
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 5, May 2018, Pages 2207–2216
http://dx.doi.org/10.1090/proc/13927

Article electronically published on January 12, 2018

ZEROS OF SOME SPECIAL ENTIRE FUNCTIONS

ÁRPÁD BARICZ AND SANJEEV SINGH

(Communicated by Yuan Xu)

Abstract. The real and complex zeros of some special entire functions such as
Wright, hyper-Bessel, and a special case of generalized hypergeometric func-
tions are studied by using some classical results of Laguerre, Obreschkhoff,
Pólya, and Runckel. The obtained results extend the known theorem of Hur-
witz on the exact number of nonreal zeros of Bessel functions of the first kind.
Moreover, results on zeros of derivatives of Bessel functions and the cross-
product of Bessel functions are also given, which are related to some recent
open problems.

1. Introduction and main results

Because of various applications in applied mathematics the zeros of Bessel func-
tions of the first kind, Jν of order ν, have been studied frequently. Lommel proved
the reality of the zeros of Bessel functions for ν > −1, while Hurwitz [Hu89] com-
pleted the picture of the behavior of the zeros of Bessel functions of the first kind by
determining the exact number of nonreal zeros for ν < −1. Many other interesting
proofs of Hurwitz’s theorem were found; see the papers of Hilb [Hi22], Obreschkoff
[Ob29], Pólya [Po29], Hille and Szegő [HS43], Peyerimhoff [Pe66], Runckel [Ru69],
and Ki and Kim [KK00]. Hurwitz’s original proof (based on Lommel polynomials)
is quite long and difficult to read, and Watson [Wa21] even corrected some gaps
in the proof. In this paper our aim is to point out that some results of Laguerre
[Ti39], Obreschkoff [Ob29], Pólya [Po29], and Runckel [Ru69] are useful to study
the real and complex zeros of those special entire functions whose coefficients are
expressed in terms of the reciprocal gamma function.

1.1. Some classical results on zeros of entire functions. A real entire function
q belongs to the Laguerre–Pólya class LP if it can be represented in the form

q(z) = czme−az2+βz
∏
k≥1

(
1 +

z

zk

)
e
− z

zk ,

with c, β, zk ∈ R, a ≥ 0, m ∈ N0,
∑

k≥1 z
−2
k < ∞. Here N0 is the set of nonnegative

integers. Similarly, w is said to be of type I in the Laguerre–Pólya class, written

Received by the editors February 14, 2017, and, in revised form, July 31, 2017, and August
15, 2017.

2010 Mathematics Subject Classification. Primary 30D15, 30A08, 33C10, 33C20.
Key words and phrases. Entire function, Laguerre–Pólya class of entire functions, zeros of
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w ∈ LPI, if w(z) or w(−z) can be represented as

w(z) = czmeσz
∏
k≥1

(
1 +

z

zk

)
,

with c ∈ R, σ ≥ 0, m ∈ N0, zk > 0,
∑

k≥1 z
−1
k < ∞. The class LP is the complement

of the space of polynomials whose zeros are all real in the topology induced by
the uniform convergence on the compact sets of the complex plane, while LPI is
the complement of polynomials whose zeros are all real and posses a preassigned
constant sign. Given an entire function ϕ in the form

ϕ(z) =
∑
k≥0

γk
zk

k!
,

its Jensen polynomial is defined by

gn(ϕ; z) =
n∑

j=0

(
n

j

)
γjz

j .

Jensen proved the following result in [Je13]: The function ϕ belongs to LP (LPI)
if and only if the polynomials gn(ϕ; z) have only real zeros (real zeros of equal sign).
Moreover, if for the function ϕ ∈ LPI we have γk ≥ 0 for all k ∈ N0, we say that
ϕ ∈ LP+. Further information about the Laguerre–Pólya class can be found in
[CC06], [Ob63], and [DC09].

