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ON (p, r)-FILTRATIONS AND TILTING MODULES

PAUL SOBAJE

(Communicated by Pham Huu Tiep)

Abstract. We study the relationship between Donkin’s Tilting Module Con-
jecture and Donkin’s Good (p, r)-Filtration Conjecture. Our main result was
motivated by a result of Kildetoft and Nakano showing that the Tilting Mod-
ule Conjecture implies one direction of the Good (p, r)-Filtration Conjecture.
We observe that the converse nearly holds; in particular, a weaker version of
the Good (p, r)-Filtration Conjecture implies the Tilting Module Conjecture.

1. Introduction

1.1. Let k be an algebraically closed field of characteristic p > 0, and let G be
a simple and simply connected algebraic group over k. Let Gr denote the r-th
Frobenius kernel of G. Fix a maximal torus T and a set of dominant weights
X(T )+. Let Xr(T ) ⊆ X(T )+ be the set of pr-restricted dominant weights.

In this article we investigate the relationship between Donkin’s Tilting Module
Conjecture and Donkin’s Good (p, r)-Filtration Conjecture. Recall that for each
λ ∈ X(T )+ there is a simple module L(λ) having highest weight λ, as well as
highest weight modules Δ(λ) and ∇(λ), known as a Weyl module and an induced
module, respectively. A G-module is said to have a good filtration (resp., Weyl
filtration) if it has a filtration with quotients that are induced modules (resp.,
Weyl modules). A finite dimensional tilting module is a finite dimensional G-
module M such that both M and M∗ have a good filtration, and there is a unique
indecomposable tilting module T (λ) having highest weight λ. Finally, λ can be
uniquely written as λ0 + prλ1, where λ0 ∈ Xr(T ). We can define the modules
∇(p,r)(λ) := L(λ0) ⊗ ∇(λ1)

(r) and Δ(p,r)(λ) := L(λ0) ⊗ Δ(λ1)
(r). A module has

a good (p, r)-filtration (resp., (p, r)-Weyl filtration) if it has a filtration such that
each quotient is isomorphic to some ∇(p,r)(λ) (resp., Δ(p,r)(λ)).

The rth Steinberg module Str, the simple G-module of highest weight (pr − 1)ρ,
plays a prominent role in the representation theory of G. In 1990 at MSRI, Donkin
formulated several conjectures that, when true, shed some light on this. Consider
the following statements:

(S1) For every λ ∈ Xr(T ), T ((p
r − 1)ρ+ λ) is indecomposable over Gr.

(S2) If Str ⊗M has a good filtration, then M has a good (p, r)-filtration.

(S3) If M has a good (p, r)-filtration, then Str ⊗M has a good filtration.

(S4) Str ⊗ L(λ) is a tilting module for every λ ∈ Xr(T ).
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(S5) ∇(λ) has a good (p, r)-filtration for every λ ∈ X(T )+.

(S1) is Donkin’s Tilting Module Conjecture and is known to hold when p ≥ 2h−
2, where h is the Coxeter number ofG [8, II.11]. It also holds for all p whenG = SL3

(see recent work by Donkin on this [5]). Statements (S2) and (S3), taken together,
comprise Donkin’s Good (p, r)-Filtration Conjecture. Andersen [1] showed that
(S3) is equivalent to (S4) and proved that both hold when p ≥ 2h − 2. Kildetoft
and Nakano [10] gave two alternate proofs that (S4) holds when p ≥ 2h − 2, the
second of which came by showing that (S1) implies (S4). As a consequence, it
immediately follows that (S4) also holds for SL3. They also verified this last fact
directly, as well as calculating that (S4) holds in all characteristics less than 2h−2
for SL4, and G of types B2 and G2 (with the exception of p = 7 in the G2 case).
(S5), which is a special case of (S2), was shown by Parshall and Scott [11] to hold
if p ≥ 2h− 2 and if Lusztig’s character formula holds for all restricted weights (we
note that they actually proved the analogous statement for Weyl modules, which
is equivalent to the statement above).

