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A WEIGHTED MAXIMAL INEQUALITY

FOR DIFFERENTIALLY SUBORDINATE MARTINGALES
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(Communicated by Svitlana Mayboroda)

Abstract. The paper contains the proof of a weighted Fefferman-Stein in-
equality in a probabilistic setting. Suppose that f = (fn)n≥0, g = (gn)n≥0 are
martingales such that g is differentially subordinate to f , and let w = (wn)n≥0

be a weight, i.e., a nonnegative, uniformly integrable martingale. Denoting by
Mf = supn≥0 |fn|, Mw = supn≥0 wn the maximal functions of f and w, we
prove the weighted inequality

||g||L1(w) ≤ C||Mf ||L1(Mw),

where C = 3+
√
2 + 4 ln 2 = 7.186802 . . . . The proof rests on the existence of

a special function enjoying appropriate majorization and concavity.

1. Introduction

Suppose that w is a weight, i.e., a nonnegative, locally integrable function on R
d,

and let M stand for the Hardy-Littlewood maximal operator. In 1971, Fefferman
and Stein [5] proved the existence of a finite constant cd, depending only on the
dimension, such that

w
({

x ∈ R
d : Mf(x) ≥ 1

})
≤ cd||f ||L1(Mw).

Here and below, we use the standard notation w(E) =
∫
E
w(x)dx and ||f ||Lp(w) =(∫

Rd |f(x)|pw(x)dx
)1/p

, 0 < p < ∞. This result led to the following natural conjec-
ture, formulated by Muckenhoupt and Wheeden in the seventies. Namely, for any
Calderón-Zygmund singular integral operator T , there is a constant cT,d depending
only on T and d, such that

(1.1) w
({

x ∈ R
d : |Tf(x)| ≥ 1

})
≤ cT,d||f ||L1(Mw).

This problem remained open for a long time, and finally, a few years ago, it was
proved to be false: see the counterexamples for the Hilbert transform provided by
Reguera, Thiele, Nazarov, Reznikov, Vasyunin, and Volberg in [10, 18, 19].

This leads to the following natural problem: what should be done to the right-
hand side of (1.1) so that the inequality holds true? It follows from the results of
Lerner, Ombrosi, and Perez [8, 9] that this will be the case if we replace f by Mf .
Actually, after this modification we have the even stronger estimate

(1.2) ||Tf ||L1(w) ≤ cT,d||Mf ||L1(Mw).
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2264 RODRIGO BAÑUELOS AND ADAM OSE↪KOWSKI

One of the motivations for the results of this paper comes from the dyadic coun-
terpart of this inequality. Let h = (hn)n≥0 stand for the usual Haar system on
[0, 1): h0 = χ[0,1), h1 = χ[0,1/2)−χ[1/2,1), h2 = χ[0,1/4)−χ[1/4,1/2), and so on. For a

given integrable function f =
∑∞

n=0 anhn on [0, 1), let its maximal function Mdf be

given by supN≥0 |fN |, where fN =
∑N

n=0 anhn is the projection of f onto the space
generated by the first N + 1 Haar functions. For a given sequence ε = (εn)n≥0 of
numbers belonging to [−1, 1], we define the associated Haar multiplier T = Tε by
T (

∑∞
n=0 anhn) =

∑∞
n=0 εnanhn. Finally, let w be a nonnegative function on [0, 1).

In this context, the inequality (1.2) becomes

(1.3)

∫ 1

0

|Tεf |wdx ≤ C

∫ 1

0

MdfMdwdx.

In the paper we take a closer look at this inequality. Actually, it will be more
convenient for us to study the estimate in the more general, probabilistic setup.
Suppose that (Ω,F ,P) is a probability space filtered by (Fn)n≥0, a nondecreasing
family of sub-σ-algebras of F . Let (fn)n≥0, (gn)n≥0 be two adapted real-valued
martingales with difference sequences df = (dfn)n≥0, dg = (dgn)n≥0 given by the
equalities

df0 = f0, dfn = fn − fn−1, n = 1, 2, . . . ,

with a similar definition for dg. The maximal function of f is given by f∗ =
supn≥0 |fn|. Following Burkholder [4], we say that (gn)n≥0 is differentially sub-
ordinate to (fn)n≥0 if for any nonnegative integer n we have |dgn| ≤ |dfn| with
probability 1. For example, this domination holds true in the above context of
Haar multipliers: the martingale (

∑n
k=0 εkakhk)n≥0 is differentially subordinate to

(
∑n

k=0 akhk)n≥0. Finally, let w be a weight, i.e., a nonnegative, integrable random

variable; this variable gives rise to the martingale (wn)n≥0 given by wn = E(w|Fn),
n = 0, 1, 2, . . . . We will establish the following statement.

