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Abstract. We study non-stationary stochastic processes arising from sequen-
tial dynamical systems built on maps with a neutral fixed point and prove the
existence of Extreme Value Laws for such processes. We use an approach de-
veloped in an earlier work of the authors, where we generalised the theory of
extreme values for non-stationary stochastic processes, mostly by weakening
the uniform mixing condition that was previously used in this setting. The
present work is an extension of our previous results for concatenations of uni-
formly expanding maps.

1. Introduction

The erratic behaviour of chaotic dynamical systems motivated the use of proba-
bilistic tools to study the statistical behaviour of such systems. The time evolution
of chaotic systems gives rise to time series resulting from evaluating an observable
function along the orbits of the system.

The mixing features of the systems determine the dependence structure of the
processes, leading, usually, to some sort of asymptotic independence that, often,
allows one to recover the behaviour of purely random, independent and identically
distributed sequences of random variables.

The ergodic properties of the systems are tied to the existence of invariant mea-
sures, which endow the stochastic processes arising from such systems with sta-
tionarity. In some sense, the invariant measures, which usually have some physical
significance, determine the system itself. However, sometimes the exact formula for
the invariant measure is not accessible and one has to rely on reference measures
with respect to which these processes are not stationary anymore.

Relaxing stationarity gives rise to non-autonomous dynamical systems for which
the study of limit theorems is just at the beginning. Here, we will focus on the
particular problem of studying the existence of limiting Extreme Value Laws (EVL),
which, as shown in [10], is related to the occurrence of rare events and the study of
Hitting and Return Time Statistics.

The study of the extremal properties of non-stationary stochastic processes was
introduced by Hüsler in [18, 19] and the theory was built up on this initial effort,
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which generalised Leadbetter’s conditions and approach to deal with general sta-
tionary stochastic processes. This fact precluded its application in a dynamical
setting. In [13], the authors developed a more general theory, based on necessary
adjustments to Leadbetter’s conditions and a much more refined way of dealing
with clustering, originally developed in [11, 12], which, ultimately, allowed the ap-
plication to non-autonomous dynamical systems.

We will use the theory established in [13] to study sequential dynamical systems
originated by the composition of intermittent maps. Sequential dynamical systems
were introduced by Berend and Bergelson [6], as a non-stationary system in which
a concatenation of maps is applied to a given point in the underlying space, and the
probability is taken as a conformal measure, which allows the use of the transfer
operator (Perron-Fröbenius) as a useful tool to quantify the loss of memory of any
prescribed initial observable. The theory of sequential systems was later developed
in the fundamental paper by Conze and Raugi [8], where a few limit theorems,
in particular the Central Limit Theorem, were proved for concatenations of one-
dimensional dynamical systems, each possessing a transfer operator with a quasi-
compact structure on a suitable Banach space. For the same systems and others,
even in higher dimensions, the Almost Sure Invariance Principle was subsequently
shown in [16].

Both papers [8, 16] dealt however with uniformly expanding maps, for which
the transfer operators admit a spectral gap and the correlations decays exponen-
tially. In a different direction, a class of sequential systems given by composition
of non-uniformly expanding maps of Pomeau-Manneville type was studied in [1],
by perturbing the slope at the indifferent fixed point 0. Polynomial decay of cor-
relations was proved for particular classes of centred observables, which could also
be interpreted as the decay of the iterates of the transfer operator on functions of
zero (Lebesgue) average, and this fact is better known as loss of memory. In the
successor paper [23], a (non-stationary) central limit theorem was shown for sums
of centred observables and with respect to the Lebesgue measure.

We continue here the statistical analysis of these indifferent transformations by
proving the existence of limiting extreme value distributions under suitable nor-
malisation for the threshold of the exceedances.

2. Conditions for the existence of Extreme Value Laws

for non-stationary processes

In this section, we revise the general theory developed in [13] in order to prove
the existence of EVL for non-stationary processes, which is particularly suitable
for application to processes arising from non-autonomous systems. However, since
in our application there is no clustering of exceedances, we simplify the exposition
by adapting the general conditions and setting to this particular case of absence of
clustering.