1.2. In recent work ([13], [14]) we have studied Donkin’s Tilting Module Conjec-
ture and the related issue of trying to find any G-structure for the projective in-
decomposable Gr-modules (the “Humphreys–Verma Conjecture”). The work of
Kildetoft–Nakano is therefore of much interest as it pertains to these problems.
Since it provides a necessary condition for Donkin’s Tilting Module Conjecture to
be true, it could potentially be used to find a counterexample should one exist. The
fact that Kildetoft and Nakano were able to verify (S4) in a number of low rank
cases where the status of (S1) is not known also suggests that the former may be
an easier condition to check. Furthermore, a clear question raised by their work
is whether or not the converse statement, that (S4) implies (S1), is true. If it is,
then we immediately have new cases for which the Tilting Module Conjecture, and
therefore the Humphreys–Verma Conjecture, both hold.

It is this last question that is the primary thrust of this paper, though we give
several other results throughout that we believe will be helpful in studying these
conjectures going forward. In order to present our main result in this direction,
we will give two more conditions related to the five statements above. For each

λ ∈ Xr(T ), set λ̂ := 2(pr − 1)ρ + w0λ (to be precise, this notation should also
reference r, since λ is also in Xs(T ) for any s > r, but we will assume that an r
has been fixed).

It is well known that L(λ) is a G-submodule of T (λ̂) having multiplicity one.
We now formulate the following:

(S6) Str ⊗ (T (λ̂)/L(λ)) is tilting for every λ ∈ Xr(T ).

(S7) ∇(λ̂) has a good (p, r)-filtration for every λ ∈ Xr(T ).

Note that (S7) is just a special case of (S5). As for (S6), tensoring with the
rth Steinberg module gives a short exact sequence

(1.2.1) 0 → Str ⊗ L(λ) → Str ⊗ T (λ̂) → Str ⊗ (T (λ̂)/L(λ)) → 0.

If Str ⊗ (T (λ̂)/L(λ)) is tilting, then Str ⊗ L(λ) has a Weyl filtration, which then
implies it is tilting since it is τ -invariant (with τ as defined in the next section). By
basic properties of tilting modules, the sequence in (1.2.1) would then split, and it
is not hard to see that (S6) is in fact equivalent to the splitting of (1.2.1).
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We summarize our main results, which will be proved in Section 5.

Theorem 1.2.1. The following hold:

(a) Statements (S1) and (S6) are equivalent.

(b) Statements (S4) and (S7) together imply (S1).

Since (S4) is equivalent to (S3), and (S7) is a special case of (S2), we obtain
the following corollary.

Corollary 1.2.2. Donkin’s Good (p, r)-Filtration Conjecture implies Donkin’s Tilt-
ing Module Conjecture.

2. Preliminaries

2.1. All notation not introduced in this paper will follow the notation found in [8].
For every λ ∈ Xr(T ), set

λ0 := (pr − 1)ρ+ w0λ.

Note that λ0 ∈ Xr(T ) also, and comparing with earlier notation,

λ̂ = (pr − 1)ρ+ λ0.

Let Qr(λ) be the Gr-projective cover of L(λ). It has a unique W -invariant lift to

GrT , denoted by Q̂r(λ), and this module is known to have highest weight λ̂.
Fix a Borel subgroup B containing T . The negative roots will correspond to

those root subspaces in B. Denote by Π the set of simple positive roots.
There is an antiautomorphism τ : G → G that is the identity on T and swaps

the positive and negative root subgroups. For a finite dimensional G-module M ,
we obtain the module τM , which is M∗ as a vector space, with action g.f(m) =
f(τ (g).m). This defines a character-preserving anti-equivalence from the category
of finite dimensional G-modules to itself, sending M to τM (cf. [8, II.2.12]). Sim-
ple modules and finite dimensional tilting modules are two classes of modules for
which M ∼= τM , while τ takes modules with good filtrations to modules with Weyl
filtrations, and vice versa.

2.2. We will frequently use this next result, which is essentially [8, Lemma E.9].

Lemma 2.2.1. Let λ ∈ X(T )+. If M has a good filtration (resp. Weyl filtration),
then T ((pr − 1)ρ+ λ)⊗M (r) has a good filtration (resp. Weyl filtration).

