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ABSTRACT. A famous result of Zimmermann-Huisgen, Hille and Reineke as-
serts that any projective variety occurs as a quiver Grassmannian for a suitable
representation of some wild acyclic quiver. We show that this happens for any
wild acyclic quiver.

Let k be an algebraically closed field, and @ a finite acyclic quiver. The modules
which we consider are the (finite-dimensional) kQ-modules, where k(@ is the path
algebra of @, thus the (finite-dimensional) representations of @ (with coefficients
in k). We denote by mod kQ the corresponding module category.

Let M be a representation of () and let d be a dimension vector for Q. The quiver
Grassmannian Gq(M) is the set of submodules of M with dimension vector dim M
= d; this is a projective variety. A famous result of Zimmermann-Huisgen, Hille
and Reineke asserts that any projective variety occurs as the quiver Grassmannian
for a representation of some wild acyclic quiver @; see for example [3]. We are
going to show:

Theorem. Let Q be any wild acyclic quiver. Any projective variety occurs as a
quiver Grassmannian Gq(M) for some representation M of Q and some dimension
vector d.

Typical wild acyclic quivers are the Kronecker quivers @ = K(n) with n > 3
(the Kronecker quiver K (n) has two vertices 1 and 2 and n arrows pointing from
2 to 1). A representation of K(n) will be said to be reduced provided N has no
simple injective direct summand. In [4] we have shown that for any projective
variety V there is a natural number n (depending on V) such that V can be realized
as the quiver Grassmannian G(; 1)(N) of a reduced representation N of K(n) (see
also [I]). Our present investigation relies on this special case.

Note that the elements of G; 1)(/N) are certain submodules of N of length 2,
and all the indecomposable submodules of length 2 belong to G(y,1)(N). We call
indecomposable modules of length 2 bristles. For any representation N of K(n),
the set B(N) of bristle submodules of N is an open subset of Gy 1)(/N) which we
call the bristle variety of N. In general, 3(N) is a proper subset of G 1)(N), but
for a reduced representation N, we have B(N) = G(q,1)(NV).

The procedure of the present paper is as follows: Given any wild acyclic quiver
@, and a natural number m, we will construct for some n > m an orthogonal pair
X,Y of bricks with dim Ext'(Y, X) = n (a brick is a module with endomorphism
ring k and X, Y are said to be orthogonal provided Hom(X,Y) = 0 = Hom(Y, X)).
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Always, x and y will denote the dimension vectors of X and Y, respectively. Let
&€ = E(Y, X) be the full subcategory of all kQ-modules M with an exact sequence
of the form

0 xe M y? 0,

where a,b are natural numbers. Note that £ is equivalent to mod kK (n) with an
equivalence being given by an exact fully faithful functor

7 :mod kK (n) — mod kQ

with image £. We say that a module M in £ is £-reduced provided it has no direct
summand isomorphic to Y, thus provided it is the image of a reduced kK (n)-module
under 7.

An indecomposable k@Q-module U will be called an &£-bristle provided there is an
exact sequence of the form 0 - X — U — Y — 0, thus provided U is the image
of a bristle in mod kK (n) under 7. For any kK (n)-module N with M = nN, the
functor 7 identifies the bristle variety 5(IN) of N with the set S¢(M) of submodules
of M which are E-bristles. Since E£-bristles have dimension vector x + y, we have
Be(M) C Gxyy(M). It remains to find conditions such that any submodule U of
M with dimension vector x + y is indeed an £-bristle.

To be precise, we are looking for kQ-modules X, Y so that the following closure
condition (C) is satisfied:

(C) If M is an E-reduced module in E(Y,X) and U is a submodule of M with
dimU =x+y, then U is an E-bristle.

If the condition (C) is satisfied, then for any reduced representation N of K(n),
there is a canonical bijection between Gy 1)(NN) and Gxyy (M), where M = nN.
Namely, if B is a submodule of the kK (n)-module N with dim B = (1, 1), then nB
is a submodule of M with dimension vector x +y. Conversely, if U is a submodule
of M with dimU = x + y, then, by condition (C), U belongs to £(Y, X), say
U = nB for some K (n)-submodule B and the dimension vector of B is (1,1).

The minimal wild acyclic quivers. As we have mentioned, our aim is to exhibit
for any wild acyclic quiver ) and any natural number m an orthogonal pair X,Y
of kQ)-modules which are bricks such that dimy Extl(Y7 X) =n > m and such that
the condition (C) is satisfied. Of course, it is sufficient to deal with minimal wild
acyclic quivers. (We recall that a quiver @) is wild provided it is not the disjoint
union of Dynkin and Euclidean quivers, and @ is said to be minimal wild provided
it is wild, and no quiver obtained from @ by deleting a vertex or an arrow is wild.)