Theorem 1.1. Suppose that (fn)n≥0, (gn)n≥0 are martingales such that (gn)n≥0 is
differentially subordinate to (fn)n≥0. Then for any weight w we have the inequality

(1.4) sup
n≥0

||gn||L1(w) ≤ C||f∗||L1(w∗),

where C = 3 +
√
2 + 4 ln 2 = 7.186802 . . . .

Obviously, the above theorem implies (1.3).
There is a natural question whether the weight w∗ on the right can be decreased.

A natural candidate is the smaller weight Mrw := ((wr)∗)1/r for some fixed r < 1.
We will show that after the replacement the inequality fails, even in the context of
Haar multipliers.

Theorem 1.2. For any constants c > 0 and r ∈ (0, 1), there is a weight w, a
function f , and a Haar multiplier Tε on [0, 1) such that

||Tεf ||L1(w) > c||Mdf ||L1(Mrw).

Though the constant C does not seem to be sharp in (1.4), we strongly believe
that it is not far from the optimal value. The best constant in this inequality in
the unweighted setting (i.e., for w ≡ 1) is equal to 2.536 . . . and was identified
by Burkholder [4] in the context of stochastic integrals (see also [16]). His proof
rests on the construction of a certain special function of three variables, enjoying
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appropriate size and concavity properties. This type of argument, originating from
the theory of optimal control, is called the Bellman function method and has turned
out to be an extremely efficient tool in probability and analysis [1–3,11–14,20,22].
Our approach will use this technique and will exploit a certain special function of
five variables. The special function leading to the estimate (1.4) is introduced and
studied in the next section. Section 3 contains the proofs of Theorems 1.1 and 1.2.
In the final part of the paper we come back to the analytic setting and apply the
martingale inequalities to obtain maximal bounds for dyadic shifts (which, in turn,
yield corresponding results for Calderón-Zygmund operators).

2. A special function

Let β = 2 +
√
2 + 4 ln 2 and let C = β + 1 be the constant of Theorem 1.1.

Consider the domain

D = R× R× (0,∞)× [0,∞)× (0,∞)

and let B : D → R be given by

B(x, y, z, u, v) = (y2 + z2)1/2u− x2z−1v − βzv + 4zv ln
(
uv−1 + 1

)
.

Some steps which have led us to the discovery of this function are described in
Remark 2.1 below. We will need the following properties of this object.

Lemma 1.
(i) For any x, y ∈ R satisfying |y| ≤ |x| and any u > 0,

(2.1) B(x, y, |x|, u, u) ≤ 0.

(ii) For any (x, y, z, u, v) ∈ D such that |x| ≤ z and u ≤ v we have

(2.2) B(x, y, z, u, v) ≥ |y|u− Czv.

(iii) For any (x, y, z, u, v) ∈ D such that |x| ≤ z and u ≤ v we have

|Bx(x, y, z, u, v)| ≤ 2v,

|By(x, y, z, u, v)| ≤ v,

|Bu(x, y, z, u, v)| ≤ |y|+ 3z

(2.3)

and

(2.4) |B(x, y, z, u, v)| ≤ |y|v + Czv.

Proof. The proof is very straightforward and requires nothing but some simple
manipulations. We will only show (2.1) and (2.2), leaving the proof of the remaining
properties to the reader. Note that

B(x, y, |x|, u, u) ≤ (2x2)1/2u− |x|u− β|x|u+ 4|x|u ln 2 = −2|x|u ≤ 0.

To prove (2.2), it suffices to observe that (y2 + z2)1/2u ≥ |y|u and

−x2z−1v − βzv + 4zv ln(uv−1 + 1) ≥ −zv − βzv = −Czv. �

The main property of B is the following condition, which can be regarded as a
concavity-type property.
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Lemma 2. For any (x, y, z, u, v) ∈ D and d, h, k ∈ R such that |x| ≤ z, u ≤ v,
u+ d ≥ 0, and |k| ≤ |h|, we have

B(x+ h, y + k, (x+ h) ∨ z, u+ d, (u+ d) ∨ v)

≤ B(x, y, z, u, v)+Bx(x, y, z, u, v)h+By(x, y, z, u, v)k +Bu(x, y, z, u, v)d.
(2.5)

Proof. By continuity, we may assume that |x| < z and u < v. It is convenient to
split the reasoning into four separate parts.