Let X0, X1, . . . be a stochastic process, where each r.v. Xi : Y → R is defined on
the measure space (Y ,B,P). We assume that Y is a sequence space such that each
possible realisation of the stochastic process corresponds to a unique element of Y
and there exists a measurable map T : Y → Y , the time evolution map, which can
be seen as the passage of one unit of time, so that Xi−1 ◦ T = Xi, for all i ∈ N.
The σ-algebra B can also be seen as a product σ-algebra adapted to the Xi’s. For
the purpose of this paper, X0, X1, . . . is possibly non-stationary. Stationarity would
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mean that P is T -invariant. Note that Xi = X0 ◦Ti, for all i ∈ N0, where Ti denotes
the i-fold composition of T , with the convention that T0 denotes the identity map
on Y . In the application below to sequential dynamical systems, we will have that
Ti = Ti ◦ . . . ◦ T1 will be the concatenation of i possibly different transformations
T1, . . . , Ti.

Each random variable Xi has a marginal distribution function (d.f.) denoted by
Fi, i.e., Fi(x) = P(Xi ≤ x). Note that the Fi, with i ∈ N0, may all be distinct from
each other. For a d.f. F we let F̄ = 1 − F . We define uFi

= sup{x : Fi(x) < 1}
and let Fi(uFi

−) := limh→0+ Fi(uFi
− h) = 1 for all i.

Our main goal is to determine the limiting law of

Pn = P(X0 ≤ un,0, X1 ≤ un,1, . . . , Xn−1 ≤ un,n−1)

as n → ∞, where {un,i, i ≤ n− 1, n ≥ 1} is considered a real-valued boundary. We
assume throughout the paper that

(2.1) F̄max := max{F̄i(un,i), i ≤ n− 1} → 0 as n → ∞,

which is equivalent to un,i → uFi
as n → ∞, uniformly in i. Let us denote F ∗

n :=∑n−1
i=0 F̄i(un,i), and assume that there is τ > 0 such that

(2.2) F ∗
n :=

n−1∑
i=0

F̄i(un,i) → τ, as n → ∞.

In what follows, for every A ∈ B, we denote the complement of A as Ac := Y \A.
Let A := (A0, A1, . . .) be a sequence of events such that Ai ∈ T −1

i B. For some
s, � ∈ N0, we define

(2.3) Ws,�(A) =

s+�−1⋂
i=s

Ac
i .

We will write W c
s,�(A) := (Ws,�(A))

c. We consider A
(0)
n := (A

(0)
n,0, A

(0)
n,1, . . .), where

the event A
(0)
n,i is defined as A

(0)
n,i(un,i) := {Xi > un,i}.

Now, we recall a mixing condition, introduced in [13], which was specially de-
signed for the application to the dynamical setting.

Condition (Д0(un,i)). We say that Д0(un,i) holds for the sequence X0, X1, . . . if
for every �, t, n ∈ N,

(2.4)
∣∣∣P(

A
(q)
n,i ∩ Wi+t,�

(
A

(0)
n

))
− P

(
A

(q)
n,i

)
P

(
Wi+t,�

(
A

(0)
n

))∣∣∣ ≤ γi(n, t),

where γi(n, t) is decreasing in t for each n and each i and there exists a sequence

(t∗n)n∈N such that t∗nF̄max → 0 and
∑n−1

i=0 γi(n, t
∗
n) → 0 when n → ∞.

In order to prove the existence of a distributional limit for Pn, in [13], we used as
usual a blocking argument that splits the data into kn blocks separated by time gaps
of size larger than t∗n, which are created by simply disregarding the observations
in the time frame occupied by the gaps. The precise construction of the blocks is
given in [13, Section 2.2] but we briefly describe here some of the key properties of
this construction.

In the stationary context, one takes blocks of equal size, which in particular
means that the expected number of exceedances within each block is

nP(X0 > un)/kn ∼ τ/kn.
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Here the blocks may have different sizes, which we denote by �n,1, . . . , �n,kn
but, as

in [18, 19], these are chosen so that the expected number of exceedances is again

∼ τ/kn. Also, for i = 1, . . . , kn, let Ln,i =
∑i

j=1 �n,j and Ln,0 = 0. See the

beginning of Section 2.2 of [13] for the precise definition of these quantities.
We recall now a condition that imposes some restrictions on the speed of recur-

rence within each block, which, in the present context, precludes the existence of
clustering.

Consider the sequence (t∗n)n∈N, given by condition Д0(un,i) and let (kn)n∈N be
another sequence of integers such that

(2.5) kn → ∞ and knt
∗
nF̄max → 0, as n → ∞.

Condition (Д′
0(un,i)). We say that Д′

0(un,i) holds for the sequence X0, X1, X2, . . .
if there exists a sequence (kn)n∈N satisfying (2.5) and such that

(2.6) lim
n→∞

kn∑
i=1

�i−1∑
j=0

�i−1∑
r=j+1

P(A
(0)
Li−1+j ∩ A

(0)
Li−1+r) = 0.

