Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positive definite functions on the unit sphere and integrals of Jacobi polynomials


Author: Yuan Xu
Journal: Proc. Amer. Math. Soc. 146 (2018), 2039-2048
MSC (2010): Primary 33C45, 33C50, 42A82, 60E10
DOI: https://doi.org/10.1090/proc/13913
Published electronically: October 30, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ \alpha , \beta \in \mathbb{N}_0$ and $ \max \{\alpha ,\beta \} >0$, it is shown that the integrals of the Jacobi polynomials

$\displaystyle \int _0^t (t-\theta )^\delta P_n^{(\alpha -\frac 12,\beta -\frac ... ...ight )^{2 \alpha } \left (\cos \tfrac {\theta }2\right )^{2 \beta } d\theta > 0$    

for all $ t \in (0,\pi ]$ and $ n \in \mathbb{N}$ if $ \delta \ge \alpha + 1$ for $ \alpha ,\beta \in \mathbb{N}_0$ and $ \max \{\alpha ,\beta \} > 0$. This proves a conjecture on the integral of the Gegenbauer polynomials in a work of Beatson (2014) that implies the strictly positive definiteness of the function $ \theta \mapsto (t - \theta )_+^\delta $ on the unit sphere $ \mathbb{S}^{d-1}$ for $ \delta \ge \lceil \frac {d}{2}\rceil $ and the Pólya criterion for positive definite functions on the sphere $ \mathbb{S}^{d-1}$ for $ d \ge 3$. Moreover, the positive definiteness of the function $ \theta \mapsto (t - \theta )_+^\delta $ is also established on the compact two-point homogeneous spaces.

References [Enhancements On Off] (What's this?)

  • [1] Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun, Dover Publications, Inc., New York, 1966. MR 0208797
  • [2] Richard Askey and James Fitch, Integral representations for Jacobi polynomials and some applications., J. Math. Anal. Appl. 26 (1969), 411-437. MR 0237847, https://doi.org/10.1016/0022-247X(69)90165-6
  • [3] V. S. Barbosa and V. A. Menegatto, Strictly positive definite kernels on compact two-point homogeneous spaces, Math. Inequal. Appl. 19 (2016), no. 2, 743-756. MR 3458777, https://doi.org/10.7153/mia-19-54
  • [4] R. K. Beatson and W. zu Castell, One-step recurrences for stationary random fields on the sphere, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 043, 19. MR 3491570, https://doi.org/10.3842/SIGMA.2016.043
  • [5] R. K. Beatson and W. zu Castell, Dimension hopping and families of strictly positive definite zonal basis functions on spheres, J. Approx. Theory 221 (2017), 22-37. MR 3682052, https://doi.org/10.1016/j.jat.2017.04.001
  • [6] R. K. Beatson, Wolfgang zu Castell, and Yuan Xu, A Pólya criterion for (strict) positive-definiteness on the sphere, IMA J. Numer. Anal. 34 (2014), no. 2, 550-568. MR 3194799, https://doi.org/10.1093/imanum/drt008
  • [7] Rafaela N. Bonfim and Valdir A. Menegatto, Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces, J. Multivariate Anal. 152 (2016), 237-248. MR 3554789, https://doi.org/10.1016/j.jmva.2016.09.004
  • [8] Debao Chen, Valdir A. Menegatto, and Xingping Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2733-2740. MR 1974330, https://doi.org/10.1090/S0002-9939-03-06730-3
  • [9] Feng Dai and Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3060033
  • [10] Ramesh Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121-226. MR 0215331
  • [11] George Gasper, Positive integrals of Bessel functions, SIAM J. Math. Anal. 6 (1975), no. 5, 868-881. MR 0390318, https://doi.org/10.1137/0506076
  • [12] George Gasper, Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. 8 (1977), no. 3, 423-447. MR 0432946, https://doi.org/10.1137/0508032
  • [13] Tilmann Gneiting, Strictly and non-strictly positive definite functions on spheres, Bernoulli 19 (2013), no. 4, 1327-1349. MR 3102554, https://doi.org/10.3150/12-BEJSP06
  • [14] Chunsheng Ma, Isotropic covariance matrix polynomials on spheres, Stoch. Anal. Appl. 34 (2016), no. 4, 679-706. MR 3507186, https://doi.org/10.1080/07362994.2016.1170612
  • [15] V. A. Menegatto, C. P. Oliveira, and A. P. Peron, Strictly positive definite kernels on subsets of the complex plane, Comput. Math. Appl. 51 (2006), no. 8, 1233-1250. MR 2235825, https://doi.org/10.1016/j.camwa.2006.04.006
  • [16] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108. MR 0005922
  • [17] Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23. Revised ed, American Mathematical Society, Providence, R.I., 1959. MR 0106295
  • [18] Yuan Xu and E. W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992), no. 4, 977-981. MR 1096214, https://doi.org/10.2307/2159477
  • [19] Johanna Ziegel, Convolution roots and differentiability of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2063-2077. MR 3182025, https://doi.org/10.1090/S0002-9939-2014-11989-7

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33C45, 33C50, 42A82, 60E10

Retrieve articles in all journals with MSC (2010): 33C45, 33C50, 42A82, 60E10


Additional Information

Yuan Xu
Affiliation: Department of Mathematics University of Oregon Eugene, Oregon 97403-1222
Email: yuan@uoregon.edu

DOI: https://doi.org/10.1090/proc/13913
Keywords: Positive definite functions, sphere, positive integrals, Jacobi polynomials
Received by editor(s): January 10, 2017
Received by editor(s) in revised form: July 1, 2017
Published electronically: October 30, 2017
Additional Notes: The author was supported in part by NSF Grant DMS-1510296.
Communicated by: Walter Van Assche
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society