Case I: |x + h| ≤ z, u + d ≤ v. Consider the continuous function G =
Gx,y,z,u,v,d,h,k : [0, 1] → R given by

(2.6) G(t) = B(x+ th, y + tk, z, u+ td, v).

The inequality (2.5) will follow if we prove that G(1) ≤ G(0) + G′(0), and hence
we will be done if we show that G is concave on [0, 1). It is easy to compute that
for t ∈ (0, 1),

G′′(t) =
z2k2(u+ td)

((y + tk)2 + z2)3/2
+

2(y + tk)kd

((y + tk)2 + z2)1/2
− 2vh2

z
− 4zd2

v((u+ td)/v + 1)2

≤ k2(u+ td)

z
+

2(y + tk)kd

((y + tk)2 + z2)1/2
− 2vh2

z
− zd2

v

≤ −h2v

z
+ 2|h||d| − zd2

v
≤ 0.

Hence (2.5) is established.
Case II: |x+ h| ≥ z, u+ d ≤ v. The estimate reads

((y + k)2 + (x+ h)2)1/2(u+ d)− (β + 1)|x+ h|v + 4|x+ h|v ln((u+ d)v−1 + 1)

≤ (y2 + z2)1/2(u+ d)− x2z−1v − βzv + 4zv ln(uv−1 + 1)− 2xz−1vh

+ y(y2 + z2)−1/2uk + 4zv(u+ v)−1d.

Changing the signs of x and h if necessary, we may assume that h > 0 (and then
|x+h| = x+h). Put all the terms on the left-hand side and note that the obtained
expression E(x, y, z, u, v, h, k, d), considered as a function of k, is convex; hence it
is enough to establish the estimate for extremal values of k, i.e., for k = ±h. We
will assume that k = h; for the other possibility the argumentation is analogous.
By Case I, the above estimate holds in the limit case |x+h| = z; thus, it is enough
to show that the expression E(x, y, z, u, v, h, h, d) is a nonincreasing function of h
(when the remaining parameters are fixed). To this end, we compute that the
partial derivative of E with respect to h equals

(y + h) + (x+ h)

((y + h)2 + (x+ h)2)1/2
(u+ d)− (β + 1)v + 4v ln((u+ d)v−1 + 1)

+ 2xz−1v − yu

(y2 + z2)1/2

≤ 21/2v − (β + 1)v + 4v ln 2 + 2v + v = 0.

Case III: |x+h| ≤ z, u+d > v. Note that the second assumption implies d > 0.
Let t0 ∈ (0, 1) be the number determined by the condition u + t0d = v and let G
be given by the formula (2.6). By the reasoning appearing in Case I above, G is
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concave on [0, t0] and therefore

Bx(x, y, z, u, v)h+By(x, y, z, u, v)k +Bu(x, y, z, u, v)d

= G(0) +G′(0) ≥ G(t0) +G′
−(t0)(1− t0).

Hence it is enough to show that

(2.7) B(x+ h, y + k, z, u+ d, u+ d) ≤ G(t0) +G′
−(t0)(1− t0).

This inequality can be rewritten in the form

B(x̃+ h̃, ỹ + k̃, (x̃+ h̃) ∨ z, ũ+ d̃, (ũ+ d̃) ∨ v)

≤ B(x̃, ỹ, z, ũ, v) +Bx(x̃, ỹ, z, ũ, v)h̃+By(x̃, ỹ, z, ũ, v)k̃ +Bu(x̃, ỹ, z, ũ, v)d̃;

i.e., it is precisely (2.5), where x̃ = x + t0h, ỹ = y + t0k, ũ = u + t0d = v,

d̃ = d(1− t0), h̃ = (1− t0)h, and k̃ = (1− t0)k. Plugging the formula for B and its
partial derivatives, one easily checks that this inequality reads

((ỹ + k̃)2 + z2)1/2(ũ+ d̃)− (x̃+ h̃)2(ũ+ d̃)z−1 − βz(ũ+ d̃) + 4z(ũ+ d̃) ln 2

≤ (ỹ2 + z2)1/2(ũ+ d̃)− x̃2ũ

z
− βzũ+ 4zũ ln 2 +

ỹũk̃

(ỹ2 + z2)1/2
− 2x̃ũh̃

z
+ 2zd̃

or [
((ỹ + k̃)2 + z2)1/2 − (ỹ2 + z2)1/2 − h̃2z−1 − ỹ(ỹ2 + z2)−1/2k̃

]
ũ

+

[
((ỹ + k̃)2 + z2)1/2 − (ỹ2 + z2)1/2 − (x̃+ h̃)2

z
− βz + 4z ln 2− 2z

]
d̃ ≤ 0.