Condition Д′
0(un,i) precludes the occurrence of clustering of exceedances.

The following is a corollary of [13, Theorem 2.4], in the particular case of absence
of clustering and which we will use below to obtain the existence of EVL.

Theorem 2.1. Let X0, X1, . . . be a stationary stochastic process and suppose (2.1)
and (2.2) hold for some τ > 0. Assume that conditions Д0(un,i) e Д′

0(un,i) are
satisfied. Then

lim
n→∞

Pn = e−τ .

3. Sequential systems on intermittent maps:

Statement of the main result

We consider maps with indifferent fixed points in the formulation proposed in
[22]. Namely, for α ∈ (0, 1),

(3.1) Tα(x) =

{
x(1 + 2αxα) for x ∈ [0, 1/2),

2x− 1 for x ∈ [1/2, 1],

and we concatenate them. For each i ∈ N, let Ti = Tαi
, with αi ∈ (0, α∗), where

α∗ = 1/7.
This countable sequence of maps {Ti}i∈N allows us to define a sequential dynam-

ical system. A sequential orbit of x ∈ X will be defined by the concatenation

(3.2) Tn(x) := Tn ◦ · · · ◦ T1(x), n ≥ 1.

We denote by Pj the Perron-Fröbenius (transfer) operator associated to Tj defined
by the duality relation∫

X

Pjf g dm =

∫
X

f g ◦ Tj dm, for all f ∈ L1
m, g ∈ L∞

m .

Note that here the transfer operator Pj is defined with respect to the reference
Lebesgue measure m.

Similarly to (3.2), we define the composition of operators as

(3.3) Πn := Pn ◦ · · · ◦ P1, n ≥ 1.
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It is easy to check that duality persists under concatenation, namely∫
X

g(Tn) f dm =

∫
X

g(Tn ◦ · · · ◦ T1) f dm

=

∫
X

g( Pn ◦ · · · ◦ P1f) dm =

∫
X

g (Πnf) dm.

We note that this perturbation by changing the slope has also been considered
for other interesting purposes. The first result, by Freitas and Todd [15] is about
statistical stability, which establishes the continuity in L1 of the densities of the
absolutely continuous invariant measures when the parameter α changes. A strong
achievement in this direction has been obtained, independently, by Baladi and Todd
[5], Korepanov [20] and, more recently, Bahsoun and Saussol [4], with the proof
of the differentiability of the function α →

∫
ψdμα, where μα is the absolutely

continuous invariant measure for Tα and ψ is a function in some Lq; we defer to
those papers for the precise definition and for the differences among them. We
just stress that as a consequence, it is possible to obtain linear response and, in
particular, [5] gives a formula for the value of the derivative.

Let us now focus on the situation of our interest, namely the sequential or random
composition of these kinds of maps. Whenever a finite number of them are chosen
in an i.i.d. way and with a position dependent probability distribution P, the sto-
chastic stability was proven by Duan [9]. Still in this framework and by considering
the annealed situation where the statistics are insured by the direct product of P
with the stationary measure, Bahsoun, Bose and Duan [3] proved polynomial decay
of correlations, and successively Bahsoun and Bose [2] got a central limit theorem.
The latter was successively generalized in the quenched case (with respect to the
stationary measure and for almost all the realisations), by Nicol, Török and Vaienti
[23]; this paper also contains a proof of the Central Limit Theorem for sequential
systems and its results will be used again in the next section. Still in this context
we also quote the paper by Leppänen and Stenlund [21] where a few results on the
continuity of the densities and their pushforward with respect to the parameter α
are proved.

We now turn to the context of extreme value analysis. Similarly to [10] (in
the context of stationary deterministic systems), we consider that the time series
X0, X1, . . . arises from these sequential systems simply by evaluating a given ob-
servable ϕ : X → R ∪ {±∞} along the sequential orbits,

(3.4) Xn = ϕ ◦ Tn, for each n ∈ N.

Note that, on the contrary to the setup in [10], the stochastic process X0, X1, . . .
defined in this way is not necessarily stationary, because m is not an invariant
measure for any of the Ti.