Proof. Suppose that M has a good filtration. We have T ((pr − 1)ρ + λ) as a
summand of the tilting module Str ⊗ T (λ), therefore T ((pr − 1)ρ+ λ)⊗M (r) is a
summand of Str⊗T (λ)⊗M (r). Since Str⊗M (r) has a good filtration by [8, II.3.19],
the result follows. The proof for Weyl filtrations is similar. �

3. Variations on (S3) and (S4)

A key equivalence established in [10, Theorem 9.2.3] is that Str ⊗ M has a

good filtration if and only if HomGr
(T (λ̂),M)(−r) has a good filtration for every

λ ∈ Xr(T ). In this section we look at other ways to formulate these conditions, as
well as provide a few preliminary consequences.
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3.1. For later use, we want to prove that HomGr
(T (λ̂), L(μ))(−r) has a good filtra-

tion for every λ ∈ Xr(T ) if and only if it is tilting. We will do this by establishing
the following general facts.

Lemma 3.1.1. For any finite dimensional G-module M , the following are equiva-
lent:

(a) HomGr
(T (λ̂),M)(−r) has a good filtration for every λ ∈ Xr(T ).

(b) HomGr
(M∗, T (λ̂))(−r) has a good filtration for every λ ∈ Xr(T ).

(c) HomGr
(X,M)(−r) has a good filtration for every tilting module X that is

projective over Gr.
(d) HomGr

(M∗, X)(−r) has a good filtration for every tilting module X that is
projective over Gr.

Proof. For any two finite dimensional G-modules A,B there is an isomorphism of
G-modules

HomGr
(A,B) ∼= HomGr

(B∗, A∗).

Noting that T (λ̂)∗ ∼= T (−w0λ̂) and that if X is tilting and projective over Gr, then
X∗ is also, we see that (a) ⇐⇒ (b) and (c) ⇐⇒ (d).

It is clear that (d) implies (b), since every T (λ̂) is projective over Gr. Conversely,
suppose that (b) holds. If X is projective over Gr and tilting, then it is isomorphic
to a direct summand of a tilting module of the form⊕

γ∈Γ

(T (γ̂0)⊗ T (γ1)
(r)),

where Γ ⊆ X(T )+, and γ = γ0 + prγ1 with γ0 ∈ Xr(T ) and γ1 ∈ X(T )+.
We then have that HomGr

(M∗, X)(−r) is a summand of

HomGr

⎛
⎝M∗,

⊕
γ∈Γ

(T (γ̂0)⊗T (γ1)
(r))

⎞
⎠

(−r)

∼=
⊕
γ∈Γ

(
HomGr

(M∗, T (γ̂0))
(−r)⊗T (γ1)

)
.

Since this module has a good filtration, we conclude that HomGr
(M∗, X)(−r) does

also. Consequently, (b) ⇒ (d). �

Lemma 3.1.2. Keep the assumptions on M as in Lemma 3.1.1. If τM ∼= M ,
then HomGr

(X,M)(−r) and HomGr
(M,X)(−r) are tilting modules for every tilting

module X that is projective over Gr.

Proof. We will give the proof for HomGr
(T (λ̂),M)(−r), from which the result can

easily be generalized by similar arguments to those used above. Suppose that
any (hence all) of the equivalent conditions in Lemma 3.1.1 are satisfied. Because

T (λ̂) is a G-summand of Str ⊗ T (λ0), we have that HomGr
(T (λ̂),M)(−r) is a G-

summand of HomGr
(Str ⊗ T (λ0),M)(−r), which also has a good filtration. There

is a G-isomorphism

HomGr
(Str ⊗ T (λ0),M) ∼= HomGr

(Str, T (λ
0)∗ ⊗M).

Further, Str⊗HomGr
(Str, T (λ

0)∗⊗M) is aG-summand of T (λ0)∗⊗M [8, II.10.4(a)].
Since T (λ0)∗⊗M is τ -invariant, this summand must also be (since Str is τ -invariant
over both G and Gr); hence HomGr

(Str, T (λ
0)∗⊗M) and HomGr

(Str ⊗T (λ0),M)
are τ -invariant. It follows that HomGr

(Str⊗T (λ0),M)(−r) is a tilting module, thus

that its summand HomGr
(T (λ̂),M)(−r) is tilting. �
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Corollary 3.1.3. Statement (S4) holds if and only if HomGr
(Str, L(λ)⊗L(μ))(−r)

is a tilting module for every λ, μ ∈ Xr(T ).

