
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 5, May 2018, Pages 1879–1893
http://dx.doi.org/10.1090/proc/13893

Article electronically published on December 4, 2017

THE DIMENSION OF AUTOMORPHISM GROUPS

OF ALGEBRAIC VARIETIES

WITH PSEUDO-EFFECTIVE LOG CANONICAL DIVISORS

FEI HU

(Communicated by Lev Borisov)

Abstract. Let (X,D) be a log smooth pair of dimension n, where D is a
reduced effective divisor such that the log canonical divisor KX +D is pseudo-
effective. Let G be a connected algebraic subgroup of Aut(X,D). We show that
G is a semi-abelian variety of dimension ≤ min{n− κ̄(V ), n} with V := X \D.
In the dimension two, Iitaka claimed in his 1979 Osaka J. Math. paper that
dimG ≤ q̄(V ) for a log smooth surface pair with κ̄(V ) = 0 and p̄g(V ) = 1. We
(re-)prove and generalize this classical result for all surfaces with κ̄ = 0 without
assuming Iitaka’s classification of logarithmic Iitaka surfaces or logarithmic K3
surfaces.

1. Introduction

Throughout this paper, unless otherwise stated, we work over the field C of
complex numbers. Let V be an algebraic variety. By Nagata, there is a complete
algebraic variety V containing V as a Zariski-dense open subvariety. Then by Hi-
ronaka, there exist a log smooth pair (X,D), i.e., X is a smooth projective variety
and D is a reduced effective divisor with only simple normal crossing (SNC) singu-
larities, and a projective birational morphism π : X → V such that D = π−1(V \V )
and X \D = π−1(V ). Such a pair is called a log smooth completion of V , and D is
called the boundary divisor. We then define:

the logarithmic irregularity q̄(V ) := h0(X,Ω1
X(logD)),

the logarithmic geometric genus p̄g(V ) := h0(X,KX +D),

the logarithmic Kodaira dimension κ̄(V ) := κ(X,KX +D),

where Ω1
X(logD) is the logarithmic differential sheaf, hi(−) denotes the complex

dimension of Hi(−) and κ denotes the Iitaka D-dimension. It is known that these
numerical invariants are independent of the choice of the log smooth completion
(X,D). See [10, §11] for details.

Let G be a connected algebraic group. By Chevalley’s structure theorem on
algebraic groups, there exists a unique connected affine normal subgroup Gaff of G
such that the quotient group AG := G/Gaff is an abelian variety. Moreover, the
quotient morphism is the Albanese morphism albG of G. If Gaff is an algebraic
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torus, denoted as TG, then G is called a semi-abelian variety; i.e., there is an exact
sequence of connected algebraic groups:

(1.1) 1 −→ TG −→ G
albG−−−→ AG −→ 1.

It is known that such G is a commutative algebraic group (see e.g. [1, Proposition
3.1.1]).

Due to Serre [23, Théorèmes 5 and 7], there exist an abelian variety Alb(V ) (resp.
a semi-abelian variety AV ) and a morphism albV : V → Alb(V ) (resp. a morphism
αV : V → AV ) such that any morphism from V to an abelian variety (resp. a semi-
abelian variety) factors, uniquely up to translations, through this Alb(V ) (resp.
AV ). Then Alb(V ) (resp. albV ) is called the Albanese variety (resp. the Albanese
morphism) of V , and AV (resp. αV ) is called the quasi-Albanese variety (resp.
the quasi-Albanese morphism) of V . Note, however, that this construction of the
Albanese morphism is, in general, not of a birational nature. Alternatively, one
can birationally define the Albanese variety and the Albanese map (which is only a
rational map; cf. [16, Chapter II, §3]). See [23, Théorème 6] for the relation between
these two definitions. From the viewpoint of birational geometry, they are the same
in characteristic zero for normal projective varieties with only rational singularities
(cf. [12, Lemma 8.1]).

Let V be a smooth algebraic variety with some log smooth completion (X,D)
obtained by blowing up subvarieties of the boundary such that V = X \D. Then
the Albanese varieties of V and X are isomorphic to each other and the Albanese
morphism albV of V is just the restriction of the Albanese morphism albX of
X. Also, the Albanese morphism albV of V factors through the quasi-Albanese
morphism αV of V . That is, we have the following commutative diagram:

AV

albAV ����
���

���
���

�� V

albV

��

αV�� � � j
�� X

albX

��

Alb(V )
alb(j)

� �� Alb(X).

Further, the quasi-Albanese variety AV of V can be constructed using the space
of logarithmic 1-forms H0(X,Ω1

X(logD)). See [5, 7] for more details about this
construction, which depends on Deligne’s mixed Hodge theory for smooth complex
algebraic varieties (unlike Serre’s construction [23], which is valid over an alge-
braically closed field of arbitrary characteristic). It is known that dimAV = q̄(X)
and dimAlb(V ) = q(X) := h1(X,OX). If we assume further that V is projective,
then the quasi-Albanese morphism αV of V is just the original Albanese morphism
albV of V .

We shall refer to [15] for the standard definitions, notation, and terminologies in
birational geometry. For instance, see [15, Definitions 2.34, 2.37, and 5.8] for the
definitions of Kawamata log terminal singularity (klt), log canonical singularity (lc),
divisorial log terminal singularity (dlt), and rational singularity.