We assume that the r.v. ϕ : X → R ∪ {±∞} achieves a global maximum at
ζ ∈ [0, 1] (we allow ϕ(ζ) = +∞) being of the following form:

(3.5) ϕ(x) = g
(
dist(x, ζ)

)
,

where ζ is a chosen point in the phase space [0, 1] and the function g : [0,+∞) →
R ∪ {+∞} is such that 0 is a global maximum (g(0) may be +∞); g is a strictly
decreasing continuous bijection g : V → W in a neighbourhood V of 0; and has one
of the three types of behaviour described in equations (1.11), (1.12) and (1.13) of
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[10], which are important to determine the type of EVL that applies under linear
normalisation (see [14, Remark 6]).

We now choose time-dependent levels un,i given by m(Xi > un,i) = τ/n, where
τ ≥ 0. Let δn,i = g−1(un,i) so that

(3.6) m(Xi > un,i) =

∫
1(ζ−δn,i,ζ+δn,i)Πi(1)dm =

τ

n
.

Observe that δn,0 = τ
2n and, by Lemma 4.4, which appears below, for n sufficiently

large, we have that for some constants 0 < c < C ′,

(3.7)
τ

2C ′n
≤ δn,i ≤

τ

2cn
.

Note that this choice for the levels un,i guarantees that condition (2.2) is trivially
satisfied.

We are now in condition to state and prove our main result.

Theorem 3.1. Consider the family of maps given by (3.1) and the sequential dy-
namics given by Tn = Tn ◦ . . .◦T1, where Ti = Tαi

, with αi ∈ (0, α∗) and α∗ = 1/7.
Let X1, X2, . . . be defined by (3.4), where the observable function ϕ, given by (3.5),
achieves a global maximum at a chosen ζ ∈ (0, 1]. For m-a.e. ζ ∈ (0, 1], we may de-
fine the levels (un,i)n,i∈N such that (3.6) holds for some τ ≥ 0, conditions Д0(Un,i)
and Д′

0(Un,i) hold and consequently:

lim
n→∞

m(X0 ≤ un,0, X1 ≤ un,1, . . . , Xn−1 ≤ un,n−1) = e−τ .

Remark 3.2. We emphasise that this restriction on α (α < 1/7) is rather technical
and is due to the use of the blocking argument and of decay of correlations, which
is proved only on sufficiently regular Banach spaces of functions. We remark that
the same techniques gave rise to similar restrictions on α even in the stationary
setting, where the orbits are obtained by iterations of the same Liverani-Saussol-
Vaienti map (see [17, Section 3.4]). It is interesting to observe that the threshold
value α < 1/7 is the same appearing in [23] in order to establish the Central Limit
Theorem for smooth observable.

4. Proof of the theorem

By Theorem 2.1, to prove Theorem 3.1 we only need to check conditions Д0(un,i)
and Д′

0(un,i).

4.1. Verification of Д0(un,i). The intermittent map introduced above exhibits
polynomial decay of correlations, which can be obtained by considering decay of
the L1 norm of the concatenation of the Perron-Frobenius operators: this fact is
also known as loss of memory. We will be interested in the kind of correlations
given in [13, Proposition 4.3], which reads

DC(φ, ψ, i, t) :=

∫
φ ◦ Tiψ ◦ Ti+tdm−

∫
φ ◦ Tidm

∫
ψ ◦ Ti+tdm

=

∫ (
ψ −

∫
ψΠi+t(1)dm

)
Pi+t . . . Pi+1

(
Πi(1)

(
φ−

∫
φΠi(1)dm

))
.

Let φ̃ = φ −
∫
φΠi(1)dm. Observe that

∫
Πi(1)φ̃dm = 0. This means that the

observable function Πi(1)φ̃ ∈ V0, where V0 is the set of functions with 0 integral
that was defined in [8, Lemma 2.12].
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Now, contrary to what we did in the case of uniformly expanding maps, we will
consider decay of the L1 norm of the concatenation of the PF operators, namely
we will consider, having set ψ̃ = ψ −

∫
ψΠi(1)dm :

|DC(φ, ψ, i, t)| =
∣∣∣∣
∫

ψ̃ Pi+t . . . Pi+1

(
Πi(1)φ̃

)
dm

∣∣∣∣(4.1)

≤ ‖Pi+t . . . Pi+1(Πi(1)φ̃)‖1 ||ψ||∞.(4.2)

To deal with such correlations we apply the following result proved in [1]:

Theorem 4.1 ([1]). Suppose ψ, φ are in the cone Ca (see below), for some a and
with equal expectation

∫
φdm =

∫
ψdm. Then for any 0 < α∗ < 1 and for any

sequence T1, · · · , Tn, n ≥ 1, of maps of Pomeau-Manneville type with 0 < αk ≤
α∗ < 1, k ∈ [1, n], we have

(4.3)

∫
|Πn(φ)− Πn(ψ)|dm ≤ Cα∗(‖φ‖1 + ‖ψ‖1)n− 1

α+1(log n)
1
α ,

where the constant Cα∗ depends only on the map Tα∗ .