Proof. If (S4) holds, then each Str⊗L(μ) is tilting, and hence by the previous two
results

HomGr
(Str, L(λ)⊗ L(μ))(−r) ∼= HomGr

(Str ⊗ L(μ)∗, L(λ))(−r)

is also tilting.
Conversely, suppose that HomGr

(Str, L(λ)⊗ L(μ))(−r) is tilting for each λ, μ ∈
Xr(T ). Each T (γ̂) appears as a G-summand of a module of the form Str ⊗ L(μ)∗

(specifically, for μ = (pr − 1)ρ− γ), so we have that

HomGr
(T (γ̂), L(λ))(−r)

will be tilting as λ, γ range over all pairs of elements inXr(T ); hence (S4) holds. �

Remark 3.1.4. A necessary condition in order for Str ⊗ L(μ) to be tilting is that
HomGr

(Str ⊗ Str,⊗L(μ))(−r) is tilting. There is an isomorphism of T -modules

HomGr
(Str ⊗ Str, L(μ)) ∼= HomTr

(k,⊗L(μ)) ∼= L(μ)Tr .

So if (S4) holds, then ch(L(μ)Tr) is pr-times the character of a tilting module for
every μ ∈ Xr(T ).

3.2. Andersen proved that if M and N are G-modules such that both Str ⊗M and
Str⊗N have a good filtration, then Str⊗M⊗N has a good filtration [1, Proposition
4.4]. We use similar arguments in establishing the next proposition.

Proposition 3.2.1. Let M be a finite dimensional G-module.

(a) Str ⊗M has a good filtration if and only if Str
⊗n ⊗M has a good filtration

for some n ≥ 1.
(b) If Str ⊗M ⊗ L(λ) has a good filtration for some λ ∈ Xr(T ), then Str ⊗M

has a good filtration.

Proof. (a) If Str
⊗n ⊗M has a good filtration, then Str

⊗n+i ⊗M does also for all
i ≥ 1. Since Str is self-dual, it follows that Str is a G-summand of Str ⊗ Str ⊗ Str
(see, for example, the end of the proof of Theorem 2.1 in [3]). From this last fact
the result is easily deduced.

(b) Suppose that Str ⊗M ⊗ L(λ) has a good filtration, with λ ∈ Xr(T ). Then

V = Str ⊗M ⊗ L(λ)⊗ T ((pr − 1)ρ− λ)

also has a good filtration. But Str is a summand of L(λ) ⊗ T ((pr − 1)ρ − λ), so
Str

⊗2⊗M is a summand of V and therefore has a good filtration. By (a) the result
follows.

�

Remark 3.2.2. Though Xr(T ) is not a minimal set of weights in X(T )+ under
the usual ordering (that is, there is generally some σ < λ with λ ∈ Xr(T ) and
σ �∈ Xr(T )), they are precisely the dominant weights λ for which (pr−1)ρ−λ is also
dominant. We see the importance of this last fact highlighted in the “cancellation”
property of L(λ) in part (b) of the proposition.
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4. Decomposing tilting modules

In this section we look at how various tilting modules decompose over G and
Gr. Since Str ⊗ L(λ) (where λ ∈ Xr(T )) is known to be tilting in many cases,
these results immediately apply to such modules (see also [9] for decompositions of
modules of the form Str ⊗∇(λ)).

4.1. We begin by recalling the “rational order” on X(T ).

Definition 4.1.1. The order relation ≤Q on X(T ) is given by λ ≤Q μ if

μ− λ =
∑
α∈Π

qαα, qα ∈ Q≥0.

It is clear that if λ ≤ μ, then λ ≤Q μ.

Lemma 4.1.2. If λ ∈ X(T )+, then λ ≥Q 0.

Proof. This can be found, for example, in [7, 13.2]. �
This order can now be used to formulate an important fact about Gr-decom-

positions of modules of the form Str ⊗ L(λ0) when λ ∈ Xr(T ) (recall that λ0

= (pr − 1)ρ+ w0λ). Namely, that if Qr(μ) is a Gr-summand of Str ⊗ L(λ0), then
μ ≥Q λ (see [2, Lemma 2.2] for a similar statement in the context of finite Chevalley
groups).

Proposition 4.1.3. Let λ ∈ Xr(T ), and let P be a finite dimensional G-module
such that:

(a) P is projective over Gr.

(b) λ̂ is the highest weight of P .
(c) Pλ̂ is one dimensional.

Then as a GrT -module,

P ∼= Q̂r(λ)⊕
⊕

μ∈Xr(T ), μ>Qλ

(
Q̂r(μ)⊗HomGr

(L(μ), P )
)
.