We will show that both expressions in the square brackets are nonpositive. First,
consider the function ϕ(s) = ((y + s)2 + z2)1/2, s ∈ R. Then by the mean-value
theorem,

((ỹ + k̃)2 + z2)1/2 − (ỹ2 + z2)1/2 − ỹ(ỹ2 + z2)−1/2k̃

= ϕ(k̃)− ϕ(0)− ϕ′(0)k̃ = ϕ′′(ξ)k̃2/2,

for some ξ lying between 0 and k̃. But ϕ′′(ξ) = z2((y + ξ)2 + z2)−3/2 ≤ z−1, and
hence the first expression in the square bracket above is nonpositive (we use the

inequality k̃2 ≤ h̃2 here). To handle the second expression, recall that |x̃ + h̃| =
|x+ h| ≤ z, so |k̃| ≤ |h̃| ≤ |x̃+ h̃|+ |x̃| ≤ 2z (the inequality x̃ ≤ z follows from the
estimates |x| ≤ z and |x+ h| ≤ z). Consequently,

((ỹ + k̃)2 + z2)1/2 − (ỹ2 + z2)1/2 − (x̃+ h̃)2

z
− βz + 4z ln 2− 2z

≤ |k̃|+ z − (β − 4 ln 2 + 2)z ≤ 0.

This proves the validity of (2.5), since both ũ and d̃ are nonnegative.
Case IV: |x+ h| > z, u+ d > v. The inequality reads

((y + k)2 + (x+ h)2)1/2(u+ d)− (3 +
√
2)|x+ h|(u+ d)

≤ (y2 + z2)1/2(u+ d)− x2vz−1 − βzv − 4zv ln 2 + y(y2 + z2)−1/2uk − 2xz−1vh.
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Put all the terms on the left-hand side and note that the obtained sum depends
linearly on d. Thus it suffices to show that this sum decreases as d increases (since
then the claim follows from Case II). This is equivalent to proving that

((y + k)2 + (x+ h)2)1/2 − (y2 + z2)1/2 − (3 +
√
2)|x+ h| ≤ 0.

But, by the triangle inequality, ((y + k)2 + (x + h)2)1/2 − (y2 + z2)1/2 ≤ (k2 +
(|x + h| − z)2)1/2 ≤ |k| + (|x + h| − z) ≤ |h| + |x + h| − z ≤ 2|x + h|. This shows
the claim and completes the proof of the lemma. �

Remark 2.1. We briefly describe some of the (informal) steps which led us to the
Bellman function B used above. One way to address this problem is to use the ab-
stract approach, i.e., write the abstract formula for the Bellman function associated
with (1.4) and try to solve the underlying partial differential equation (of Monge-
Ampère type) and/or find the extremizers. This type of reasoning has turned out
to be very efficient in a number of problems (see e.g. [12], [20], [22]). However, in
our current case we have not been able to apply this approach successfully and we
had to use a different path.

Our motivation comes from the unweighted setting. A natural starting point is
to consider the special function constructed by Burkholder in [4] to establish the
sharp version of the unweighted inequality

(2.8) sup
n≥0

||gn||L1 ≤ C||f∗||L1 .

However, this function is very complicated and does not seem to extend nicely to the
weighted case. Fortunately, the function corresponding to the version of (2.8) for
continuous-time, continuous-path martingales, constructed by Ose↪kowski in [15], is
much simpler. It is given by

b(x, y, z) =
y2 − x2

z
− z.

This is a function of three variables since no weights are involved. This object
suggests that in the weighted realm, the candidate should be of the form

B(x, y, z, u, v) =
y2u− x2v

z
− βzv,

for some positive constant β to be specified. The bad news is that this object
cannot possibly satisfy the key estimate (2.5). Indeed, the right-hand side depends
linearly on k, while the left-hand side is of order O(k2) as k → ∞. This indicates
that the dependence on the variable y in the function B should be linear, which
leads us to the choice

B(x, y, z, u, v) = |y|u− x2z−1v − βzv.

This function does not work either: it is not even of class C1, so the right-hand
side of (2.5) does not make sense. To smoothen the cusp at y = 0, some further
thought and analysis lead to the function

B(x, y, z, u, v) = (y2 + z2)1/2u− x2z−1v − βzv.