The cone Ca contains functions given by (here X(x) = x denotes the identity
function):

Ca = {f ∈ C0((0, 1]) ∩ L1(m) | f ≥ 0, f decreasing, Xα+1f increasing

f(x) ≤ ax−α

∫
fdm}

Having fixed 0 < α < 1, it was proven in [1] that, provided a is large enough, the
cone Ca is preserved by all operators Pk.

We are now ready to verify Д0(un,i). Note that A
(0)
n,i = {Xi > un,i} =: Un,i is

an interval.
We will apply the bound (4.1). We begin to observe that in our case φ is not in

the cone Ca; we therefore approximate it with a function χ which is C1 and with
compact support, equal to 1 on Un,i and rapidly decreasing to zero on a set Λ of
diameter Δ in the complement of Un,i.

1 We have that ||χ||∞ = 1, ||χ′||∞ = O(Δ−1)
and finally ||φ− χ||1 = O(Δ). In this way we have:

Πi(1)φ̃ = Πi(1)χ−Πi(1)

∫
χΠi(1)dm+Πi(1)[φ− χ]−Πi(1)

∫
[φ− χ]Πi(1)dm.

1This can be achieved for instance in this way. Let Un = (an, bn) and UΔ
n = (an −Δ, bn +Δ).

Define

χ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for x ∈ (an, bn),

e
− 1

1−
(
x−bn

Δ

)2
for x ∈ [bn, bn +Δ),

e
− 1

1−
(
x−an

Δ

)2
for x ∈ (an −Δ, an],

0 for x ∈ R \ UΔ
n .

Note that ΔUn := {x : χ(x) − 1Un (x) > 0} = UΔ
n \ [an, bn] and m(ΔUn) = 2Δ. We have

χ ∈ C∞, χ′′(bn + Δ
31/4

) = 0 = χ′′(an − Δ
31/4

) and

max{χ′(x)} = χ′(bn +
Δ

31/4
) = χ′(an − Δ

31/4
) =

2e
− 1

1−1/
√

3

31/4(1− 1/
√
3)2

1

Δ
= O(1/Δ).

.
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To this quantity we have to apply the power Πt := Pi+t . . . Pi+1 and then take the
L1 norm: for the last two terms in the preceding identity this contribution will be
of order 2Δ. Now, generalizing an argument in [22], it can be shown, as in [23], that
there are constants λ < 0, ν > 0, δ > 0 such that, having set χ′ := χ−

∫
χΠi(1)dm,

the functions

F := χ′Πi(1) + λXΠi(1) + νΠi(1) + δ; G := λXΠi(1) + νΠi(1) + δ

are pushed into the cone Ca, in such a way that

Πt(Πi(1)χ
′) = Πt(F )−Πt(G),

and, by the above theorem on loss of memory,

||Πt(Πi(1)χ
′)||1 = ||Πt(F )−Πt(G)||1 ≤ Cα∗(‖F‖1 + ‖G‖1)t−

1
α∗ +1(log t)

1
α∗ .

It is important to notice that the constants λ, ν, δ

• are independent of i;
• are affine functions of the C1 norm of χ, with multiplicative constants
depending only on α∗.

In conclusion, this means that we can write

||Πt(Πi(1)χ
′)||1 ≤ Cα∗ [Aα∗ ||χ||∞ +Bα∗ ||χ′||∞ +Dα∗ ]t−

1
α∗ +1(log t)

1
α∗ ,

where the factors Aα∗ , Bα∗ , Dα∗ depend only on α∗. Therefore, and taking into
account the bounds on χ, there will be new constants C1, C2, C3 depending only
on α∗ such that

||Πt(Πi(1)φ̃||1 ≤ 2Δ + C1t
− 1

α∗ +1(log t)
1

α∗

+ C2Δ
−1t−

1
α∗ +1(log t)

1
α∗ + C3t

− 1
α∗ +1(log t)

1
α∗ .

Returning to (4.1), it follows that there exists C∗ (depending only on α∗) such that

(4.4) DC(φ, ψ, i, t) ≤
(
2Δ + C∗Δ−1t−

1
α∗ +1(log t)

1
α∗

)
‖ψ‖∞.

