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QUIVER GRASSMANNIANS FOR WILD ACYCLIC QUIVERS
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(Communicated by Jerzy Weyman)

Abstract. A famous result of Zimmermann-Huisgen, Hille and Reineke as-
serts that any projective variety occurs as a quiver Grassmannian for a suitable
representation of some wild acyclic quiver. We show that this happens for any
wild acyclic quiver.

Let k be an algebraically closed field, and Q a finite acyclic quiver. The modules
which we consider are the (finite-dimensional) kQ-modules, where kQ is the path
algebra of Q, thus the (finite-dimensional) representations of Q (with coefficients
in k). We denote by mod kQ the corresponding module category.

LetM be a representation of Q and let d be a dimension vector for Q. The quiver
Grassmannian Gd(M) is the set of submodules of M with dimension vector dimM
= d; this is a projective variety. A famous result of Zimmermann-Huisgen, Hille
and Reineke asserts that any projective variety occurs as the quiver Grassmannian
for a representation of some wild acyclic quiver Q; see for example [3]. We are
going to show:

Theorem. Let Q be any wild acyclic quiver. Any projective variety occurs as a
quiver Grassmannian Gd(M) for some representation M of Q and some dimension
vector d.

Typical wild acyclic quivers are the Kronecker quivers Q = K(n) with n ≥ 3
(the Kronecker quiver K(n) has two vertices 1 and 2 and n arrows pointing from
2 to 1). A representation of K(n) will be said to be reduced provided N has no
simple injective direct summand. In [4] we have shown that for any projective
variety V there is a natural number n (depending on V) such that V can be realized
as the quiver Grassmannian G(1,1)(N) of a reduced representation N of K(n) (see
also [1]). Our present investigation relies on this special case.

Note that the elements of G(1,1)(N) are certain submodules of N of length 2,
and all the indecomposable submodules of length 2 belong to G(1,1)(N). We call
indecomposable modules of length 2 bristles. For any representation N of K(n),
the set β(N) of bristle submodules of N is an open subset of G(1,1)(N) which we
call the bristle variety of N . In general, β(N) is a proper subset of G(1,1)(N), but
for a reduced representation N , we have β(N) = G(1,1)(N).

The procedure of the present paper is as follows: Given any wild acyclic quiver
Q, and a natural number m, we will construct for some n ≥ m an orthogonal pair
X,Y of bricks with dimExt1(Y,X) = n (a brick is a module with endomorphism
ring k and X,Y are said to be orthogonal provided Hom(X,Y ) = 0 = Hom(Y,X)).
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Always, x and y will denote the dimension vectors of X and Y , respectively. Let
E = E(Y,X) be the full subcategory of all kQ-modules M with an exact sequence
of the form

0 �� Xa �� M �� Y b �� 0,

where a, b are natural numbers. Note that E is equivalent to mod kK(n) with an
equivalence being given by an exact fully faithful functor

η : mod kK(n) → mod kQ

with image E . We say that a module M in E is E-reduced provided it has no direct
summand isomorphic to Y , thus provided it is the image of a reduced kK(n)-module
under η.

An indecomposable kQ-module U will be called an E-bristle provided there is an
exact sequence of the form 0 → X → U → Y → 0, thus provided U is the image
of a bristle in mod kK(n) under η. For any kK(n)-module N with M = ηN , the
functor η identifies the bristle variety β(N) of N with the set βE(M) of submodules
of M which are E-bristles. Since E-bristles have dimension vector x + y, we have
βE(M) ⊆ Gx+y(M). It remains to find conditions such that any submodule U of
M with dimension vector x+ y is indeed an E-bristle.

To be precise, we are looking for kQ-modules X,Y so that the following closure
condition (C) is satisfied:

(C) If M is an E-reduced module in E(Y,X) and U is a submodule of M with
dimU = x+ y, then U is an E-bristle.

If the condition (C) is satisfied, then for any reduced representation N of K(n),
there is a canonical bijection between G(1,1)(N) and Gx+y(M), where M = ηN .
Namely, if B is a submodule of the kK(n)-module N with dimB = (1, 1), then ηB
is a submodule of M with dimension vector x+y. Conversely, if U is a submodule
of M with dimU = x + y, then, by condition (C), U belongs to E(Y,X), say
U = ηB for some K(n)-submodule B and the dimension vector of B is (1, 1).

The minimal wild acyclic quivers. As we have mentioned, our aim is to exhibit
for any wild acyclic quiver Q and any natural number m an orthogonal pair X,Y
of kQ-modules which are bricks such that dimk Ext

1(Y,X) = n ≥ m and such that
the condition (C) is satisfied. Of course, it is sufficient to deal with minimal wild
acyclic quivers. (We recall that a quiver Q is wild provided it is not the disjoint
union of Dynkin and Euclidean quivers, and Q is said to be minimal wild provided
it is wild, and no quiver obtained from Q by deleting a vertex or an arrow is wild.)

The following well-known proposition suggests to deal with two different cases.