The following well-known proposition suggests to deal with two different cases.

Proposition. A minimal wild acyclic quiver @ different from K(3) is obtained
from a Euclidean quiver Q' by adding a vertex w and a single arrow which connects
w with some vertex of Q' (in particular, w is a sink or a source).

Sketch of proof. If Q has cycles, then there is a subquiver @’ of type &n for some
n such that @’ is obtained from @ by deleting one vertex and one arrow.

Now assume that Q is a tree. If there is a vertex with at least four neighbors,
then @’ is obtained from a quiver of type Dy by deleting one vertex and one arrow.
If Q has two vertices which have three neighbors each, then @’ is obtained from a
quiver of type D,, with n > 5 by deleting one vertex and one arrow. If @) has a star
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with three arms, then @Q’ is obtained from a quiver of type E,, with m = 6,7,8 by
deleting one vertex and one arrow. ([l

Case 1 (One-point extensions of representation-infinite quivers). We assume now
that @ is a connected quiver with a vertex w which is a sink or a source such that
the quiver @’ obtained from () by deleting w and the arrows which start or end in
w is connected and representation-infinite. Up to duality, we can assume that w is
a source, thus there is an arrow w — p with p € Qf,.

Let Y = S(w), the simple k@Q-module corresponding to the vertex w. Since Q' is
connected and representation-infinite, there is an exceptional kQ’-module X with
dimy X, > m. The arrow w — p shows that dimy, Ext'(Y, X) > dimy Xp. This pair
X,Y is the orthogonal pair of bricks which we use in order to look at £(Y, X).

Lemma 1. Let a be a natural number. Any submodule W of X* with dim W = x
is isomorphic to X.

Proof. We denote by (—, —) the bilinear form on the Grothendieck group Ky(kQ)
with (dim M, dim M’) = dimy, Hom(M, M’)—dimy, Ext' (M, M"). Since X is excep-
tional, we have (X, W) = (X, X) > 0, Therefore, there is a non-zero homomorphism
f: X = W. Let ¢ : W — X be the inclusion map. The composition ¢f : X — X¢
is non-zero. Since X is a brick, we see that f : X — W is a split monomorphism, in
particular injective. Now dim X = dim W implies that f is an isomorphism. [

Proof of condition (C). Let M be an &-reduced kQ-module in £(Y, X), say with
an exact sequence

©w

0 X M—TsY? 0.

Let U be a submodule of M with dimension vector x+y and inclusion map ¢ : U —
M. The composition ¢ is non-zero, since otherwise U would be a submodule of
X% but dimy U, = 1 whereas X, = 0. If follows that the image of 7t is isomorphic
to Y. If we denote the kernel of 7t by W, we obtain the following commutative
diagram with exact rows and vertical monomorphisms:

0 1474 U Y 0
0 xo Moy Toyh 0.

Of course, dim W = x, thus Lemma [ shows that W is isomorphic to X. In
particular, U belongs to £.

It remains to show that U is indecomposable. Otherwise, U would be isomorphic
to W &Y. Thus M would have a submodule isomorphic to Y. But Y is relative
injective inside £, thus M would have a direct summand isomorphic to Y, in contrast
to our assumption that M is E-reduced. This shows that U is indecomposable, thus
an E-bristle. |

Case 2 (The Kronecker quiver K (3)). Here we consider the Kronecker quiver QQ =
K (3), with the three arrows «, 8,7 : 2 — 1. Let Aq,..., A, be pairwise different
non-zero elements of k with n > 2. Let X = X(A,...,\,) = (K™, k";, 5,7) be
defined by

a(e(i)) =e(i), PBle(i)) = Aie(), (e(i)) = e(i+1),
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for 1 < i < n, where e(1),...,e(n) is the canonical basis of k™ and e(n+ 1) = e(1).
Let Y = (k, k;1,0,0). We denote by @’ the subquiver of @ with arrows «, 8, this is
the 2-Kronecker quiver K (2). For the structure of the category mod K (2), see for
example [2]. The restriction of X,Y to @’ shows that Hom(X,Y) = Hom(Y, X) = 0.
The endomorphism ring of X|Q’ is k x - - - X k; and the only endomorphisms of X|Q’
which commute with ~ are the scalar multiplications. This shows that X is a brick.
Also, it is easy to see that dimy Ext' (Y, X) = n.

