Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homeomorphisms of Čech-Stone remainders: the zero-dimensional case


Authors: Ilijas Farah and Paul McKenney
Journal: Proc. Amer. Math. Soc. 146 (2018), 2253-2262
MSC (2010): Primary 03E35, 54A35
DOI: https://doi.org/10.1090/proc/13736
Published electronically: January 26, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove, using a weakening of the Proper Forcing Axiom, that any homemomorphism between Čech-Stone remainders of any two locally compact, zero-dimensional Polish spaces is induced by a homeomorphism between their cocompact subspaces.


References [Enhancements On Off] (What's this?)

  • [1] Uri Abraham, Matatyahu Rubin, and Saharon Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of $ \aleph_1$-dense real order types, Ann. Pure Appl. Logic 29 (1985), no. 2, 123-206. MR 801036, https://doi.org/10.1016/0168-0072(84)90024-1
  • [2] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $ C^*$-algebras and $ K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265-324. MR 0458196, https://doi.org/10.2307/1970999
  • [3] Samuel Coskey and Ilijas Farah, Automorphisms of corona algebras, and group cohomology, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3611-3630. MR 3192609, https://doi.org/10.1090/S0002-9947-2014-06146-1
  • [4] Alan Dow, A non-trivial copy of $ \beta\mathbb{N}\backslash\mathbb{N}$, Proc. Amer. Math. Soc. 142 (2014), no. 8, 2907-2913. MR 3209343, https://doi.org/10.1090/S0002-9939-2014-11985-X
  • [5] Alan Dow and Klaas Pieter Hart, $ \omega^*$ has (almost) no continuous images, Israel J. Math. 109 (1999), 29-39. MR 1679586, https://doi.org/10.1007/BF02775024
  • [6] Alan Dow and Klaas Pieter Hart, A universal continuum of weight $ \aleph$, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1819-1838. MR 1707489, https://doi.org/10.1090/S0002-9947-00-02601-5
  • [7] Alan Dow and Klaas Pieter Hart, The measure algebra does not always embed, Fund. Math. 163 (2000), no. 2, 163-176. MR 1752102
  • [8] Christopher J. Eagle and Alessandro Vignati, Saturation and elementary equivalence of $ C^*$-algebras, J. Funct. Anal. 269 (2015), no. 8, 2631-2664. MR 3390013, https://doi.org/10.1016/j.jfa.2015.04.013
  • [9] Ilijas Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177. MR 1711328, https://doi.org/10.1090/memo/0702
  • [10] Ilijas Farah, Rigidity conjectures, Logic Colloquium 2000, Lect. Notes Log., vol. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 252-271. MR 2143881
  • [11] Ilijas Farah, All automorphisms of the Calkin algebra are inner, Ann. of Math. (2) 173 (2011), no. 2, 619-661. MR 2776359, https://doi.org/10.4007/annals.2011.173.2.1
  • [12] Ilijas Farah and Bradd Hart, Countable saturation of corona algebras, C. R. Math. Acad. Sci. Soc. R. Can. 35 (2013), no. 2, 35-56 (English, with English and French summaries). MR 3114457
  • [13] Ilijas Farah and Ilan Hirshberg, The Calkin algebra is not countably homogeneous, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5351-5357. MR 3556277, https://doi.org/10.1090/proc/13137
  • [14] Ilijas Farah and Saharon Shelah, Rigidity of continuous quotients, J. Inst. Math. Jussieu 15 (2016), no. 1, 1-28. MR 3427592, https://doi.org/10.1017/S1474748014000218
  • [15] Saeed Ghasemi, Isomorphisms of quotients of FDD-algebras, Israel J. Math. 209 (2015), no. 2, 825-854. MR 3430261, https://doi.org/10.1007/s11856-015-1238-9
  • [16] Saeed Ghasemi, Reduced products of metric structures: a metric Feferman-Vaught theorem, J. Symb. Log. 81 (2016), no. 3, 856-875. MR 3569108, https://doi.org/10.1017/jsl.2016.20
  • [17] Klaas Pieter Hart, The Čech-Stone compactification of the real line, Recent progress in general topology (Prague, 1991) North-Holland, Amsterdam, 1992, pp. 317-352. MR 1229130, https://doi.org/10.1016/0887-2333(92)90021-I
  • [18] Kenneth Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications, London, 2011. MR 2905394
  • [19] P. McKenney.
    Reduced products of UHF algebras under forcing axioms.
    arXiv preprint arXiv:1303.5037, 2013.
  • [20] P. McKenney and A. Vignati.
    Forcing axioms and coronas of nuclear $ \textrm {C}^*$-algebras.
  • [21] N. Christopher Phillips and Nik Weaver, The Calkin algebra has outer automorphisms, Duke Math. J. 139 (2007), no. 1, 185-202. MR 2322680, https://doi.org/10.1215/S0012-7094-07-13915-2
  • [22] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • [23] Saharon Shelah and Juris Steprāns, PFA implies all automorphisms are trivial, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1220-1225. MR 935111, https://doi.org/10.2307/2047617
  • [24] Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949
  • [25] Jan van Mill, An introduction to $ \beta\omega$, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503-567. MR 776630
  • [26] Boban Veličković, Definable automorphisms of $ {\mathcal{P}}(\omega)/{\rm fin}$, Proc. Amer. Math. Soc. 96 (1986), no. 1, 130-135. MR 813825, https://doi.org/10.2307/2045667
  • [27] Boban Veličković, $ {\rm OCA}$ and automorphisms of $ {\mathcal{P}}(\omega)/{\rm fin}$, Topology Appl. 49 (1993), no. 1, 1-13. MR 1202874, https://doi.org/10.1016/0166-8641(93)90127-Y
  • [28] A. Vignati.
    Logic and $ \textrm {C}^*$-algebras: Set theoretical dichotomies in the theory of continuous quotients.
    PhD thesis, York University, 2017.
  • [29] Alessandro Vignati, Nontrivial homeomorphisms of Čech-Stone remainders, Münster J. Math. 10 (2017), no. 1, 189-200. MR 3624107
  • [30] Dan-Virgil Voiculescu, Countable degree-1 saturation of certain $ C^*$-algebras which are coronas of Banach algebras, Groups Geom. Dyn. 8 (2014), no. 3, 985-1006. MR 3267530, https://doi.org/10.4171/GGD/254
  • [31] W. Hugh Woodin, Beyond $ \utilde\Sigma^2_1$ absoluteness, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 515-524. MR 1989202

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03E35, 54A35

Retrieve articles in all journals with MSC (2010): 03E35, 54A35


Additional Information

Ilijas Farah
Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario M3J 1P3, Canada
Email: ifarah@mathstat.yorku.ca

Paul McKenney
Affiliation: Department of Mathematics, Miami University, 501 E. High St., Oxford, Ohio 45056
Email: mckennp2@miamioh.edu

DOI: https://doi.org/10.1090/proc/13736
Received by editor(s): November 15, 2012
Received by editor(s) in revised form: August 5, 2017
Published electronically: January 26, 2018
Additional Notes: The first author was partially supported by NSERC
Communicated by: Mirna Džamonja
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society