In order to verify condition Д0(un, i), we let Δ = n1+η, for some η > 0, tn =
nκ, for some 0 < κ < 1 and for each n, i, � set φi = 1(ζ−δn,i,ζ+δn,i) and ψi =
1(ζ−δn,i+tn ,ζ+δn,i+tn ) · . . . · 1(ζ−δn,i+tn+�,ζ+δn,i+tn+�) ◦ (Ti+tn+� ◦ . . . ◦ Ti+tn+1). Then
we can write:

DC(φi, ψi, i, tn) ≤ 2n−(1+η) + C∗n1+ηn(− 1
α∗ +1)κ(κ logn)

1
α∗ =: γi(n, tn).

Then, for some C∗∗ > 0, we have
∑n−1

i=0 γi(n, tn) ≤ 2n−η + C∗∗n2+2ηn(− 1
α∗ +1)κ →

0, as n → ∞, as long as α is sufficiently small so that (− 1
α∗ + 1)κ + 2 + 2η < 0,

which ultimately settles condition Д0(un,i).
Note that in order to optimise the choice of the α∗ (which we want as large as

possible), we need to choose η close to 0 and κ close to 1, which means that α∗ < 1
3 .

However, in order to prove Д′
0(un,i) we still need further restrictions on α.

4.2. Verification of Д′
0(un,i). We will begin with a lemma that adjusts to the

sequential setting of the argument used in [17, Lemma 3.10]. Essentially, it says
that the Lebesgue measure of the points that after n iterations by the sequential
intermittent maps return to an ε neighbourhood of themselves scales like a power
of ε that depends on α∗.

Let En(ε) := {x ∈ [0, 1] : |Tn(x)− x| ≤ ε}.
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Lemma 4.2. There exists some C > 0 such that for all n ∈ N, we have

m(En(ε)) ≤ Cε1/(1+α∗).

Proof. Let J1, J2, . . . , Jk be the domains of injectivity of Tn, ordered from the left
to the right, i.e., Ji = [ai, bi) and 0 = a1 < b1 = a2 < . . . < bk−1 = ak < bk = 1.
Note that Tn is a full branched map, in particular, each branch Tn|Ji

is a convex
map where for each i �= 1 we have DTn(x) > γ > 1 but when i = 1, we have
DTn(0) = 1.

We consider now an ε-neighbourhood of the diagonal and the intersection of its
boundary with the full branches of Tn, i.e., we define for each i = 1, . . . , k, the points
x±
i ∈ Ji such that Tn(x±

i ) = x±
i ±ε, whenever this intersection is well defined. Note

that, whenever both points x±
i exist then En(ε) ∩ Ji ⊂ [x−

i , x
+
i ].

Let x ≥ x−
i in Ji. By convexity of Tn|Ji

, we have DTn(x) ≥ DTn(x−
i ) ≥

x−
i −ε−Tn(ai)

x−
i −ai

, hence DTn(x)− 1 ≥ x−
i −ε−Tn(ai)

x−
i −ai

− 1 = ai−ε−Tn(ai)

x−
i −ai

≥ ai−ε−Tn(ai)
m(Ji)

. It

follows that 2ε =
∫ x+

i

x−
i

DTn(x)− 1dx ≥ m([x−
i , x

+
i ])

ai−ε−Tn(ai)
m(Ji)

, which implies

En(ε) ∩ Ji ≤
2ε

ai − ε− Tn(ai)
m(Ji).

This estimate is useful whenever ai − ε− Tn(ai) is not small. Hence, we define

V η = ∪{ai : |ai − Tn(ai)| < ε+ η} and Zη = ∪ai∈V ηJi.

Then m(En(ε)) = m(En(ε) ∩ Zη) +m(En(ε) ∩ (Zη)c) ≤ m(Zη) + 2ε
η m((Zη)c).

Now we estimate these sets in two different ways depending on whether n is
small or large.