The following particular case of Laguerre’s theorem contains a sufficient condi-
tion for a special power series to have only real negative zeros. This result was used
by Pólya [Po23] and motivated him into writing [Po29]. Lemma 1 can be found in
[Ti39, p. 270], [Po23, p. 186], and also in [DR11, p. 39].

Lemma 1 (Laguerre, 1898). If ϕ is an entire function of order less than 2 which
takes real values along the real axis and possesses only real negative zeros, then the

entire function
∑

n≥0
ϕ(n)
n! zn also has real and negative zeros.

In order to shorten the proof of Hurwitz’s theorem on zeros of Bessel functions
of the first kind, Obreschkoff [Ob29] deduced the following result, which seems to
be useful in proving the reality of zeros of special functions.

Lemma 2 (Obreschkoff, 1929). Let q be an entire function of growth order 0 or 1,

which has only real zeros and has s positive zeros. Then
∑

n≥0
(−1)nq(2n)

n! z2n has at
most 2s complex zeros.

The following beautiful result of Pólya [Po29] is useful in determining the ex-
act number of nonreal zeros of some special entire functions. We note that the
terminology of the original result of Pólya [Po29, p. 162] is a little bit different
than our exposition: Pólya uses the terminology of real oriented (reell gerichtet)
and positively oriented (positiv gerichtet) functions, which are limits of polynomials
(with real coefficients) having only real, and only positive real roots, respectively.
In today’s terminology these are members of LP and LPI.

Lemma 3 (Pólya, 1929). If the function
∑

n≥0 anz
n ∈ LPI has nonzero roots and

the function G ∈ LP has exactly s simple roots in [0,∞) with the property that the
distance between two arbitrary consecutive roots is not less than 1, then the function∑

n≥0 anG(n)zn has exactly s nonpositive roots.
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The result of Runckel [Ru69, Theorem 4], stated in Lemma 4, is also useful in
proving the reality of zeros of some special functions.

Lemma 4 (Runckel, 1969). If f(z) =
∑

n≥0 anz
n can be represented as f(z) =

eaz
2

h(z), where a ≤ 0 and h is of type

h(z) = cebz
∏
n≥1

(
1− z

cn

)
e

z
cn , c, b ∈ R,

∑
n≥1

|cn|−2 < ∞,

f has real zeros only (or no zeros at all), and G is of type

(1) G(z) = eβz
∏
n≥1

(
1 +

z

αn

)
e−

z
αn , αn > 0, β ∈ R,

∑
n≥1

α−2
n < ∞,

then the function
∑

n≥0 anG(n)zn has real zeros only.

1.2. Real and complex zeros of some special entire functions. By using the
above classical results of Laguerre, Obreschkhoff, Pólya, and Runckel our aim is to
present some results related to real and complex zeros of some special entire func-
tions such as Wright, hyper-Bessel, a special case of the generalized hypergeometric
function, derivatives of the Bessel function, the product and cross-product of the
Bessel and modified Bessel functions of the first kind. Moreover, we prove a result
on a special function related to an open problem in [CF16, Problem 6]. The results
on Wright and hyper-Bessel functions extend naturally the theorem of Hurwitz on
zeros of Bessel functions of the first kind, which states that if ν ≥ 0, then

z �→ z
ν
2 J−ν(2

√
z) =

∑
n≥0

(−1)nzn

n!Γ(n− ν + 1)

has exactly [ν] nonpositive zeros.
Our first main result is a natural extension of Hurwitz’s theorem on Bessel func-

tions, and it is about the zeros of the Wright function

φ(ρ, β, z) =
∑
n≥0

zn

n!Γ(ρn+ β)
,

where ρ > −1 and β ∈ R. We note that the special case of the first affirmation in
Theorem 1 for β = 1 has been considered by Craven and Csordas [CC06, Example
2.7].