Proposition. A minimal wild acyclic quiver Q different from K(3) is obtained
from a Euclidean quiver Q′ by adding a vertex ω and a single arrow which connects
ω with some vertex of Q′ (in particular, ω is a sink or a source).

Sketch of proof. If Q has cycles, then there is a subquiver Q′ of type Ãn for some
n such that Q′ is obtained from Q by deleting one vertex and one arrow.

Now assume that Q is a tree. If there is a vertex with at least four neighbors,

then Q′ is obtained from a quiver of type D̃4 by deleting one vertex and one arrow.
If Q has two vertices which have three neighbors each, then Q′ is obtained from a

quiver of type D̃n with n ≥ 5 by deleting one vertex and one arrow. If Q has a star
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with three arms, then Q′ is obtained from a quiver of type Ẽm with m = 6, 7, 8 by
deleting one vertex and one arrow. �

Case 1 (One-point extensions of representation-infinite quivers). We assume now
that Q is a connected quiver with a vertex ω which is a sink or a source such that
the quiver Q′ obtained from Q by deleting ω and the arrows which start or end in
ω is connected and representation-infinite. Up to duality, we can assume that ω is
a source, thus there is an arrow ω → p with p ∈ Q′

0.
Let Y = S(ω), the simple kQ-module corresponding to the vertex ω. Since Q′ is

connected and representation-infinite, there is an exceptional kQ′-module X with
dimk Xp ≥ m. The arrow ω → p shows that dimk Ext

1(Y,X) ≥ dimk Xp. This pair
X,Y is the orthogonal pair of bricks which we use in order to look at E(Y,X).

Lemma 1. Let a be a natural number. Any submodule W of Xa with dimW = x
is isomorphic to X.

Proof. We denote by 〈−,−〉 the bilinear form on the Grothendieck group K0(kQ)
with 〈dimM,dimM ′) = dimk Hom(M,M ′)−dimk Ext

1(M,M ′). Since X is excep-
tional, we have 〈X,W 〉 = 〈X,X〉 > 0, Therefore, there is a non-zero homomorphism
f : X → W . Let ι : W → Xa be the inclusion map. The composition ιf : X → Xa

is non-zero. Since X is a brick, we see that f : X → W is a split monomorphism, in
particular injective. Now dimX = dimW implies that f is an isomorphism. �

Proof of condition (C). Let M be an E-reduced kQ-module in E(Y,X), say with
an exact sequence

0 �� Xa μ �� M
π �� Y b �� 0.

Let U be a submodule of M with dimension vector x+y and inclusion map ι : U →
M . The composition πι is non-zero, since otherwise U would be a submodule of
Xa, but dimk Uω = 1 whereas Xω = 0. If follows that the image of πι is isomorphic
to Y . If we denote the kernel of πι by W , we obtain the following commutative
diagram with exact rows and vertical monomorphisms:

0 �� W

��

�� U

ι

��

�� Y

��

�� 0

0 �� Xa μ �� M
π �� Y b �� 0.

Of course, dimW = x, thus Lemma 1 shows that W is isomorphic to X. In
particular, U belongs to E .

It remains to show that U is indecomposable. Otherwise, U would be isomorphic
to W ⊕ Y . Thus M would have a submodule isomorphic to Y . But Y is relative
injective inside E , thusM would have a direct summand isomorphic to Y , in contrast
to our assumption that M is E-reduced. This shows that U is indecomposable, thus
an E-bristle. �

Case 2 (The Kronecker quiver K(3)). Here we consider the Kronecker quiver Q =
K(3), with the three arrows α, β, γ : 2 → 1. Let λ1, . . . , λn be pairwise different
non-zero elements of k with n ≥ 2. Let X = X(λ1, . . . , λn) = (kn, kn;α, β, γ) be
defined by

α(e(i)) = e(i), β(e(i)) = λie(i), γ(e(i)) = e(i+ 1),
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for 1 ≤ i ≤ n, where e(1), . . . , e(n) is the canonical basis of kn and e(n+1) = e(1).
Let Y = (k, k; 1, 0, 0). We denote by Q′ the subquiver of Q with arrows α, β, this is
the 2-Kronecker quiver K(2). For the structure of the category modK(2), see for
example [2]. The restriction ofX,Y toQ′ shows that Hom(X,Y ) = Hom(Y,X) = 0.
The endomorphism ring of X|Q′ is k×· · ·×k; and the only endomorphisms of X|Q′

which commute with γ are the scalar multiplications. This shows that X is a brick.
Also, it is easy to see that dimk Ext

1(Y,X) = n.

Lemma 2. Let a be a natural number. Any submodule W of Xa with dimW of
the form (w,w) is isomorphic to Xs for some s.

Proof. Let M = Xa and decompose M |Q′ =
⊕n

i=1 M(i), where β(x) = λix for
x ∈ M(i)1. Here, we use α in order to identify M1 and M2. Now we consider
the submodule W of M . Note that W |Q′ has to be regular, since it cannot have
any non-zero preinjective direct summand. As a regular submodule of a semisimple
regular Kronecker module it has to be a direct summand of M |Q′, thus we have a
similar direct decomposition W =

⊕
W (i), where W (i) = W ∩M(i).