Again, the crucial estimate (2.5) might fail if d and v are large: both sides depend
linearly on d (at least when u + d ≤ v), but the coefficient in front of d on the
left-hand side may be larger. To solve this issue, we need to add to B a term which
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depends on u in a concave manner. After a lot of experimentation, one arrives at
the “correction” 4zv ln(uv−1 + 1), which turns out to work just fine.

3. Proofs of main results

Proof of (1.4). Fix martingales f = (fn)n≥0, g = (gn)n≥0, and a weight w =
(wn)n≥0 as in the statement. Clearly, we may and do assume that EMfMw < ∞,
since otherwise there is nothing to prove. Furthermore, we may assume that the
weight w is strictly positive, by adding a small positive ε to w and letting ε → 0 at
the very end.

The key part of the proof is to show that the sequence (B(Hn))n≥0 is a su-
permartingale, where, for brevity, we have set Hn = (fn, gn,Mnf, wn,Mnw), n =
0, 1, 2, . . . . To do this, take n ≥ 0 and note that by (2.5),

B(Hn+1)

= B(fn+dfn+1, gn+dgn+1, |fn+dfn+1| ∨Mnf, wn+dwn+1,

(wn+dwn+1) ∨Mnw)

≤ B(Hn) +Bx(Hn)dfn+1 +By(Hn)dgn+1 +Bu(Hn)dwn+1.

Now, observe that both sides are integrable. This easily follows from the estimates
(2.3), (2.4), and the assumption EMfMw < ∞ we have imposed at the beginning.
Thus, taking the conditional expectation with respect to Fn yields

E
[
B(Hn+1)|Fn

]
≤ B(Hn),

since Bx(Hn), By(Hn), Bu(Hn) are Fn-measurable and dfn+1, dgn+1, and dwn+1

are martingale differences. This establishes the supermartingale property of the
sequence (B(Hn))n≥0, and hence, by (2.1) and (2.2), we see that

E|gn|wn − CEMnfMnw ≤ EB(Hn) ≤ EB(H0) = EB(f0, g0, |f0|, w0, w0) ≤ 0.

Since wn = E(w|Fn), the above estimate implies E|gn|w ≤ CEMfMw, and taking
the supremum over all n ≥ 0 completes the proof. �
Proof of Theorem 1.2. Fix r < 1 and a large positive integer N and consider the
weight w = 2N/rχ[0,2−N ). To compute Md(w

r), we easily check that the martingale
(vn)n≥0 = (E(wr|Fn))n≥0 is given as follows. We have v0 = χ[0,1), v2k = v2k+1 =

. . . = v2k+1−1 = 2k+1χ[0,2−1−k) for k = 0, 1, . . . , N − 1, and vn = wr for n ≥ 2N .
This implies that

(3.1) Md(w
r) =

N−1∑
n=0

2nχ[2−1−n,2−n) + 2Nχ[0,2−N ).

Next, let f, g : [0, 1) → R be given by

f =
1

3
h0 −

2

3

N−1∑
k=0

(−1)kh2k and g =
1

3
h0 +

2

3

N−1∑
k=0

h2k .

Clearly, g = Tεf for an appropriate choice ε = (εn)n≥0 of signs. We easily check
that f is bounded by 1; actually, we have |f | ≡ 1 on [2−N , 1) and |f | = 1/3 on
[0, 2−N ). On the other hand, on [0, 2−N ) we have g = 1/3 + N · 2/3. Combining
these observations with (3.1), we derive that

Egw ≥
(
1

3
+

2N

3

)
· 2N(1/r−1)
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and

EMdf (Md(w
r))1/r ≤ E(Md(w

r))1/r =

N−1∑
n=0

2n(1/r−1)−1 + 2N(1/r−1)

=
2N(1/r−1) − 1

2(21/r−1 − 1)
+ 2N(1/r−1) ≤ 2N(1/r−1)Kr,

whereKr depends only on r. This clearly yields the assertion, sinceN was arbitrary.
�

4. A maximal inequality for dyadic shifts

The martingale estimate studied in the preceding sections can be used to obtain
a related result for a certain class of dyadic shifts which, in turn, leads to the
corresponding bound for a class of Calderón-Zygmund singular integral operators.
Our starting point is the following lemma. Here by σ(A1, A2, . . . , An) we denote
the σ-algebra of subsets of [0, 1) generated by the sets A1, A2, . . . , An, and (hn)n≥0

is the Haar system.