In any such decomposition, the Gr-socle of Q̂r(λ) is the unique G-submodule of P
isomorphic to L(λ).

Proof. First, the projectivity of P over GrT means that it decomposes into GrT -
projective indecomposable modules. These summands are determined completely
by the GrT -socle of P , which coincides with the Gr-socle. As a G-module, hence
as a GrT -module, the Gr-socle is isomorphic to⊕

μ∈Xr(T )

(L(μ)⊗HomGr
(L(μ), P )) .

From this we have that as GrT -modules,

P ∼=
⊕

μ∈Xr(T )

(
Q̂r(μ)⊗HomGr

(L(μ), P )
)
.

The highest weights appearing on the right-hand side of this isomorphism have the
form

μ̂+ prγ, μ ∈ Xr(T ), γ ∈ X(T )+.

Since λ̂ is the highest weight of P , and Pλ̂ is one dimensional, it follows that Q̂r(λ)
must occur with multiplicity one. Further, we see that if μ ∈ Xr(T ) appears in the
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decomposition, then for some γ ∈ X(T )+ we have that λ̂ > μ̂ + prγ. Subtracting
2(pr − 1)ρ from each side of the inequality, we have w0λ > w0μ + prγ. Since
prγ ≥Q 0, it follows that

w0λ > w0μ+ prγ ≥Q w0μ+ 0

⇒ w0λ >Q w0μ

⇒ μ >Q λ.

Finally, the isotypic components of the Gr-socle of P are G-submodules of P , so
L(λ) must occur as a G-submodule exactly once. �

Remark 4.1.4. In particular, the conditions in Proposition 4.1.3 are satisfied if P
is isomorphic to any of the following modules:

{Str ⊗ L(λ0), Str ⊗∇(λ0), Str ⊗Δ(λ0), Str ⊗ T (λ0), T (λ̂)}.

Basic properties of tilting modules show that T (λ̂) is a G-summand of Str ⊗T (λ0),
and it turns out to be a G-summand of every module in the set above, thanks to a
result of Pillen [12, Corollary A].

Theorem 4.1.5. The following hold:

(a) If λ ∈ Xr(T ) is maximal under ≤Q among the weights in its Gr-block, then

T (λ̂) is indecomposable over Gr.
(b) If λ ∈ Xr(T ) is minimal in X(T )+ under ≤, then Str ⊗ L(λ) is indecom-

posable over Gr. Consequently, Str ⊗ L(λ) ∼= T ((pr − 1)ρ + λ) and is a
G-structure for Qr(λ

0).

Proof. (a) follows from Proposition 4.1.3 and the fact that any G-module decom-
poses as a direct sum according to the blocks of Gr. For (b), if Qr(μ) is a summand
of Str ⊗L(λ), then modifying the proof of Proposition 4.1.3 (to account for the top

weight being (pr − 1)ρ + λ rather than λ̂ = (pr − 1)ρ + λ0) we can deduce that
there is some γ ∈ X(T )+ such that (pr − 1)ρ + λ ≥ μ̂ + prγ. This implies that
λ ≥ (pr − 1)ρ+ w0μ+ prγ.

Since (pr − 1)ρ+ w0μ+ pγ ∈ X(T )+ and λ is minimal under ≤, it follows that
γ = 0 and λ = (pr − 1)ρ + w0μ, so that μ = (pr − 1)ρ + w0λ. Thus, over Gr we
have

Str ⊗ L(λ) ∼= Qr(λ
0),

which implies that as G-modules

Str ⊗ L(λ) ∼= T ((pr − 1)ρ+ λ).

�

This recovers the following observation by Doty, which he used to obtain some
interesting factorization results on tilting modules (cf. [6]). We note that our
proof follows immediately from the fact that the minuscule weights are precisely
the minimal dominant weights under ≤, and it does not rely on Brauer’s formula
and Donkin’s character computation (cf. Theorem 5.4 and Proposition 5.5 of [4]).

Corollary 4.1.6 (Doty [6]). If λ is a minuscule weight, then Str ⊗ L(λ) ∼=
T ((pr − 1)ρ+ λ).
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4.2. Following the ideas above, one way to show that T (λ̂) is indecomposable over

Gr (if it actually is) is to prove that Qr(μ) is not a Gr-summand of T (λ̂) whenever
μ �= λ. We already know that we can restrict our consideration to just those μ >Q λ.
Further, we may assume that T (μ̂) is indecomposable over Gr (for if we could prove
the statement here, the rest would follow by induction).