Theorem 1.1. Let (X,D) be a projective Q-factorial dlt pair of dimension n, where
D is a reduced effective divisor such that KX+D is pseudo-effective. Let Aut(X,D)
denote the stabilizer of the boundary D (viewed as a subset of X) in the automor-
phism group Aut(X) of X. Let G be a connected algebraic subgroup of Aut(X,D).
Then the following assertions hold.
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(1) G is a semi-abelian variety sitting in the exact sequence (1.1) of dimension
at most

min{n− κ(X,KX +D), n}.
(2) When dimG = n, X is a G-equivariant compactification of G such that

KX +D ∼ 0.
(3) Suppose further that κ(X,KX +D) ≥ 0. Then we have:

(a) dimG ≤ n and the equality holds only if κ(X,KX + D) = 0 and the
dimension of the abelian variety AG equals q(X);

(b) dimTG ≤ n and the equality holds only if κ(X,KX + D) = 0 and
dimAG = q(X) = 0.

A logarithmic Iitaka surface is a smooth algebraic surface V such that the
logarithmic Kodaira dimension κ̄(V ) = 0 and the logarithmic geometric genus
p̄g(V ) = 1. In this case by Kawamata [11, Corollary 29], we know that the logarith-
mic irregularity q̄(V ) ≤ dimV = 2. If we assume further that q̄(V ) = 0, we then
call V a logarithmic K3 surface. See [9] for details.

Next, we (re-)prove and generalize [9, Theorem 5], in which Iitaka provided
an upper bound of the dimension of automorphism groups of certain logarithmic
Iitaka surfaces. However, his (implicit) proof depends heavily on his classification of
logarithmic Iitaka surfaces and logarithmic K3 surfaces, so that we are not able to
follow his proof completely. Here we offer a classification-free proof for all smooth
surfaces with vanishing logarithmic Kodaira dimension.

Theorem 1.2. Let (X,D) be a log smooth pair of dimension 2 with V := X \ D
such that κ̄(V ) = 0. Let G be a connected algebraic subgroup of Aut(X,D). Then
G is a semi-abelian variety of dimension at most q̄(V ). If we assume further that
p̄g(V ) = 0, then dimG ≤ q(X).

Remark 1.3. It is known that for an abelian variety A acting faithfully on a smooth
algebraic variety X, the induced group homomorphism A → Alb(X) has a finite
kernel by the Nishi–Matsumura theorem (cf. [17]). In particular, we have dimA ≤
dimAlb(X) = q(X). However, for a semi-abelian variety G acting faithfully on a
smooth algebraic variety V , by Brion’s example1 below one cannot try to prove
G → AV has a finite kernel and to deduce dimG ≤ q̄(V ).

Let X be the projective plane P2 and D the union of a smooth conic and a
transversal line. In homogeneous coordinates, one can take for D the union of
(xy = z2) and (z = 0). Then the neutral component of the automorphism group
of (X,D) is a one-dimensional algebraic torus, acting via t · [x : y : z] = [tx :
t−1y : z]. Also, V := X \D is the complement of the conic (xy = 1) in the affine
plane A2 with coordinates x, y. So the quasi-Albanese variety AV of V is a one-
dimensional algebraic torus too, and the quasi-Albanese morphism αV is just given
by xy−1 (which generates the group of all invertible regular functions on V modulo
constants). Then αV is G-invariant, and hence G does not act on AV with a finite
kernel.

The following two corollaries are direct consequences of our main theorems, Sum-
ihiro’s equivariant completion theorem (cf. [24, Theorem 3]), and the equivariant

1The author is grateful to Professor Michel Brion for a conversation about his (counter)
example.
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resolution theorem (see [14, Proposition 3.9.1 and Theorem 3.36] for a modern
description). Indeed, let V be a normal algebraic variety, and let G be a lin-
ear algebraic subgroup of Aut(V ). Sumihiro’s theorem asserts that there exists
a G-equivariant completion V of V . Let (X,D) be a G-equivariant resolution of
singularities of V . Thus we may identify G with a subgroup of Aut(X,D) so that
our main theorems apply.

Corollary 1.4. Let V be a normal algebraic variety of logarithmic Kodaira dimen-
sion κ̄(V ) ≥ 0, and let G be a connected linear algebraic subgroup of Aut(V ). Then
G is an algebraic torus of dimension at most min{dimV − κ̄(V ), dimV }.

Corollary 1.5. Let V be a smooth algebraic surface, where (X,D) is a log smooth
completion such that V = X \D. Suppose that κ̄(V ) = 0 and let G be a connected
linear algebraic subgroup of Aut(V ). Then G is an algebraic torus of dimension at
most q̄(X). If we assume further that p̄g(V ) = 0, then dimG ≤ q(X).

2. Proof of Theorem 1.1

We first prove that G is a semi-abelian variety (see (1.1) for its definition and
related notation) under a slightly weaker condition than that of Theorem 1.1.

We remark that G is a semi-abelian variety if and only if G does not contain
any algebraic subgroup isomorphic to the one-dimensional additive algebraic group
Ga. In fact, by Chevalley’s structure theorem, to show G is a semi-abelian variety,
it suffices to show that the affine normal subgroup Gaff of G is an algebraic torus.
Consider the unipotent radical Ru(Gaff) of Gaff . If it is not trivial, then it contains
Ga. So we may assume that Gaff is reductive. Note that any non-trivial semi-simple
subgroup of Gaff also containsGa. Thus by the structure theory of reductive groups,
Gaff = R(Gaff) is an algebraic torus.