Assume that ε < η and n is sufficiently large so that maxi |Ji| ≤ ε, where
|Ji| = bi − ai. Recall that Tn(ai) = 0 for all i. Since ai ∈ V η means that ai < η+ ε
then m(En(ε)) ≤ 2η+ 2ε

η . Optimising over η ∈ (0, 1) we have that η = O(
√
ε) is the

best choice and gives m(En(ε)) ≤ C
√
ε ≤ Cε1/(1+α∗), since as mentioned above we

have α∗ < 1/2, which implies that 1/(1 + α∗) > 2/3 > 1/2.
When n is small then the worst case scenario happens on J1. In this case x−

1 is
not defined and En(ε) ∩ J1 = [0, x+

1 ]. In this case, we have: ε = Tn(x+
1 ) − x+

1 ≥
Tα∗(x+

1 )− x+
1 = 2α

∗
(x+

1 )
1+α∗

, which implies that x+
1 =

(
ε

2α∗

) 1
1+α∗ and ultimately,

for α ∈ (0, 1), taking η =
√
ε, we have m(En(ε)) ≤ ε

1
1+α∗ . �

We now follow the argument originally used by Collet in [7] and further developed
in [17]. Let 0 < β < 1, 0 < κ < β and 0 < ξ < 1 such that κ(1 + ξ) < β. We define
the set of points that recur too fast:

Ej =

{
x ∈ [0, 1] : |Ti(x)− x| ≤ 2

j
for some i ≤ jκ(1+ξ)

}
.

By Lemma 4.2, we have that m(Ej) ≤
∑jκ(1+ξ)

i=1 m(Ei(2/j)) ≤ C
jς , where ς =

1
1+α∗ − κ(1 + ξ) and for some C > 0.

The core of Collet’s argument is based on the use of Hardy-Littlewood maximal
functions to obtain, from an estimate on the measure of the sets Ej , an estimate
for the conditional measure on balls of radius 1/j, centred on m-a.e point ζ, of the
intersection of these sets Ej with the corresponding balls.
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Lemma 4.3. Assume that (En)n∈N is a sequence of measurable sets such that

m(Ej) ≤
C

jς
,

for some C, ς > 0. Then for 0 < β < ς and γ > 1/(ς − β), we have that for m-a.e.
ζ ∈ [0, 1], there exists N(ζ) such that for all j ≥ N(ζ)

m({|x− ζ| ≤ j−γ} ∩ Ejγ ) ≤
2

jγ+γβ
.

Proof. Define the Hardy-Littlewood maximal function:

Ln(x) = sup
�>0

1

2�

∫ x+�

x−�

1En
(z)dz.

By the theorem of Hardy-Littlewood we have m(Ln > λ) ≤ C
λ ‖1En

‖L1 = C
λm(En).

Taking λ = n−β with 0 < β < ς, we have m(Ln > n−β) ≤ c
n−β m(En) ≤ C

nς−β .

Hence, taking n = jγ , we have m(Ljγ > j−βγ) ≤ C
jγ(ς−β) and assuming that

γ(ς − β) > 1 it follows that
∑

j m(Ljγ > j−βγ) ≤
∑

j
C

jγ(ς−β) < ∞. Hence, by the

Borel-Cantelli lemma we have that for m-a.e. ζ there exists N(ζ) such that for
all j ≥ N(ζ) we have ζ ∈ {Ljγ ≤ j−βγ}. Choosing � = j−γ , by definition of the
function L, we have for m-a.e. ζ

∫ x+�

x−�

1En
(z)dz = m((ζ − j−γ , ζ + j−γ) ∩ Ejγ ) ≤ 2j−γ(1+β).

�

Lemma 4.4. There exist constants c, C, C ′, C ′′ > 0 such that for all i ∈ N and
x ∈ [0, 1] we have

c ≤ Πi(1)(x) ≤ Cx−α.

In particular, for x ∈ Un and n sufficiently large, taking C ′ = C ′′ζ−α, we can write

c ≤ Πi(1)(x) ≤ C ′.

Proof. It is enough to prove the first inequalities. The upper bound follows because
the constant function 1 is in the cone Ca and therefore for any Pi : (Pi1)(x) ≤
axα

∫
Pi1dm ≤ axα; in this case C = a. The lower bound is the content of Lemma

2.4 in [22] with c = min

{
a,

[
α(1+α)

aα

] 1
1−α

}
. �

Lemma 4.5. There exists a constant C > 0 such that for m-a.e. ζ ∈ (0, 1], for all
� ∈ N and all n sufficiently large, we have

n

nκ∑
i=1

m ({x : |T�(x)− ζ| ≤ δn,� and |Ti+�(x)− ζ| ≤ δn,i+�}) ≤ C
nκ

nβ

n→∞−−−−→ 0.
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Proof. Let j =
(
cn
τ

)1/γ
so that j−γ = τ/(cn). Also observe that nκ = (τjγ/c)κ ≤

jγκ(1+ξ), if n is large enough. Hence, for such sufficiently large n, we have:

Vn :={x : |x− ζ| ≤ τ

cn
and |Ti(x)− ζ| ≤ τ

cn
for some i ≤ nκ}

⊂{x : |x− ζ| ≤ j−γ and |Ti(x)− x| ≤ 2j−γ for some i ≤ nκ}
⊂{x : |x− ζ| ≤ j−γ and |Ti(x)− x| ≤ 2j−γ for some i ≤ jγκ(1+ξ)}
={x : |x− ζ| ≤ j−γ} ∩ Ejγ .