The following lemmas will help us analyze this situation.

Lemma 4.2.1. Suppose that X ≤ Y are tilting modules such that X is projective
over Gr. Suppose further that the Gr-summands appearing in Y/X are different (up
to isomorphism) from the Gr-summands appearing in X. Then X is a G-summand
of Y .

Proof. Applying τ to the inclusion of i : X → Y , we get aG-module homomorphism

τ i : τY → τX.

Since X,Y are tilting modules, τY ∼= Y and τX ∼= X. This means that there is
a G-submodule M ≤ Y such that Y/M ∼= X. We now need to show that M is a
vector space complement to the submodule X.

By the Krull–Schmidt theorem and our assumption above, the Gr-summands of
M must have distinct isomorphism types from the Gr-summands in X. Suppose
now that X ∩M �= {0}. Then there is a simple Gr-submodule L(λ) in this inter-
section. Since X is an injective Gr-module, the inclusion L(λ) → X extends to an
injective Gr-homomorphism Qr(λ) → X. Now take the projection over Gr,

prM : Y → M.

It follows that the summand Qr(λ) in X injects into M via this projection. Thus
Qr(λ) is a Gr-summand of M . This contradicts our assumption on Gr-summands
of M , forcing X ∩M = {0}. It now follows that Y = X +M . �

Lemma 4.2.2. Let λ, μ ∈ Xr(T ), and let M = HomGr
(L(μ), T (λ̂)). Suppose that

T (μ̂) is indecomposable over Gr and that

Ext1G((T (μ̂)/L(μ))⊗M,T (λ̂)) = 0.

Then Qr(μ) is not a Gr-summand of T (λ̂).

Proof. Apply the functor HomG( , T (λ̂)) to the inclusion of G-modules

L(μ)⊗M ↪→ T (μ̂)⊗M.

Since Ext1G((T (μ̂)/L(μ))⊗M,T (λ̂)) = 0, we get a short exact sequence

0 → HomG((T (μ̂)/L(μ)⊗M,T (λ̂)) → HomG(T (μ̂)⊗M,T (λ̂))

ψ−→ HomG(L(μ)⊗M,T (λ̂)) → 0.

Since T (μ̂) is indecomposable over Gr, we have that L(μ)⊗M contains the Gr-socle
of T (μ̂)⊗M , so it must also contain the G-socle of this module. This fact, together
with the surjectivity of ψ, shows that there is an injective G-homomorphism

T (μ̂)⊗M → T (λ̂).

By Lemma 4.2.1, this inclusion splits over G. Since T (λ̂) is indecomposable over
G, it follows that M = {0}, finishing the proof. �

We conclude with a lemma that will be used in the next section.
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Lemma 4.2.3. Let N ≤ M be G-modules. If M is projective over Gr and
HomGr

(M,M/N) is one dimensional, then there is a G-module decomposition

EndGr
(M) ∼= HomGr

(M,N)⊕HomGr
(M,M/N).

Proof. Because of the projectivity of M over Gr, we get a short exact sequence

0 → HomGr
(M,N) → HomGr

(M,M) → HomGr
(M,M/N) → 0,

and the k-span of the identity map in HomGr
(M,M) clearly is a G-submodule that

maps isomorphically onto HomGr
(M,M/N), thus defining a splitting. �

5. Main results

5.1.

Theorem 5.1.1. The following statements are equivalent:

(a) T (λ̂) is indecomposable over Gr for every λ ∈ Xr(T ).

(b) Str ⊗ (T (λ̂)/L(λ)) is tilting for every λ ∈ Xr(T ).

Proof. ((a) ⇒ (b)): Let μ, λ ∈ Xr(T ). By [10, Theorem 9.2.3], we see that

HomGr
(T (μ̂), T (λ̂))(−r) has a good filtration. If each T (λ̂) is indecomposable over

Gr, then when λ �= μ we have

HomGr
(T (μ̂), T (λ̂))(−r) ∼= HomGr

(T (μ̂), radGr
T (λ̂))(−r).