Lemma 2.1. Let (X,D) be a projective log canonical pair, where D is a reduced
effective divisor such that KX+D is pseudo-effective. Let G be a connected algebraic
subgroup of Aut(X,D). Then G is a semi-abelian variety.

Proof. Take a G-equivariant log resolution π : X̃ → X of the pair (X,D). Then we
may write

K
˜X + D̃ = π∗(KX +D) +

∑
aiEi,

where D̃ := π−1
∗ D + E with π−1

∗ D the strict transform of D and E :=
∑

Ei

the sum of all π-exceptional divisors. Note that for every Ei, the log discrepancy

ai := 1 + a(Ei, X,D) is non-negative, since (X,D) is log canonical. Thus K
˜X + D̃

is also pseudo-effective. Moreover, G is a subgroup of Aut(X̃, D̃) since π is a G-

equivariant log resolution. Therefore, replacing (X,D) by (X̃, D̃), we may assume
that (X,D) is log smooth.

Suppose to the contrary that G contains some algebraic subgroup isomorphic to
Ga. Consider the faithful action of Ga on (X,D). It is a generically free action
since Ga admits no non-trivial algebraic subgroup. More precisely, outside the
closed subset F of all fixed points of Ga-action, this action is free; i.e., the Ga-orbit
of any point x ∈ X \ F is isomorphic to the affine line via the orbit map. Thus we
obtain a dominating family of rational curves on X by completing these Ga-orbits.
A general rational curve (not contained in D) of this family can only intersect the
boundary D in at most one point. Note that if a proper variety is dominated



THE DIMENSION OF AUTOMORPHISM GROUPS OF VARIETIES 1883

by rational curves, then it is in fact covered by rational curves (cf. [13, Corollary
1.4.4]). Hence by [2, Lemma 2.1], it follows that KX + D is not pseudo-effective,
which contradicts our assumption. �

Next, we give an upper bound of the dimension of a semi-abelian variety acting
faithfully on an arbitrary algebraic variety.

Lemma 2.2. Let G be a semi-abelian variety. Suppose that G acts faithfully on
an algebraic variety V of dimension n. Then we have

dimG ≤ min{n− κ̄(V ), n}.

In particular, if dimG = n, then V contains a Zariski open orbit with trivial isotropy
group.

Proof. Let TG denote the algebraic torus as in the definition of the semi-abelian
variety G. Then TG acts generically freely on V by [3, §1.6, Corollaire 1]. In other
words, there exists a Zariski open subvariety U of V such that the isotropy group
(TG)x is trivial for any x ∈ U . Note that the isotropy group Gx has a fixed point
x and hence is affine by [1, Proposition 2.1.6]. Thus the neutral component of Gx

is contained in (TG)x, so is trivial for any x ∈ U . Therefore, Gx is finite for any
x ∈ U . Then we can easily get

n = dimV ≥ dimG · x = dimG− dimGx = dimG.

Suppose that dimG = n = dimV . Then for any x ∈ U , the orbit G · x is Zariski-
dense in V . Equivalently, since every orbit is locally closed, G · x is a Zariski open
subvariety of V . Note that the isotropy group Gx acts trivially on G · x because G
is commutative; so does Gx on V . This implies that Gx is trivial since the whole
G-action is faithful. Thus in this optimal case, we have proved the assertion in the
lemma.

On the other hand, by a theorem due to Rosenlicht (cf. [21, Theorem 2]), there
exists a Zariski open subvariety V0 of V such that the geometric quotient V0/G
exists. Consider the natural quotient map V0 → V0/G with a general fibre F = G·x0

for some x0 ∈ U ∩ V0. By Iitaka’s easy addition formula (cf. [10, Theorem 11.9]),
we have

κ̄(V ) ≤ κ̄(V0) ≤ κ̄(F ) + dim(V0/G).

Note that this general fibre F is isomorphic to G/Gx0
, where Gx0

is finite as x0 ∈ U .
Thus F is also a semi-abelian variety and hence κ̄(F ) = 0. By a dimension formula
for quotient varieties, we have

dim(V0/G) = dimV − dimG+min
x∈V

dimGx = n− dimG.

Combining the last two displayed (in)equalities, we prove that dimG ≤ n − κ̄(V ).
Together with dimG ≤ n, which we just proved, we obtain the desired upper bound
of dimG. �

Remark 2.3. Without the condition dimG = n, one can still show that the semi-
abelian variety G acts generically freely on V . Actually, the isotropy group Gx is
generically finite by the proof of Lemma 2.2. Note that finite subgroups of a semi-
abelian variety form a countable family. So one may use [8, Lemma 5] to conclude
that Gx is generically trivial.
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Proof of Theorem 1.1. Replacing (X,D) by some G-equivariant log resolution as
in the proof of Lemma 2.1, we may assume that (X,D) is log smooth with pseudo-
effective KX + D, and V := X \ D is a smooth quasi-projective subvariety of X.
Note that after this replacement, the Iitaka dimension κ(X,KX +D) remains the
same equal to κ̄(V ). In Lemma 2.1 we have proved that G is a semi-abelian variety.
We may then regard G ≤ Aut0(X,D) as an algebraic subgroup of Aut(V ). Indeed,
the natural restriction map G → G|V is an isomorphism. Thus applying Lemma
2.2 to the faithful G-action on V , the assertion (1) follows.