The linear map γ restricted to W (i)1 is a monomorphism W (i)1 → W (i+1)2 =
W (i+1)1 for 1 ≤ i ≤ n; we obtain in this way a monomorphism W (1)1 → W (1)2 =
W (1)1. This shows that all the monomorphisms W (i)1 → W (i + 1)2 = W (i + 1)1
are actually bijections. Let dimk W (1)1 = s. It follows that W is isomorphic to
Xs. �
Proof of condition (C). Let M be an E-reduced kQ-module in E and let U be a
submodule of M with dimension vector x + y = (n + 1, n + 1) and with inclusion
map ι : U → M .

Starting with the exact sequence 0 �� Xa μ �� M
π �� Y b �� 0 and

the inclusion map ι : U → M , let W be the kernel and let U be the image of
πι : U → Y b. We obtain the following commutative diagram with exact rows and
injective vertical maps:

0 �� W

��

�� U

ι

��

�� U

��

�� 0

0 �� Xa μ �� M
π �� Y b �� 0.

Let us consider the restriction of these modules to Q′. Since M |Q′ is regular,
it has no non-zero preinjective direct summand. Thus any submodule of M |Q′

with dimension vector (n + 1, n + 1) has to be regular. This shows that U |Q′

is regular. Actually, M |Q′ is semisimple regular, thus also its regular submodule
U |Q′ is semisimple regular (and a direct summand of M |Q′). Next, πι is a map
between regular kQ′-modules. It follows that the kernel W |Q′ and the image U |Q′

are regular kQ′-modules. In particular, the dimension vector of W is of the form
dimW = (w,w) for some 0 ≤ w ≤ n+ 1.

Now U |Q′ is a regular submodule of the semisimple regular kQ′-module Y b|Q′,
thus U |Q′ is a direct sum of copies of Y |Q′. By construction, Y is annihilated by
γ. Since U is a submodule of Y b, it follows that U is annihilated by γ. Altogether,
we see that U is the direct sum of copies of Y .

We claim that W �= 0. Otherwise U = U = Y n+1, thus Y is a submodule of M .
But Y is relative injective in E , thus Y would be a direct summand of M . However,
by assumption, M is E-reduced. This contradiction shows that W �= 0.
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Now W is a submodule of Xa with dimension vector (w,w), thus, according to
Lemma 2, W is a direct summand of say s copies of X and s ≥ 1. The equality
(w,w) = (sn, sn) implies that s = 1, since w ≤ n+1 and n ≥ 2. In this way, we see
that W is isomorphic to X. It follows that dimU = (1, 1) and therefore U = Y .

Finally, as in Case 1, we see that U is indecomposable, using again the assump-
tion that M is E-reduced. This shows that U is an E-bristle. �
Remark. We should stress that given orthogonal bricks X,Y in mod kQ, the condi-
tion (C) is usually not satisfied. Here is a typical example for Q = K(3). As above,
let Y = (k, k; 1, 0, 0), but for X we now take X = X ′(λ1, λ2) = (k2, k2;α, β, γ),
defined by

α(e(i)) = e(i), β(e(i)) = λie(i), γ(e(1)) = e(2), γ(e(2)) = 0

for 1 ≤ i ≤ 2. Again, e(1), e(2) is the canonical basis of k2 and λ1 �= λ2 are assumed
to be non-zero elements of k. Since dimk Ext

1(Y,X) = 2, there is an equivalence
η : mod kK(2) → E(Y,X). Let N be an indecomposable kK(2)-module with
dimension vector (2, b) (note that b has to be equal to 1, 2 or 3) and M = ηN .
Thus there is an exact sequence

0 �� X2 �� M �� Y b �� 0.

Since we assume that N is indecomposable, it is reduced, thus M is E-reduced.
Note that X has a (unique) kQ-submodule V with dimension vector (1, 1): the
vector spaces V1 and V2 both are generated by e(2). The submodule U = X ⊕ V
of X2 is a submodule of M with dimension vector (3, 3) = x+ y, and it is not an
E-bristle. Thus, condition (C) is not satisfied. Here, η defines a proper embedding
of β(N) = G(1,1)(N) into Gx+y(M).

References

[1] L. Hille, Moduli of representations, quiver Grassmannians and Hilbert schemes, arXiv:
1505.06008.

[2] Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathe-
matics, vol. 1099, Springer-Verlag, Berlin, 1984. MR774589

[3] Claus Michael Ringel, Quiver Grassmannians and Auslander varieties for wild algebras, J.
Algebra 402 (2014), 351–357, DOI 10.1016/j.jalgebra.2013.12.021. MR3160426

[4] C. M. Ringel: The eigenvector variety of a matrix pencil. arXiv:1703.04097. To appear in:
Linear Algebra and Appl. DOI: https://doi.org/10.1016/j.laa.2017.05.004.

Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany

Email address: ringel@math.uni-bielefeld.de

http://www.ams.org/mathscinet-getitem?mr=774589
http://www.ams.org/mathscinet-getitem?mr=3160426

	The minimal wild acyclic quivers.
	References