Thus, in these cases HomGr
(T (μ̂), radGr

T (λ̂))(−r) has a good filtration. Also, by

Lemma 4.2.3, HomGr
(T (λ̂), radGr

T (λ̂))(−r) has a good filtration since it is a G-
summand of a module with a good filtration. Using [10, Theorem 9.2.3] again, we

find that Str⊗ radGr
T (λ̂) has a good filtration. By applying τ , it then follows that

Str ⊗ (T (λ̂)/L(λ)) has a Weyl filtration.

On the other hand, since Str ⊗ T (λ̂) and Str ⊗ L(λ) have good filtrations, we

also see that Str ⊗ (T (λ̂)/L(λ)) has a good filtration, hence it is tilting.

((b) ⇒ (a)): Suppose that Str ⊗ (T (λ̂)/L(λ)) is tilting for every λ ∈ Xr(T ). As
noted in the introduction, this implies that Str ⊗ L(λ) is also tilting. By Lemma

3.1.1 we then have that HomGr
(L(μ), T (λ̂))(−r) is tilting for all λ, μ ∈ Xr(T ). Ad-

ditionally, using the fact that T (λ̂)∗ is the summand of Str ⊗ T (λ0)∗, it is not

hard to see that for every λ, μ ∈ Xr(T ), we have that T (λ̂)∗ ⊗ T (μ̂)/L(μ) is tilt-

ing. Setting M = HomGr
(L(μ), T (λ̂)), an application of Lemma 2.2.1 shows that

T (λ̂)∗ ⊗ T (μ̂)/L(μ)⊗M is tilting. Therefore,

Ext1G((T (μ̂)/L(μ))⊗M,T (λ̂)) ∼= Ext1G(T (λ̂)
∗ ⊗ (T (μ̂)/L(μ))⊗M,k) = 0.

Suppose now that λ ∈ Xr(T ) is such that T (μ̂) is indecomposable over Gr for all
μ ∈ Xr(T ) with μ >Q λ. By the preceding arguments, we may apply Lemma 4.2.2 to

conclude thatQr(μ) is not aGr-summand of T (λ̂); therefore T (λ̂) is indecomposable
over Gr by Proposition 4.1.3. The proof for all λ ∈ Xr(T ) now follows by induction.

�

5.2.

Theorem 5.2.1. Suppose that for every λ ∈ Xr(T ) the following hold:

(a) Str ⊗ L(λ) is tilting.

(b) ∇(λ̂) has a good (p, r)-filtration.
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Then every T (λ̂) is indecomposable over Gr.

Proof. Let λ ∈ Xr(T ) and suppose that for every μ ∈ Xr(T ) such that μ >Q λ,
T (μ̂) is indecomposable over Gr. Fix some such μ. Since ∇(μ̂) is at the top of
any good filtration on T (μ̂), it also follows that ∇(μ̂) is indecomposable over Gr

with simple Gr-head L(μ). That is, ∇(μ̂)/radGr
∇(μ̂) ∼= L(μ). In view of this,

if ∇(μ̂) has a good (p, r)-filtration, then L(μ) must occur as the final quotient of
any such filtration. This implies that radGr

∇(μ̂) has a good (p, r)-filtration. Since
condition (S4) holds, Str⊗radGr

∇(μ̂) has a good filtration. By the same reasoning
as in the proof of the previous theorem, this implies that Str ⊗ (T (μ̂)/L(μ)) is

tilting. We also have that T (λ̂)∗ ⊗ (T (μ̂)/L(μ)) is tilting, since it is a summand of
T (λ0)∗ ⊗ Str ⊗ (T (μ̂)/L(μ)).

Let M = HomGr
(L(μ), T (λ̂)). Assumption (a) above implies that M (−r) has

a good filtration, and by Lemma 3.1.2, it is tilting. By Lemma 2.2.1, T (λ̂)∗ ⊗
(T (μ̂)/L(μ))⊗M is then tilting. Thus

Ext1G((T (μ̂)/L(μ))⊗M,T (λ̂)) = Ext1G((T (λ̂)
∗ ⊗ T (μ̂)/L(μ))⊗M,k) = 0.

Applying Lemma 4.2.2, we have that Qr(μ) is not a Gr-summand of T (λ̂).
The proof for all λ ∈ Xr(T ) now follows by induction. �

Corollary 5.2.2. Donkin’s Good (p, r)-Filtration Conjecture implies Donkin’s Tilt-
ing Module Conjecture.
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