For the assertion (2), by the above lemma again, X (actually V ) contains a
Zariski open orbit V ′ with trivial isotropy group (so V ′ � G). Let D′ := X \ V ′ be
the (total) boundary of this almost homogeneous variety. By taking a G-equivariant
log resolution, we may assume thatD′ is a simple normal crossing divisor containing
D. Thus by [2, Theorem 1.1], we have KX+D′ ∼ 0. But KX+D is already pseudo-
effective. So D = D′ and hence KX +D ∼ 0. Since the push-forward of a linearly
trivial divisor is also linearly equivalent to zero, the original pair (X,D) has trivial
log canonical divisor. This shows the assertion (2).

Suppose that κ(X,KX+D) ≥ 0 and dimG = n. Then κ̄(V ) = κ(X,KX+D) = 0.
We now show the second equality in assertion (3a), i.e., dimAG = q(X). First it
follows from [11, Theorem 28] that the quasi-Albanese morphism αV : V → AV is
an open algebraic fibre space (i.e., generically surjective with irreducible general
fibres). In particular,

q̄(V ) = dimAV ≤ dimV = n.

By the universal properties of the Albanese morphism albV and the quasi-Albanese
morphism αV , we know that the G-action on V descends uniquely to an action
of G on the abelian variety Alb(V ) and the semi-abelian variety AV , respectively.
In other words, we have the following two exact sequences of connected algebraic
groups:

1 −→ KA −→ G −→ Aut0(Alb(V )) = Alb(V ),

1 −→ Kα −→ G −→ Aut0(AV ),

where KA and Kα denote the corresponding kernels. On the other hand, both
G and AV are semi-abelian, so we also have the following two exact sequences of
connected algebraic groups:

1 −→ TG −→ G
albG−−−→ AG −→ 1,

1 −→ TAV
−→ AV

albAV−−−−→ Alb(AV ) = Alb(V ) −→ 1.

By the Nishi–Matsumura theorem (cf. [17]), the induced group homomorphism
G → Alb(V ) factors through AG such that the group homomorphism AG → Alb(V )
has a finite kernel. In particular, we have

dimAG ≤ dimAlb(V ) = q(X).

Identify the torus TG/TG ∩Kα with its image in Aut0(AV ). Note that the induced
action of TG on the abelian variety Alb(V ) is trivial. Thus TG/TG ∩ Kα acts
faithfully on TAV

. Note that a torus acting faithfully on another torus must act by
multiplication. Set d := dimTG. We have

d− dimTG ∩Kα = dimTG/TG ∩Kα ≤ dimTAV
=: t.
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Note that the torus TG ∩Kα acts trivially on AV , and hence it acts faithfully on
the general fibre F of the quasi-Albanese morphism αV : V → AV . By [3, §1.6,
Corollaire 1] we have

dimTG ∩Kα ≤ dimF = dimV − dimAV = n− q̄(V ).

In order to satisfy dimG = d + dimAG = n = q(X) + t + (n − q̄(V )), all of
the last three displayed inequalities should be equalities. In particular, we have
dimAG = q(X).

Note that (X,D) is a projective dlt pair and hence X has only rational singu-
larities (cf. [15, Theorem 5.22]). For such X, its irregularity q(X) does not depend
on its resolution. Thus dimAlb(V ) equals q(X) of the original X. This completes
the proof of the assertion (3a).

For the last assertion (3b), if the dimension of the torus part TG of G is maximal
(i.e., d = n), then we have dimG = n, and hence all statements in the assertion (3a)
hold. Moreover, it follows from G = TG that AG = 0. Thus q(X) = dimAG = 0.
(In particular, AV is an algebraic torus of dimension q̄(V ) = t ≤ n.) We have
completed the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2, which shall be divided into Theorems
3.6 and 3.11. The first theorem considers the logarithmic Iitaka surfaces (i.e., κ̄ = 0
and p̄g = 1), while all other algebraic surfaces with κ̄ = p̄g = 0 are dealt with by
the second one. We first prepare some general results used to prove both theorems.

3.1. Preliminaries. We will frequently and implicitly use the following lemma to
compare logarithmic invariants of an algebraic variety with an open subvariety.

Lemma 3.1 (cf. [10, Proposition 11.4]). Let X be an algebraic variety, and let U
be a non-empty Zariski open subvariety of X. Then we have

q̄(X) ≤ q̄(U), p̄g(X) ≤ p̄g(U), and κ̄(X) ≤ κ̄(U).

The following lemma is a slight generalization of [9, Lemma 2], which is used to
compute q̄.

Lemma 3.2. Let (X,D) be a log smooth pair of dimension n with V := X \D. Let∑
Di be the irreducible decomposition of D. Then we have

q̄(V ) = q(X) + rankKer(
⊕

Z[Di] → NS(X)),

where NS(X) := Pic(X)/Pic0(X) denotes the Néron–Severi group of X.