Theorem 1. If ρ > 0 and β > 0, then all zeros of φ(ρ, β,−z) are real and positive.
Moreover, if 0 < ρ ≤ 1 and β > 0, then φ(ρ,−β,−z) has [β] + 1 nonpositive zeros.

The hyper-Bessel function (or a multi-index analogue of the Bessel function) is
defined by

Jαd
(z) =

(
z

d+1

)α1+···+αd

Γ(α1 + 1) · · ·Γ(αd + 1)
0Fd

(
−, αd + 1;−

(
z

d+ 1

)d+1
)
,

where αd = (α1, . . . , αd), d ∈ N, and

pFq(a;b; z) =
∑
n≥0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
,

with a = (a1, . . . , ap), b = (b1, . . . , bq) such that −bj /∈ N0, j ∈ {1, . . . , q},
and (a)n = a(a + 1) · · · (a + n − 1) = Γ(a+ n)/Γ(a) being the shifted factorial
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(or Pochhammer’s symbol). Our Theorem 2 on hyper-Bessel functions is another
natural extension of Hurwitz’s result and naturally complements the result of Chag-
gara and Ben Romdhane [CR15, Theorem 4.2]. For simplicity we use the notation

Jαd
(z) = z−

α1+···+αd
d+1 Jαd

(
(d+ 1) d+1

√
z
)
=

∑
n≥0

(−1)nzn

n!
∏d

k=1 Γ(αk + n+ 1)
.

Theorem 2. All zeros of the hyper-Bessel function Jαd
are real when αi > −1, i ∈

{1, . . . , d}. Under the same conditions the function Jαd
(−z) has only negative real

zeros. Moreover, if αi ≥ 0, i ∈ {1, . . . , d}, then J−αd
(z) has exactly [α1]+ · · ·+[αd]

nonpositive zeros.

Recently, Kalmykov and Karp [KK16] conjectured that if p < q, b > 0, and
ak > bk for k ∈ {1, . . . , p}, then all zeros of the generalized hypergeometric func-
tion pFq(a;b; z) are real and negative. Applying Laguerre’s Lemma 1 directly, we
conclude that if b > 0, then all zeros of 0Fq(−;b; z) are real and negative. This
particular result suggests the validity of the above conjecture. Moreover, by a sim-
ple application of Lemma 1 it is possible to obtain the following result: if p ≤ q,
b > 0, and a can be reindexed so that ak = bk + nk for nk ∈ N and k ∈ {1, . . . , p},
then the function pFq(a;b; z) has only negative real zeros. This result was stated by
Richards [Ri90], who used Laguerre’s Lemma 1. The main idea is that the function

Γ(a1 + z) · · ·Γ(ap + z)

Γ(b1 + z) · · ·Γ(bq + z)

is a meromorphic function as a quotient of two entire functions, however, after the
reindexation the poles of the numerator are absorbed by those of the denominator,
and hence it becomes an entire function of growth order 1 for which Lemma 1
can be applied. We note that the reality of the zeros of pFq(a;b; z) also follows
immediately from Obreschkoff’s Lemma 2. Moreover, by using Pólya’s Lemma 3
we obtain the following result, which complements [KK16, Theorem 4].

Theorem 3. Suppose that b > 0 and a can be reindexed so that ak = bk + nk for
nk ∈ N and k ∈ {1, . . . , p}.

1. If p = q, then the function pFq(a;−b;−z) has [b1]+· · ·+[bp]+p nonpositive
zeros if nk ≥ [bk] + 1 for every k ∈ {1, . . . , p}, and it has n1 + · · · + np

nonpositive roots if nk ≤ [bk] for each k ∈ {1, . . . , p}.
2. If p < q, then the function pFq(a;−b;−z) has [b1] + · · · + [bp] + [bp+1] +

· · ·+ [bq] + q nonpositive zeros if nk ≥ [bk] + 1 for every k ∈ {1, . . . , p}, and
it has n1+ · · ·+np+ [bp+1] + · · ·+ [bq] + q− p nonpositive roots if nk ≤ [bk]
for each k ∈ {1, . . . , p}.

