Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ (p,r)$-filtrations and tilting modules


Author: Paul Sobaje
Journal: Proc. Amer. Math. Soc. 146 (2018), 1951-1961
MSC (2010): Primary 20G05, 17B10
DOI: https://doi.org/10.1090/proc/13926
Published electronically: December 18, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the relationship between Donkin's Tilting Module Conjecture and Donkin's Good $ (p,r)$-Filtration Conjecture. Our main result was motivated by a result of Kildetoft and Nakano showing that the Tilting Module Conjecture implies one direction of the Good $ (p,r)$-Filtration Conjecture. We observe that the converse nearly holds; in particular, a weaker version of the Good $ (p,r)$-Filtration Conjecture implies the Tilting Module Conjecture.


References [Enhancements On Off] (What's this?)

  • [1] Henning Haahr Andersen, $ p$-filtrations and the Steinberg module, J. Algebra 244 (2001), no. 2, 664-683. MR 1859043, https://doi.org/10.1006/jabr.2000.8745
  • [2] John W. Ballard, Projective modules for finite Chevalley groups, Trans. Amer. Math. Soc. 245 (1978), 221-249. MR 511407, https://doi.org/10.2307/1998864
  • [3] Edward T. Cline, Brian J. Parshall, and Leonard L. Scott, On injective modules for infinitesimal algebraic groups. I, J. London Math. Soc. (2) 31 (1985), no. 2, 277-291. MR 809949, https://doi.org/10.1112/jlms/s2-31.2.277
  • [4] Stephen Donkin, Tilting modules for algebraic groups and finite dimensional algebras, Handbook of tilting theory, London Math. Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 215-257. MR 2384612, https://doi.org/10.1017/CBO9780511735134.009
  • [5] Stephen Donkin, Some remarks on the uniqueness of liftings of principal indecomposable modules for infinitesimal subgroups of semisimple groups, J. Algebra 475 (2017), 361-369. MR 3612475, https://doi.org/10.1016/j.jalgebra.2016.08.025
  • [6] S. R. Doty, Factoring tilting modules for algebraic groups, J. Lie Theory 19 (2009), no. 3, 531-535. MR 2583918
  • [7] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • [8] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
  • [9] Tobias Kildetoft, Decomposition of Tensor Products Involving a Steinberg Module, Algebr. Represent. Theory 20 (2017), no. 4, 951-975. MR 3669165, https://doi.org/10.1007/s10468-017-9670-7
  • [10] Tobias Kildetoft and Daniel K. Nakano, On good $ (p,r)$-filtrations for rational $ G$-modules, J. Algebra 423 (2015), 702-725. MR 3283737, https://doi.org/10.1016/j.jalgebra.2014.09.030
  • [11] Brian J. Parshall and Leonard L. Scott, On $ p$-filtrations of Weyl modules, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 127-158. MR 3338612, https://doi.org/10.1112/jlms/jdu067
  • [12] Cornelius Pillen, Tensor products of modules with restricted highest weight, Comm. Algebra 21 (1993), no. 10, 3647-3661. MR 1231622, https://doi.org/10.1080/00927879308824754
  • [13] Paul Sobaje, On liftings of projective indecomposable $ G_{(1)}$-modules, J. Algebra 475 (2017), 61-79. MR 3612464, https://doi.org/10.1016/j.jalgebra.2016.10.021
  • [14] P. Sobaje, Varieties of $ G_r$-summands in rational $ G$-modules, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20G05, 17B10

Retrieve articles in all journals with MSC (2010): 20G05, 17B10


Additional Information

Paul Sobaje
Affiliation: Department of Mathematics University of Georgia Athens, Georgia 30602
Email: sobaje@uga.edu

DOI: https://doi.org/10.1090/proc/13926
Received by editor(s): December 21, 2016
Received by editor(s) in revised form: July 21, 2017
Published electronically: December 18, 2017
Additional Notes: This work was partially supported by the Research Training Grant, DMS-1344994, from the NSF
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society