Proof. We first have the following long exact sequence of local cohomology:

· · · → H1
D(X,Z) → H1(X,Z) → H1(V,Z) → H2

D(X,Z) → H2(X,Z) → · · · ,
where Hi

D(X,Z) are the cohomology groups of X with support in D. Since D is of
codimension 1 in X, we get that Hi

D(X,Z) = 0 for i = 0, 1 (cf. [18, Lemma 23.1]).
It is also known that

H2
D(X,Z) �

⊕
H2

Di
(X,Z) �

⊕
H0(Di,Z) =

⊕
Z[Di],

as the first isomorphism follows from the Mayer–Vietoris sequence and the second
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one holds by Poincaré–Lefschetz duality. Note that dimC H1(V,C)−dimC H1(X,C)
= (q̄(V ) + q(X))− 2q(X) = q̄(V )− q(X). On the other hand, the preceding exact
sequence yields

H1(V,Z)/H1(X,Z) � Ker(
⊕

Z[Di] → H2(X,Z)) = Ker(
⊕

Z[Di] → NS(X)).

So we obtain the lemma. �
As a corollary of the above lemma and the well-known behavior of Néron–Severi

groups under a point blowup, we can readily see that the logarithmic irregularity
q̄ is (somewhat) invariant under any point blowup.

Lemma 3.3. Let (X,D) be a log smooth pair of dimension n with V := X \D. Let

π : X̃ → X be the blowup of some point. Let D̃ be the sum of the strict transform

π−1
∗ D and some reduced effective exceptional divisors. Denote Ṽ := X̃ \ D̃. Then

we have q̄(Ṽ ) = q̄(V ). �
For a log surface, we also need the following formula to calculate p̄g, which is

due to Sakai (cf. [22, Lemma 1.12]). See also [19, Chapter 1, Lemma 2.3.1] for a
similar treatment.

Lemma 3.4. Let (X,D) be a log smooth pair of dimension 2 with V := X \ D.
Then we have

p̄g(V ) = pg(X) + h1(OD)− q(X) + γ(D),

where γ(D) := dimKer{H1(X,OX) → H1(D,OD)}. In particular, if X is a regular
surface, then p̄g(V ) = pg(X) + h1(OD).

Remark 3.5. For a log smooth surface pair (X,D), if D is connected such that
h1(OD) = 1, then D contains a smooth elliptic curve or a cycle of smooth rational
curves. Indeed, recall that the arithmetic genus of the divisor D is defined as
pa(D) := 1 − χ(OD) = h1(OD), where χ(F) :=

∑
(−1)ihi(F) denotes the Euler

characteristic of a coherent sheaf F . By the Riemann–Roch theorem, one has the
following genus formula:

pa(D) = 1 +
1

2
D.(KX +D).

Then it is easy to see that the arithmetic genus of a tree of smooth rational curves is
zero. Meanwhile, if D contains a curve of genus greater than one, then pa(D) ≥ 2.

For a general (not necessarily connected) boundary D, the above genus formula
also holds. By the induction on the number of the connected components of D, one
can show that

h1(OD) =
∑

h1(ODj ),

where each Dj is a connected component of D. Therefore, if we assume that
h1(OD) = 1, then there exists a unique connected component of D such that its
arithmetic genus is one. We know the behavior of this connected component from
the discussion above.

3.2. Logarithmic Iitaka surfaces. In this subsection, we will prove Theorem 1.2
in the setting of the title, which means κ̄ = 0 and p̄g = 1. We actually prove the
following theorem.

Theorem 3.6. Let V be a logarithmic Iitaka surface, and let (X,D) be a log smooth
completion such that V = X \ D. Then the neutral component of Aut(X,D) is a
semi-abelian variety of dimension at most q̄(V ).
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By the classification theory of smooth projective surfaces, we can show that for
a logarithmic Iitaka surface V , the ambient surface X can only have the following
possibilities. In this paper, a ruled surface always means a birationally ruled surface,
i.e., birationally equivalent to C × P1 for some smooth curve C. The genus of the
base curve C is also called the genus of the ruled surface. In particular, an elliptic
ruled surface is a ruled surface of genus 1.

Lemma 3.7. Let V be a logarithmic Iitaka surface, and let (X,D) be a log smooth
completion such that V = X \D. Then X belongs to one of the following cases:

(1) X is a rational surface; pg(X) = q(X) = 0 and h1(OD) = 1.
(2) X is an elliptic ruled surface; pg(X) = 0 and q(X) = 1.
(3) X is (birationally) a K3 surface or an abelian surface; pg(X) = 1.

Proof. By Lemma 3.1, one has κ(X) ≤ κ̄(V ) = 0 and pg(X) ≤ p̄g(V ) = 1. We first
consider the case κ(X) < 0. If q(X) = 0, this is just the case (1). If q(X) ≥ 1, we
will show that X cannot be a ruled surface of genus q(X) > 1. Let albX : X → B ⊆
Alb(X) be the Albanese morphism of X with B a smooth projective curve of genus
q(X) ≥ 1 because pg(X) = 0. For a general point b ∈ B, the fibre F := alb−1

X (b) of
b is a smooth rational curve. Define FV := F ∩ V . Then by Iitaka’s easy addition
formula (cf. [10, Theorem 11.9]), we have

0 = κ̄(V ) ≤ κ̄(FV ) + dimB,

which implies that κ̄(FV ) ≥ 0. On the other hand, by Kawamata’s addition formula
(for morphisms of relative dimension one; cf. [10, Theorem 11.15]), we have

0 = κ̄(V ) ≥ κ̄(FV ) + κ(B) ≥ κ(B) ≥ 0.

