 8, 12, . . ., and the Cayley projective plane Pd(Cay), d = 16.

According to R. Gangolli ([8]), a kernel K as above is positive definite if, and
only if, its isotropic part has a representation in the form

Kd
i (t) =

∞∑
k=0

a
(d−2)/2,β
k P

((d−2)/2,β)
k (t), t ∈ [−1, 1],

in which a
(d−2)/2,β
k ∈ [0,∞), k ∈ Z+ and

∑∞
k=0 a

(d−2)/2,β
k P

((d−2)/2,β)
k (1) < ∞,

with the number β assuming the values β = (d − 2)/2,−1/2, 0, 1, 3, depending on
the respective category H belongs to, among those mentioned above. In particular,
this result encompasses Schoenberg’s characterization for positive definite functions
on spheres mentioned at the introduction and proved in [16]. In the case of real
projective spaces (β = −1/2), which can be thought of as spheres with antipodal
points identified, the quadratic transformation

P
(α,α)
2k (t)

P
(α,α)
2k (1)

=
P

(α,−1/2)
k (2t2 − 1)

P
(α,−1/2)
k (1)

, t ∈ [−1, 1], k = 0, 1, . . . ,

provides an alternative series representation for Kd
i which agrees with the setting

in [16].
Just for the record, a large class of concrete examples of kernels fitting Gangolli’s

representation theorem can be constructed via Theorem 3.4 in [13]. Indeed, let
F : [0,∞) → [0,∞) be nonconstant and continuous in its domain and completely
monotone in (0,∞). If g : [−1, 1] → R is of negative type, in the sense that,
g(0) ≥ 0 and the kernel (x, y) ∈ H2 → g(cos(|xy|/2)) is negative definite according
to [4, P. 67], then the kernel

(x, y) ∈ H2 → F (g(cos(|xy|/2)))

is positive definite. In particular, the use of

g(t) = a+ b
[
1−R

(d−2)/2,β)
1 (t)

]
, t ∈ [−1, 1],

with a, b ≥ 0, provides an easy way to construct parameterized families of positive
definite kernels on H accordingly.

Since the semigroup class
⋂

d≥2 F (d−2)/2,(d−2)/2 was characterized by Schoen-
berg, below we will describe the corresponding results for the semigroup classes⋂∞

d=1 F (d−2)/2,−1/2,
⋂∞

d=2 F (d−2)/2,0 and
⋂∞

d=4 F (d−2)/2,1.

Theorem 4.1. Let f : [−1, 1] → R be continuous. The following assertions are
equivalent:
(i) f has a representation in the form

f(t) =
∞∑
k=0

an

(
1 + t

2

)n

, t ∈ [−1, 1],
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in which all the an are nonnegative and
∑∞

n=0 an < ∞;

(ii) f belongs to
⋂∞

d=2 F (d−2)/2,−1/2, that is, the kernel (x, y) ∈ Pd(R) × Pd(R) →
f(cos |xy|/2) is positive definite for d = 2, 3, . . .;
(iii) f belongs to

⋂∞
d=2 F (d−2)/2,0, that is, the kernel (x, y) ∈ Pd(C) × Pd(C) →

f(cos |xy|/2) is positive definite for d = 4, 6, . . .;
(iv) f belongs to

⋂∞
d=4 F (d−2)/2,1, that is, the kernel (x, y) ∈ Pd(Q) × Pd(Q) →

f(cos |xy|/2) is positive definite for d = 8, 12, . . ..

Proof. In view of Theorems 3.2 and 3.3, we only have to prove that (ii) implies (i).
Let f belong to

⋂∞
d=2 F (d−2)/2,−1/2, for some d ≥ 2. Clearly, the function g(t) :=

f(2t2− 1) belongs to F (d−2)/2,(d−2)/2. Since g is an even function, the odd indexed
coefficients of g in its Fourier-Jacobi expansion as an element of F (d−2)/2,(d−2)/2

are zero. Thus,

g(s) =

∞∑
n=0

ans
2n, s ∈ [−1, 1],

in which all the an are nonnegative and
∑∞

n=0 an < ∞. But this corresponds to

f(t) =

∞∑
n=0

an

(
1 + t

2

)n

, t ∈ [−1, 1],

and the proof is complete. �
By expanding the binomial (1 + t)n, it is easily seen that a function f

satisfying any of the four conditions in the previous theorem also belongs to⋂
d≥2 F (d−2)/2,(d−2)/2, for d = 1, 2, . . .. The same is true for a function f as in

the statement of Theorem 3.3.
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