Now, we present some results for zeros of derivatives of Bessel functions. We note
that the reality of the zeros stated in Theorem 4 was already proved in [BKP16]
by using mathematical induction, and the rest of Theorem 4 is in agreement with
[BKP16, Open Problem 1], which states that if n−2s−2 < ν < n−2s−1, s ∈ N0,

then J
(n)
ν (z) has 4s+2 complex zeros, while if n− 2s− 1 < ν < n− 2s, s ∈ N, then

J
(n)
ν (z) has 4s complex zeros.

Theorem 4. Let n ∈ N0. If ν > n−1, then all zeros of J
(n)
ν (z) are real. Moreover,

if ν ≥ 0, then 2νzν+nJ
(n)
−ν (2z) has at most 2[ν] + 2n complex zeros. In other words,

if n − 2s − 2 < ν < n − 2s − 1, s ∈ N0, then J
(n)
ν (z) has at most 4s + 2 complex
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zeros, while if n− 2s− 1 < ν < n− 2s, s ∈ N, then J
(n)
ν (z) has at most 4s complex

zeros.

Now, we consider the functions Φν and Πν , defined by

Φν(z) = Jν(z)I
′
ν(z)− Iν(z)J

′
ν(z) and Πν(z) = Jν(z)Iν(z),

where Iν stands for the modified Bessel functions of the first kind. If z ∈ C and
ν ∈ R such that ν 	= −1,−2, . . ., then the functions Φν and Πν can be written as
follows (see [Wa22, p. 148], [ABP16]):

Φν(z) = 2
∑
n≥0

(−1)n( z2 )
2ν+4n+1

n!Γ(ν + n+ 1)Γ(ν + 2n+ 2)

and

Πν(z) =
∑
n≥0

(−1)n( z2 )
2ν+4n

n!Γ(ν + n+ 1)Γ(ν + 2n+ 1)
.

The following theorem on the functions

Aν(z) = z
−2ν−1

2 Φν(2
√
z) = 2

∑
n≥0

(−1)nz2n

n!Γ(ν + n+ 1)Γ(ν + 2n+ 2)

and

Bν(z) = z−νΠν(2
√
z) =

∑
n≥0

(−1)nz2n

n!Γ(ν + n+ 1)Γ(ν + 2n+ 1)

is another interesting application of Lemmas 1 and 2 and is related to [BSY16, Open
Problem 1].

Theorem 5. If ν > −1, then all zeros of Aν(z) and Bν(z) are real. Moreover, if
ν > −1, then all the zeros of Aν(

√
z) and Bν(

√
z) are real and positive. In addition,

if ν ≥ 0, then A−ν(z) and B−ν(z) have at most 4[ν] complex zeros.

We end this subsection with Theorem 6. This result is related to [CF16, Problem

6]: is it true that for every s ∈ R
+, there exists an m ∈ N such that

∑
n≥0

ns

(n!)m zn ∈
LP+? Theorem 6 verifies the case when s ∈ N0 and m = 2.

Theorem 6. If s ∈ N0, then ηs(z) =
∑
n≥0

ns

Γ(n+1)
zn

n! ∈ LP+.

1.3. Concluding remarks. We have seen that in some special cases we can find an
upper bound for the exact number of complex zeros of entire functions. However,
for example, in the above-mentioned conjecture of Kalmykov and Karp [KK16,
Conjecture 3] the coefficients are meromorphic, and so far we are not aware of
any result in the literature which would help to verify this conjecture. Craven
and Csordas [CC06, Problem 1.2] posed the following problem: Characterize the

meromorphic function F with the property that
∑

n≥0
anF (n)

n! zn is a transcendental

entire function with only real zeros whenever the entire function
∑

n≥0
an

n! z
n has

only real zeros. This problem is strongly related to the above conjecture, and its
solution would give many new results on real and complex zeros of different special
functions. It would also be of great interest to verify whether the condition on
the difference of two consecutive zeros in Lemma 3 can be relaxed and to find the
analogue of Lemma 3 when the function G is meromorphic.