Thus κ̄(FV ) = κ(B) = 0, and hence B is an elliptic curve. This gives us the case
(2).

We next consider the case κ(X) = 0. To obtain the case (3), we just need to
rule out the Enriques surfaces and the hyperelliptic surfaces. If X is (birationally)

an Enriques surface, then there exists a finite étale cover σ : X̃ → X for some

(birationally) K3 surface X̃. Let D̃ := σ−1D and Ṽ := X̃ \ D̃. Then we have

κ̄(Ṽ ) = κ̄(V ) = 0 since σ|
˜V : Ṽ → V is also a finite étale cover (cf. [10, Theorem

11.10]). On the other hand, it follows from Lemma 3.4 that h1(OD) = 1 and hence
there exists a unique connected component D1 of D such that h1(OD1) = 1 (see

also Remark 3.5). Take a connected component D̃1 of D̃ which maps onto D1.

Then consider the induced finite étale cover D̃1 → D1. Say its degree is d. We
obtain the following equalities:

1− h1(O
˜D1) = χ(O

˜D1) = d · χ(OD1) = d · (1− h1(OD1)) = 0.

Hence by Lemma 3.4 again we have p̄g(Ṽ ) = pg(X̃)+h1(O
˜D) ≥ pg(X̃)+h1(O

˜D1) =

2. This contradicts the fact that κ̄(Ṽ ) = 0.
If X is (birationally) a hyperelliptic surface, then there exists a minimal model

Xm of X obtained by contracting all (−1)-curves. Let μ : X → Xm denote the
composite contraction morphism and Dm := μ∗D. There is an effective divisor Rμ

with support the union of all μ-exceptional divisors such that KX = μ∗KXm
+Rμ



1888 FEI HU

by the ramification formula (cf. [10, Theorem 5.5]). Then we have

0 = κ̄(V ) = κ(X,KX +D) = κ(X,μ∗KXm
+Rμ +D)

= κ(X,μ∗KXm
+NRμ +D) for N 
 0 by [10, Lemma 10.5]

≥ κ(X,μ∗KXm
+ μ∗Dm) = κ(Xm,KXm

+Dm).

Note that KXm
∼Q 0 and Dm is nef (see e.g. [6, Lemma 2.11]). So we have

0 ≥ κ(Xm,KXm
+Dm) = κ(Xm, Dm) ≥ 0,

and hence Dm ∼Q 0 by the abundance theorem for surfaces (cf. [4, Theorem 6.2]).
Then Dm being effective implies that Dm = 0; i.e., D is μ-exceptional. Thus by
the projection formula,

H0(X,KX +D) = H0(X,μ∗KXm
+Rμ +D) = H0(Xm,KXm

) = 0.

This contradicts the assumption p̄g(V ) = h0(X,KX +D) = 1. �

Remark 3.8. Let V be a logarithmic Iitaka surface, where (X,D) is a log smooth
completion such that V = X \ D. Let

∑
Di be the irreducible decomposition of

D. We would like to introduce an associated divisor DA separately for each case in
Lemma 3.7 as follows.

(1) If X is a rational surface, by Remark 3.5 there are two subcases:
(i) if Di is a smooth elliptic curve for some i, then let DA = Di;
(ii) if pa(Di) = 0 for all i, then there is a cycle of smooth rational curves∑r

i=1Di =:DA.
(2) If X is an elliptic ruled surface, we have seen in the proof of Lemma 3.7

that the general fibre FV (of the restriction morphism albX |V : V → B) is
rational and has logarithmic Kodaira dimension zero. So it is isomorphic
to the one-dimensional algebraic torus Gm, and hence D.F = 2. We then
denote by DA the sum of all irreducible components of D which are mapped
onto B by the Albanese morphism (or ruled fibration) albX . Namely, DA

is a sum of two cross-sections or a double section of albX .
(3) If pg(X) = 1, then let DA = 0.

We then claim that in each case above, X\DA is still a logarithmic Iitaka surface.
Indeed, it suffices to show that p̄g(X \DA) = 1 since κ̄(X \DA) ≤ κ̄(X \D) = 0.
The case (1) is easy by Lemma 3.4. For the case (2), our p̄g-formula may not be
used due to some unknown invariants. However, we note that the general fibre
of X \ DA → B is still Gm by the definition of DA. So by Kawamata’s addition
formula (cf. [10, Theorem 11.15]), κ̄(X \ DA) ≥ κ̄(Gm) + κ(B) = 0. Choose
M ∈ |KX + D| and N ∈ |m(KX + DA)| for some positive integer m. Then by
mM ∼ m(KX + D) ∼ N + m(D − DA) ≥ 0 and κ(X,KX + D) = 0, we have
mM = N + m(D − DA). Thus M − (D − DA) = N/m is an effective divisor so
that |KX +DA| is non-empty.

We keep using the notation DA till the end of this subsection. Next, we provide
a new and much shorter proof of Iitaka’s Theorem III in [9].

Lemma 3.9. Let V be a logarithmic Iitaka surface, and let (X,D) be a log smooth
completion such that V = X \D. Suppose that there is no (−1)-curve in X \DA.
Then KX +DA ∼ 0.
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Proof. We only need to show that KX +DA is nef. Indeed, by the claim in Remark
3.8 we have seen that κ(X,KX + DA) = 0 and p̄g(X \ DA) = 1. Then by the
abundance theorem for surfaces, KX+DA ∼Q 0 (cf. [4, Theorem 6.2]). In particular,
KX +DA ∼ 0 since p̄g(X \DA) = 1.