Lemma 3. For any a1, a2, a3 ∈ R, let f = a1h1+a2h2+a3h3 and g = a1h2. Then
there is a filtration (F0,F1,F2,F3) satisfying the conditions F0 = {[0, 1), ∅} and
F3 = σ([0, 1/4), [1/4, 1/2), [1/2, 3/4)), such that the martingale (gn)

3
n=0 associated

with g is differentially subordinate to the martingale (2fn)
3
n=0 associated with 2f .

Proof. By homogeneity, we may and do assume that a1 = 1. We consider two cases.
The case a2 ∈ (−∞,−3/2] ∪ [0, 3/2). For such a2, we take F1 = σ([0, 1/4)) and

F2 = σ([0, 1/4), [1/4, 1/2)). We easily compute that f0 = g0 = 0,

f1 = (1 + a2)χ[0,1/4) −
1 + a2

3
χ[1/4,1),

f2 = (1 + a2)χ[0,1/4) + (1− a2)χ[1/4,1/2) − χ[1/2,1),

f3 = f,

g1 = χ[0,1/4) −
1

3
χ[1/4,1),

g2 = g3 = g.

We are ready to verify the differential subordination. Clearly, |dg0| ≤ |2df0|, since
both differences vanish. Next, we have df1 = f1 and dg1 = g1, so the inequality
|dg1| ≤ 2|df1| is equivalent to the estimate 1 ≤ 2|1 + a2|, which holds due to the
assumption on the range of a2. Now, we derive that

df2 =

(
4

3
− 2a2

3

)
χ[1/4,1/2)−

(
2

3
− a2

3

)
χ[1/2,1), dg2 = −2

3
χ[1/4,1/2)+

1

3
χ[1/2,1),

and the inequality |dg2| ≤ |2df2| can be rewritten as 2
3 ≤ 2| 43−

2a2

3 | or |a2−2| ≥ 1/2.
The latter bound holds true because of the assumptions on a2. Finally, we have
dg3 = 0, so the condition |dg3| ≤ 2|df3| is evident.

The case a2 ∈ [−3/2, 0) ∪ [3/2,∞). In this case we take F1 = σ([1/4, 1/2)) and
F2 = σ([0, 1/4), [1/4, 1/2)). The remaining analysis is the same as in the preceding
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case: we have

f1 = (1− a2)χ[1/4,1/2) −
1− a2

3
χ[0,1/4)∪[1/2,1),

f2 = (1 + a2)χ[0,1/4) + (1− a2)χ[1/4,1/2) − χ[1/2,1),

f3 = f,

g1 = −χ[1/4,1/2) +
1

3
χ[0,1/4)∪[1/2,1),

g2 = g3 = g,

and the differential subordination follows from the estimates 2|1 − a2| ≥ 1 and
|2 + a2| ≥ 1/2, which are guaranteed by the assumption on the range of a2. �

Of course, the assertion of the above lemma remains valid if we change the
definition of g to a1h3. This, by the self-similarity of the Haar system, allows us to
obtain an important corollary. For the sake of convenience, we will use a slightly
different notation for the Haar system: given a dyadic interval I, we denote by I−
and I+ its left and right halves, respectively, and set hI = |I|−1/2(χI− − χI+). For
any dyadic interval I, choose arbitrarily one of its halves and denote it by a(I) (it
may happen that for some I’s we choose the left half, for other I’s, the right half).
Define the associated “odd” and “even” dyadic shifts by

Sof(a) =
∑
I

〈f, hI〉ha(I), Sef(a) =
∑
I

〈f, hI〉ha(I),

where 〈f, hI〉 =
∫ 1

0
fhIdx is the scalar product of f and hI in L2(0, 1), and the

summations run over all dyadic intervals I such that log2 |I| is odd/even, respec-
tively.

Corollary 4.1. Fix a function f of finite Haar expansion, an arbitrary “selection
function” a, and let g = Sof(a) or g = Sef(a). Then there is a finite filtration
(Fn)

N
n=0 of subsets of [0, 1) and two adapted martingales (fn)

N
n=0, (gn)

N
n=0 such that

fN = f , gN = g, and (gn)
N
n=0 is differentially subordinate to (2fn)

N
n=0.