2212 Á. BARICZ AND S. SINGH

2. Proofs of main results

Proof of Theorem 1. First we consider the proof of the reality of the zeros of the
Wright function φ(ρ, β,−z). The function qρ,β : [0,∞) → R, defined by qρ,β(z) =

1

Γ(ρ z
2+β)

, is an entire function of order 1, belongs to LP, and if ρ, β > 0, then

clearly it has no positive zero. By using Lemma 2 it follows that the function

φ(ρ, β,−z2) =
∑
n≥0

(−1)nqρ,β(2n)

n!
z2n =

∑
n≥0

(−1)nz2n

n!Γ(ρn+ β)

has at most 0 complex zeros, that is, all of its zeros are real. This implies that
φ(ρ, β,−z) also has only real zeros when ρ, β > 0.

An alternative proof of the fact that φ(ρ, β,−z) has only real zeros if ρ, β > 0
is based on Runckel’s Lemma 4. Since qρ,β(z) is of type (1) when ρ, β > 0, if we

choose f(z) = e−(
z
2 )

2

, then by using Runckel’s above-mentioned result (that is,
Lemma 4) we obtain that the function φ(ρ, β,−z) has real zeros only if ρ, β > 0.

Next, we show that if 0 < ρ ≤ 1 and β > 0, then all zeros of φ(ρ, β,−z)
are positive. For this we consider the function Gρ,β : [0,∞) → R, defined by
Gρ,β(z) = 1

Γ(ρz+β) . This function has zeros zk = −ρ−1(β + k), where k ∈ N0.

These zeros are clearly simple, and the distance between two consecutive zeros is
Δk = zk+1−zk = ρ−1 for every k ∈ N0. The simplicity of the zeros is guaranteed by
the Laguerre theorem on separation of zeros (which states that if f(z) is an entire
function, not a constant, which is real for real z and has only real zeros, and is of
genus 0 or 1, then the zeros of f ′ are also real and are separated by the zeros of
f) and by the fact the reciprocal gamma function is an entire function of genus 1.
If ρ ∈ (0, 1], then Δk ≥ 1 for every k ∈ N0. Moreover, since e−z ∈ LPI and the
function Gρ,β has no zeros in [0,∞) when ρ ∈ (0, 1] and β > 0, by applying Lemma
3 we have that

φ(ρ, β,−z) =
∑
n≥0

Gρ,β(n)
(−z)n

n!
=

∑
n≥0

(−1)nzn

n!Γ(ρn+ β)

has no nonpositive real roots, that is, all its zeros are positive.
Now, we prove that the condition ρ ≤ 1 can be relaxed. The growth order of

the entire function φ(ρ, β,−z) is (ρ+ 1)−1 (which is a noninteger number and lies
in (0, 1) for ρ > −1) and thus in view of the Hadamard factorization theorem on
growth order of entire functions it follows that for ρ, β > 0 we have

Γ(β)φ(ρ, β,−z2) =
∏
n≥1

(
1− z2

λ2
ρ,β,n

)
,

where λρ,β,n denotes the nth positive zero of φ(ρ, β,−z2), and this product is uni-
formly convergent on compact subsets of the complex plane. Consequently, we have
that

Γ(β)φ(ρ, β,−z) =
∏
n≥1

(
1− z

λ2
ρ,β,n

)
,

which shows that all zeros of φ(ρ, β,−z) can be represented as squares, and thus
indeed all zeros of φ(ρ, β,−z) are positive.

Alternatively, since for ρ, β > 0 the zeros of Gρ,β are all negative, if we apply
Lemma 1 we immediately obtain that for ρ, β > 0 the Wright function φ(ρ, β, z)
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has only real and negative zeros. This means that for ρ, β > 0 the Wright function
φ(ρ, β,−z) has only real and positive zeros.