Suppose to the contrary that there exists an irreducible curve C such that (KX+
DA).C < 0. Then C2 < 0 because κ(X,KX+DA) = 0. If C �⊆ DA, then DA.C ≥ 0
and henceKX .C < 0. So by the adjunction formula, we know that C is a (−1)-curve
and KX .C = −1. Thus 0 ≤ DA.C < −KX .C = 1 implies that DA.C = 0. This
means C∩DA = ∅, contradicting our assumption. If C ⊆ DA, write DA = C+D′

A

with D′
A.C ≥ 0. Then we have

(KX + C).C ≤ (KX + C +D′
A).C = (KX +DA).C < 0.

So by the adjunction formula again, C is a smooth rational curve, i.e., pa(C) = 0.
Hence the cases (1)(i) and (2) in Remark 3.8 cannot happen, since in both cases
pa(C) ≥ 1. For the case (1)(ii) note that D′

A.C = 2, since DA is a cycle of smooth
rational curves. Thus

0 > (KX +DA).C = (KX + C +D′
A).C = (KX + C).C + 2 = 2pa(C) = 0,

which is absurd. For the last case (3), it is obvious that C is a (−1)-curve, which
is impossible under our assumption. �

As we mentioned in Remark 1.3, the natural geometric approach may not apply
to bound the dimension. Hence the following easy observation could be thought of
as a starting point for proving our main theorem.

Lemma 3.10. Let (X,D) be a log smooth pair of dimension 2 with V := X \ D
such that KX +D ∼ 0. Then dimAut0(X,D) = q̄(V ).

Proof. Let ΘX(− logD) denote the logarithmic tangent sheaf, which is just the dual
of the logarithmic differential sheaf Ω1

X(logD). ThenH0(X,ΘX(− logD)) is the Lie

algebra of the connected algebraic group Aut0(X,D). In our situation, Ω2
X(logD) =

OX(KX +D) = OX . Hence ΘX(− logD) = (Ω1
X(logD))∨ � Ω1

X(logD). �

Proof of Theorem 3.6. We have already seen by Theorem 1.1 that Aut0(X,D) is a
semi-abelian variety. Let G denote the neutral component of Aut(X,DA). Then
Aut0(X,D) ≤ G by the special choice of DA (see Remark 3.8 for its definition).
Let

π : X = X0
π0−→ X1

π1−→ · · · πm−1−−−→ Xm

be the composition of morphisms πi such that for every 0 ≤ i ≤ m− 1:

(1) πi is a blowdown of some (−1)-curve Ei in Xi,
(2) DA,i+1 := πi∗DA,i,
(3) Ei ⊂ Xi \DA,i.

We may assume that Xm \DA,m has no (−1)-curve. Note that Xm \DA,m is still a
logarithmic Iitaka surface and the DA-part of DA,m is itself. Then by Lemma 3.9,
we have KXm

+DA,m ∼ 0, and hence

dimAut0(Xm, DA,m) = q̄(Xm \DA,m)

by Lemma 3.10. Further, it follows from Lemmas 3.3 and 3.1 that

q̄(Xm \DA,m) = q̄(X \DA) ≤ q̄(V ).
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Thus we only need to prove that π is G-equivariant so that G ≤ Aut0(Xm, DA,m).

Indeed, the class of each (−1)-curve in NE(Xi) is a (KXi
+DA,i)-negative extremal

ray, so is preserved by the connected group G. Hence each πi is G-equivariant, and
so is the composition π.2

From the discussion above, we have

dimAut0(X,D) ≤ dimAut0(X,DA) ≤ dimAut0(Xm, DA,m) = q̄(Xm \DA,m)

≤ q̄(V ).

This completes the proof of Theorem 3.6. �
3.3. Surfaces with κ̄ = p̄g = 0. Parallel to the previous subsection, we are going
to prove Theorem 1.2 for smooth algebraic surfaces with both logarithmic Kodaira
dimension and logarithmic geometric genus vanishing. Together with logarithmic
Iitaka surfaces, they are all smooth algebraic surfaces with vanishing logarithmic
Kodaira dimension.

Theorem 3.11. Let (X,D) be a log smooth pair of dimension 2 with V := X \D
such that κ̄(V ) = p̄g(V ) = 0. Then the neutral component of Aut(X,D) is a
semi-abelian variety of dimension at most q(X).

Given a smooth algebraic surface V with κ̄(V ) = p̄g(V ) = 0, similarly with
Lemma 3.7, we also have some restriction on this surface if it further admits a
faithful algebraic 1-torus action. Recall that an elliptic ruled surface is a (bira-
tionally) ruled surface of genus 1.

Lemma 3.12. Let (X,D) be a log smooth pair of dimension 2 with V := X \ D.
Suppose that κ̄(V ) = p̄g(V ) = 0 and Gm ≤ Aut(X,D). Then X is an elliptic ruled
surface.

Proof. By a classical characterization of the Gm-surfaces (i.e., algebraic surfaces
admitting algebraic 1-torus action), there exists an invariant Zariski open subvariety
U ⊆ V equivariantly isomorphic to C0 ×Gm with Gm acting only on the second
factor by translation, where C0 is a smooth curve (probably non-projective; cf. [20,
§1.6, Lemma, and §2.2, Theorem]). Thus there is an equivariant birational map
f : X ��� C × P1 with C the smooth completion of C0. Since X cannot be a ruled
surface of genus q(X) > 1 by the same argument as in the proof of Lemma 3.7, we
only need to rule out the case that X is a rational surface.