Proof. We will show the claim for “odd” shifts only. Let us start with setting F0 =
{∅,Ω, [0, 1/2), [1/2, 1)}. The remaining σ-algebras of the filtration are constructed
in triples: {F1,F2,F3}, {F4,F5,F6}, and so on. To explain the construction of the
triple {F3n+1,F3n+2,F3n+3} for a given n ≥ 0, consider the family I which consists
of all dyadic intervals I with |I| = 2−2n−1. If 〈f, hI〉 = 0 for all I with |I| < 2−2n−1,
we stop the construction (i.e., we set F3n+1 = F3n+2 = F3n+3 = F3n). Otherwise,
for each I ∈ I, we let

fI := 〈f, hI〉hI + 〈f, hI−〉hI− + 〈f, hI+〉hI+ , gI = 〈f, hI〉ha(I)

be the parts of expansions of f and Sof(a) corresponding to the interval I and its
first generation. Now we apply the previous lemma conditionally on the interval I.
This interval can be filtered with the use of three σ-algebras F0(I) = {∅, I}, F1(I),
F2(I), F3(I) = σ(I−−, I−+, I+−, I++) such that the martingale corresponding to
gI is differentially subordinate to the martingale induced by 2fI . The crucial obser-
vation is that the filtration Fi(I) affects only I and its first generation. Therefore
if we set

F3n+1 = σ(F1(J) : J ∈ I), F3n+2 = σ(F2(J) : J ∈ I), F3n+3 = σ(F3(J) : J ∈ I),



2272 RODRIGO BAÑUELOS AND ADAM OSE↪KOWSKI

then F3n+3 = σ(J : |J | = 2−2n−3). In other words, the σ-algebras are properly
ordered (i.e., they indeed form a filtration). Furthermore, directly from the con-
struction, we see that if k = 3n+ i, i = 1, 2, 3, then on I ∈ I we have

|dgk| = |dgIi | ≤ |2dfIi | = |2dfk|,
which proves the desired differential subordination. �

Let S denote the usual dyadic shift introduced by Petermichl [17]:

Sf =
∑
I

〈f, hI〉(hI− − hI+),

where the summation runs over all dyadic subintervals of [0, 1). Note that this
operator can be expressed as a combination of four shifts of the above type: two
odd shifts ∑

I:log2 |I| odd

〈f, hI〉hI− −
∑

I:log2 |I| odd

〈f, hI〉hI+

and two even shifts ∑
I:log2 |I| even

〈f, hI〉hI− −
∑

I:log2 |I| even

〈f, hI〉hI+ .

Combining this representation with Theorem 1.1 and Corollary 4.1, we get the
following statement. In what follows, M is an uncentered maximal operator of
Hardy and Littlewood.

Theorem 4.1. Let C be the constant of Theorem 1.1. For any function f and any
weight w on [0, 1) we have

||Sof ||L1(w) ≤ 2C||Mf ||L1(Mw), ||Sef ||L1(w) ≤ 2C||Mf ||L1(Mw)

and, consequently,

||Sf ||L1(w) ≤ 8C||Mf ||L1(Mw).

The standard scaling argument shows that the above statement holds true, with
unchanged constants, if we consider the Haar system (and the associated dyadic
shifts) on R. Such shifts, after rescaling, translation, and averaging-type operations,
lead to a Hilbert transform H on the real line, as Petermichl showed in [17] (see
also the work of Hytönen [6], which shows explicitly that the Hilbert transform is

equal to −8 ln 2/(π
√
2) = −1.2481 . . . times the average of such shifts). Thus, the

above statement implies the version of (1.2) for this operator.

Corollary 4.2. Let C be the constant of Theorem 1.1. For any f and any weight
w on R we have

(4.1) ||Hf ||L1(w) ≤
64C ln 2

π
√
2

||Mf ||L1(Mw) ≤ 72||Mf ||L1(Mw).

Using the method of rotation, the inequality for the Hilbert transform yields the
same for the class of singular integral operators with odd kernels. For a given odd
function Ω ∈ L1(Sd−1), consider the associated singular integral operator TΩ given
by

TΩf(x) = p.v.

∫
Rd

Ω(y/|y|)
|y|d f(x− y)dy.
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The Riesz transforms

Rjf(x) =
Γ(d+1

2 )

π(d+1)/2
p.v.

∫
Rd

yj
|y|d+1

f(x− y) dy, j = 1, . . . , d,

are the classical examples of such singular integrals.
Though the result below is well-known by now, we believe that it is a nice appli-

cation of the above probabilistic considerations which also yields explicit constants.
In particular, it gives constants independent of the dimension d for Riesz transforms.

Theorem 4.2. For any f and any weight w on R
d we have

||TΩf ||L1(w) ≤ 36π||Ω||L1(Sd−1)||Mf ||L1(Mw).

In particular, for the Riesz transforms we have

||Rjf ||L1(w) ≤ 72||Mf ||L1(Mw), j = 1, . . . , d.