Hence, by Lemma 4.3 we have m(Vn) ≤ 2τ1+β/n1+β. Taking C = 2τ1+β, we have

n

nκ∑
i=1

m
({

x : |x− ζ| ≤ τ

cn
, |Ti(x)− ζ| ≤ τ

cn

})
≤ n

nκ∑
i=1

m(Vn) ≤ n1+κ 2τ
1+β

n1+β

≤ C
nκ

nβ
.(4.5)

Finally, we observe that the quantity we want to estimate can be written as

n
nκ∑
i=1

∫
1Bδn,�

(ζ) ◦ T� 1Bδn,i+�
(ζ) ◦ Ti+�dm

= n

nκ∑
i=1

∫
1Bδn,�

(ζ) 1Bδn,i+�
(ζ) ◦ Ti+� ◦ . . . ◦ T�+1 Π�(1)dm.

Recalling that by (3.7) we have δn,i ≤ τ
cn , for all i ∈ N0, then, by Lemma 4.4 and

(4.5), it follows that there exist C ′, C ′′ > 0 such that

n

nκ∑
i=1

∫
1Bδn,�

(ζ) ◦ T� 1Bδn,i+�
(ζ) ◦ Ti+�dm ≤ C ′n

nκ∑
i=1

m(Vn) ≤ C ′′n
κ

nβ
.

�
Recall that we are taking: kn = n1−β and tn = nκ.
From Lemma 4.4, we have that cμ(Un) ≤ m(Xj > un) ≤ Cμ(Un). Hence, if we

let Ln = max{�i : i = 1, . . . , kn}, we obtain that there exists a constant C̃ > 0

such that Ln ≤ C̃nβ.
In order to prove Д′

0, we need to control the sum on the left

kn∑
i=1

�i−1∑
j=0

�i−1∑
r=j+1

P(A
(0)
n,Li−1+j ∩ A

(0)
n,Li−1+r) ≤

kn∑
i=1

Ln−1∑
j=0

Ln−1∑
r=j+1

P(A
(0)
n,Li−1+j ∩A

(0)
n,Li−1+r)

≤ C̃n max
�=1,...,n

C̃nβ∑
i=1

∫
1Un

◦ T� 1Un
◦ Ti+�dm.

From Lemma 4.5 we have that

lim
n→∞

n max
�=1,...,n

nκ∑
i=1

∫
1Bδn,�

(ζ) ◦ T� 1Bδn,i+�
(ζ) ◦ Ti+�dm = 0.

Hence we are left to handle

n max
�=1,...,n

C̃nβ∑
i=nκ

∫
1Bδn,�

(ζ) ◦ T� 1Bδn,i+�
(ζ) ◦ Ti+� dm
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for which we use decay of correlations. Using (4.4), we have:

n max
�=1,...,n

C̃nβ∑
i=nκ

∫
1Bδn,�

(ζ) ◦ T� 1Bδn,i+�
(ζ) ◦ Ti+� dm

≤ C(n1+βn1+ηnκ(1−1/α∗) log(n)1/α
∗
+ n−(1+η)+β+1 + n−2).

If we take η = 2β, then if α∗ is sufficiently small it is easy to check that the
terms on the right vanish as n → ∞.

Now, we focus on a possible upper bound for α∗. From the first term on the rhs
of the previous equation we have that

(4.6) 2 + 4β + κ− κ/α∗ < 0 ⇐⇒ α∗ <
κ

2 + 4β + κ
.

Moreover, in order to be able to apply Lemma 4.3 we need that ς > β which means
that

(4.7)
1

1 + α∗ − κ(1 + ξ) > β ⇐⇒ α∗ < β + κ(1 + ξ)− 1.

Recall that κ(1 + ξ) < β but we are free to choose any β ∈ (0, 1). Analysing both
the expressions one obtains that the maximum range for α∗ occurs for β and κ as
close as possible to 1, which means that α∗ ≤ 1/7.
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