Suppose to the contrary that X is a rational surface. Then obviously the curve
C can be taken as P1. So we obtain an equivariant birational map f : X ��� Y :=
P1×P1. Note that κ̄(U) ≥ κ̄(V ) = 0, and hence C0 = Gm or P1 \{x1, . . . , xt} with
t ≥ 3.

Case 1. C0 = Gm. Take an equivariant resolution π : X̃ → X of the indeterminacy

points of f and Sing(X\U) such that ϕ := f ◦π : X̃ → Y is an equivariant birational
morphism and π−1(X\U) is a simple normal crossing divisor. Since our logarithmic
invariants κ̄, p̄g, and q̄ are independent of the choice of the log smooth completion
(cf. [10, §11]), it follows that

κ̄(Ṽ ) = κ̄(V ) = 0, p̄g(Ṽ ) = p̄g(V ) = 0, and q̄(Ṽ ) = q̄(V ) ≤ 2,

2The G-equivariance of the morphism π also follows from a general result of Blanchard which
asserts that π is G-equivariant as long as π∗OX = OXm (see e.g. [1, Proposition 4.2.1] for the

precise statement).
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where Ṽ := X̃ \ D̃ with D̃ := π−1(D). Let B̃ := π−1(X \ U) \ D̃. We consider the

new pair (X̃, D̃+ B̃). It is easy to see that X̃ \ (D̃+ B̃) = π−1(U) � U � Gm×Gm

under the birational morphism ϕ. We can take a reduced effective divisor DY :=

2 sections + 2 fibres on Y such that ϕ−1(DY ) = D̃ + B̃, since the restriction of ϕ

to X̃ \ (D̃ + B̃) is an isomorphism.

We have two possibilities according to the dimension of ϕ(B̃). Suppose that

dimϕ(B̃) = 0; i.e., B̃ is ϕ-exceptional. Note that ϕ is the composition of blowups

of (fixed) points. Then by Lemma 3.3, we have q̄(Ṽ ) = q̄(Y \ DY ) = 2. So

by [11, Corollary 29], the quasi-Albanese morphism α
˜V : Ṽ → A

˜V is birational,

and hence p̄g(Ṽ ) = 1 since p̄g is a birational invariant for smooth varieties. This

contradicts our assumption. Suppose that dimϕ(B̃) = 1. Then ϕ(D̃) is a proper

subset of DY with some fibre or section taken away so that κ̄(Y \ϕ(D̃)) = −∞. In
this case, by the logarithmic ramification formula we have

K
˜X + ϕ−1(ϕ(D̃)) = ϕ∗(KY + ϕ(D̃)) + E,

where E is an effective ϕ-exceptional divisor (cf. [10, Theorem 11.5]). It follows
that

κ̄(X̃ \ ϕ−1(ϕ(D̃))) = κ̄(Y \ ϕ(D̃)) = −∞.

Also note that D̃ ≤ ϕ−1(ϕ(D̃)) and hence κ̄(Ṽ ) = κ̄(X̃ \ D̃) ≤ κ̄(X̃ \ϕ−1(ϕ(D̃))) =
−∞, which is a contradiction.

Case 2. C0 = P1\{x1, . . . , xt} with t ≥ 3. The proof of this case is quite similar with
the first one. We keep using the notation there but take DY := 2 sections+ t fibres
on Y with respect to the first projection p1 : P

1 × P1 → P1, such that ϕ−1(DY ) =

D̃+ B̃. If dimϕ(B̃) = 0, then by Lemma 3.3 we have q̄(Ṽ ) = q̄(Y \DY ) ≥ 3. This

contradicts the fact that q̄(Ṽ ) ≤ 2. If dimϕ(B̃) = 1, we also have two possibilities:

• ϕ(B̃) contains a section: we can derive a contradiction like κ̄(Ṽ ) = −∞ as
in Case 1.

• ϕ(B̃) consists of fibres: according to the number of the fibres, we can get

q̄(Ṽ ) ≥ 3, or q̄(Ṽ ) = 2 and p̄g(Ṽ ) = 1, or κ̄(Ṽ ) = −∞. All of these cases
cannot happen under our assumptions.

Therefore, we have proved that X cannot be a rational surface, and hence this
completes the proof of Lemma 3.12. �

Proof of Theorem 3.11. First it follows directly from Theorem 1.1 that G :=
Aut0(X,D) is a semi-abelian variety of dimension at most 2. If dimG = 2, then
by Theorem 1.1(2), KX + D ∼ 0 and hence p̄g(V ) = 1, which is impossible. So
we only need to consider the case dimG = 1. If G is complete, then by the Nishi–
Matsumura theorem (cf. [17]), the induced group homomorphism G → Alb(V ) has
a finite kernel. In particular, we have dimG ≤ dimAlb(V ) = q(X). The last
remaining case is G = Gm. By Lemma 3.12, X is an elliptic ruled surface with
q(X) = 1 in this case. So dimG = 1 = q(X). �

3.4. Proof of Theorem 1.2. This follows immediately from Theorems 3.6 and
3.11.
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