Lemma 2. Let a be a natural number. Any submodule W of X% with dimW of
the form (w,w) is isomorphic to X* for some s.

Proof. Let M = X* and decompose M|Q" = @, M (i), where f(z) = Az for
x € M(i);. Here, we use « in order to identify M; and Ms. Now we consider
the submodule W of M. Note that W|Q' has to be regular, since it cannot have
any non-zero preinjective direct summand. As a regular submodule of a semisimple
regular Kronecker module it has to be a direct summand of M|Q’, thus we have a
similar direct decomposition W = @ W (i), where W (i) = W N M (3).

The linear map = restricted to W (i), is a monomorphism W (i); — W(i+1)2
W (i+1); for 1 <4 < n; we obtain in this way a monomorphism W (1); — W (1),
W (1)1. This shows that all the monomorphisms W (i); — W (i + 1) = W (i + 1),
are actually bijections. Let dim; W (1); = s. It follows that W is isomorphic to
X5,

Proof of condition (C). Let M be an E-reduced kQ-module in £ and let U be a
submodule of M with dimension vector x +y = (n + 1,n + 1) and with inclusion
map ¢: U — M.

O

m

Starting with the exact sequence 0 X M—LsY? 0 and
the inclusion map ¢ : U — M, let W be the kernel and let U be the image of
7 : U — YP. We obtain the following commutative diagram with exact rows and
injective vertical maps:

0 1474 U U 0
0 xo Moy Ty 0.

Let us consider the restriction of these modules to @'. Since M|Q’ is regular,
it has no non-zero preinjective direct summand. Thus any submodule of M|Q’
with dimension vector (n + 1,n + 1) has to be regular. This shows that U|Q’
is regular. Actually, M|Q’ is semisimple regular, thus also its regular submodule
U|Q' is semisimple regular (and a direct summand of M|Q’). Next, me is a map
between regular kQ’-modules. It follows that the kernel W|Q’ and the image U|Q’
are regular kQ’-modules. In particular, the dimension vector of W is of the form
dim W = (w,w) for some 0 < w <n+ 1.

Now U|Q’ is a regular submodule of the semisimple regular kQ’-module Y°|Q’,
thus U|Q’ is a direct sum of copies of Y|Q’. By construction, Y is annihilated by
7. Since U is a submodule of Y. it follows that U is annihilated by ~. Altogether,
we see that U is the direct sum of copies of Y.

We claim that W # 0. Otherwise U = U = Y"1, thus Y is a submodule of M.
But Y is relative injective in £, thus Y would be a direct summand of M. However,
by assumption, M is £-reduced. This contradiction shows that W £ 0.
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Now W is a submodule of X® with dimension vector (w,w), thus, according to
Lemma 2] W is a direct summand of say s copies of X and s > 1. The equality
(w,w) = (sn, sn) implies that s = 1, since w < n+1 and n > 2. In this way, we see
that W is isomorphic to X. It follows that dim U = (1,1) and therefore U = Y.

Finally, as in Case[Il we see that U is indecomposable, using again the assump-
tion that M is £-reduced. This shows that U is an &-bristle. |

Remark. We should stress that given orthogonal bricks X, Y in mod kQ), the condi-
tion (C) is usually not satisfied. Here is a typical example for @ = K(3). As above,
let Y = (k,k;1,0,0), but for X we now take X = X'(\;,X2) = (K%, k%, 3,7),
defined by

ae(@) =e(i),  Ble(d)) = Aie(d), ~(e(1)) =e2), ~(e(2)) =0
for 1 <i < 2. Again, e(1),e(2) is the canonical basis of k% and \; # g are assumed
to be non-zero elements of k. Since dimy, Ext*(Y, X ) = 2, there is an equivalence
n : modkK(2) — £(Y,X). Let N be an indecomposable kK (2)-module with
dimension vector (2,b) (note that b has to be equal to 1,2 or 3) and M = nN.
Thus there is an exact sequence

0 X? M y? 0.
Since we assume that N is indecomposable, it is reduced, thus M is E-reduced.
Note that X has a (unique) kQ-submodule V' with dimension vector (1,1): the
vector spaces V4 and Va2 both are generated by e(2). The submodule U = X @ V
of X? is a submodule of M with dimension vector (3,3) = x + y, and it is not an

E-bristle. Thus, condition (C) is not satisfied. Here, 1 defines a proper embedding
of B(N) = G(1,1)(N) into Gyyy(M).
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