Proof. We exploit the classical method of rotations. For f : Rd → R, define the
directional Hilbert transform in the direction θ by

(4.2) Hθf(x) =
1

π
p.v.

∫
R

f(x− tθ)
dt

t
.

A straightforward combination of Fubini’s theorem and (4.1) implies that

||Hθf ||L1(w) ≤ 72||Mf ||L1(Mw).

However, it is well-known [21] that TΩ is an average of directional Hilbert trans-
forms:

TΩf(x) =
π

2

∫
Sd−1

Ω(θ)Hθf(x)dθ.

Combining this representation with (4.2) yields the claim. �

Remark 4.3. There is a very interesting question whether there are some analogs
of Lemma 3 and Corollary 4.1 which would enable the representation of general
dyadic shifts via differentially subordinate martingales (see e.g. [7] for the necessary
definitions). We do not know the answer to this question. If the answer were in
the affirmative, then Theorem 1.1 would give an alternative proof of the estimate
(1.2) for general Calderón-Zygmund singular integrals.
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Birkhäuser/Springer Basel AG, Basel, 2012. MR2964297

[15] Adam Ose↪owski, Maximal inequalities for continuous martingales and their differential sub-
ordinates, Proc. Amer. Math. Soc. 139 (2011), no. 2, 721–734, DOI 10.1090/S0002-9939-
2010-10539-7. MR2736351

[16] Adam Ose↪kowski, Maximal inequalities for martingales and their differential subordinates,
J. Theoret. Probab. 27 (2014), no. 1, 1–21, DOI 10.1007/s10959-012-0458-8. MR3174213

[17] Stefanie Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with ma-
trix symbol (English, with English and French summaries), C. R. Acad. Sci. Paris Sér. I Math.
330 (2000), no. 6, 455–460, DOI 10.1016/S0764-4442(00)00162-2. MR1756958

[18] Maria Carmen Reguera,On Muckenhoupt-Wheeden conjecture, Adv. Math. 227 (2011), no. 4,
1436–1450, DOI 10.1016/j.aim.2011.03.009. MR2799801

[19] Maria Carmen Reguera and Christoph Thiele, The Hilbert transform does not map L1(Mw)
to L1,∞(w), Math. Res. Lett. 19 (2012), no. 1, 1–7, DOI 10.4310/MRL.2012.v19.n1.a1.
MR2923171

[20] L. Slavin and V. Vasyunin, Sharp results in the integral-form John-Nirenberg inequality,
Trans. Amer. Math. Soc. 363 (2011), no. 8, 4135–4169, DOI 10.1090/S0002-9947-2011-05112-
3. MR2792983

[21] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton

Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR0290095
[22] Vasily Vasyunin and Alexander Volberg, Monge-Ampère equation and Bellman optimization

of Carleson embedding theorems, Linear and complex analysis, Amer. Math. Soc. Transl. Ser.
2, vol. 226, Amer. Math. Soc., Providence, RI, 2009, pp. 195–238, DOI 10.1090/trans2/226/16.
MR2500520

http://www.ams.org/mathscinet-getitem?mr=1440921
http://www.ams.org/mathscinet-getitem?mr=0284802
http://www.ams.org/mathscinet-getitem?mr=2464252
http://www.ams.org/mathscinet-getitem?mr=3176607
http://www.ams.org/mathscinet-getitem?mr=2427454
http://www.ams.org/mathscinet-getitem?mr=2480568
http://www.ams.org/mathscinet-getitem?mr=1428988
http://www.ams.org/mathscinet-getitem?mr=1685781
http://www.ams.org/mathscinet-getitem?mr=1882704
http://www.ams.org/mathscinet-getitem?mr=2964297
http://www.ams.org/mathscinet-getitem?mr=2736351
http://www.ams.org/mathscinet-getitem?mr=3174213
http://www.ams.org/mathscinet-getitem?mr=1756958
http://www.ams.org/mathscinet-getitem?mr=2799801
http://www.ams.org/mathscinet-getitem?mr=2923171
http://www.ams.org/mathscinet-getitem?mr=2792983
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.ams.org/mathscinet-getitem?mr=2500520


A WEIGHTED INEQUALITY 2275

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Email address: banuelos@math.purdue.edu

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Ba-

nacha 2, 02-097 Warsaw, Poland

Email address: ados@mimuw.edu.pl


	1. Introduction
	2. A special function
	3. Proofs of main results
	4. A maximal inequality for dyadic shifts
	Acknowledgment
	References