Finally, we proceed similarly as above, where we considered the case of 0 <
ρ ≤ 1 and β > 0. If 0 < ρ ≤ 1 and β < 0, then exactly [|β|] + 1 of the zeros
zk = −ρ−1(β + k), k ∈ N0, are in [0,∞). Consequently, in view of Lemma 3 (with
the function e−z ∈ LPI), the function φ(ρ, β,−z) has exactly [|β|] + 1 nonpositive
zeros; that is, we proved that if 0 < ρ ≤ 1 and β < 0, then φ(ρ, β,−z) has [|β|] + 1
nonpositive zeros. Now, changing β to −β we complete the proof. �

Proof of Theorem 2. Consider the product of reciprocals of gamma functions ap-
pearing in Theorem 2; that is,

Θαd
(z) =

1

Γ(α1 + z + 1) · · ·Γ(αd + z + 1)
.

In view of the representation

1

Γ(z)
= zeγz

∏
k≥1

(
1 +

z

k

)
e−

z
k

we have that when αi > −1, i ∈ {1, . . . , d}, the function Θαd

(
z
2

)
is entire of growth

order 1 and has no positive zeros. By using Lemma 2 we obtain that Jαd
(z2) has at

most 0 complex zeros, that is, all of its zeros are real. This implies that all zeros of
Jαd

(z) are real when αi > −1, i ∈ {1, . . . , d}. Clearly, under the same conditions,
the function Θαd

(z) is also entire of growth order 1 and has no positive zeros, and
applying Lemma 1 we obtain that Jαd

(−z) has only negative real zeros. Now, since
for fixed i ∈ {1, . . . , d} the reciprocal of Γ(z − αi + 1) has zeros ξk = αi − 1 − k,
k ∈ N0, and [αi] of these zeros are positive or zero, the distance between two
arbitrary consecutive zeros is equal to 1, by applying Lemma 3 (with the function
e−z ∈ LPI) we obtain that

J−αd
(z) =

∑
n≥0

Θ−αd
(n)

(−z)n

n!

has exactly [α1] + · · ·+ [αd] nonpositive zeros. �

Proof of Theorem 3. First we suppose that p = q. After reindexation the expression

Γ(a1 + z) · · ·Γ(ap + z)

Γ(b1 + z) · · ·Γ(bq + z)

will have zeros only as solutions of the equation

p∏
k=1

nk∏
s=1

(bk + z + s− 1) = 0;

that is, ζk = −bk − s + 1, where s ∈ {1, . . . , nk} and k ∈ {1, . . . , p}. Now, if we
replace b by −b, then the above zeros clearly will change to bk − s + 1, where
s ∈ {1, . . . , nk} and k ∈ {1, . . . , p}. If nk ≥ [bk] + 1 for k ∈ {1, . . . , p} fixed, then
we have that exactly [bk] + 1 zeros are positive; if nk = [bk], then [bk] zeros are
positive; and when nk ≤ [bk] − 1, then nk number of zeros are positive. Thus,
applying Lemma 3 (for e−z ∈ LPI) the result when p = q follows. The case when
p < q is similar to the case when p = q. We just need to take care of the reciprocals
of the remaining expressions like Γ(bq + z). �
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Proof of Theorem 4. Consider the entire function

2νz
n−ν

2 J (n)
ν (2

√
z) =

∑
m≥0

(−1)mΓ(ν + 2m+ 1)zm

m!Γ(ν + 2m− n+ 1)Γ(ν +m+ 1)
.

The function

qν(2z) =
Γ(ν + 2z + 1)

Γ(ν + 2z − n+ 1)Γ(ν + z + 1)

is entire since the poles of the numerator are absorbed by those of the denominator,
and has growth order 1. The zeros of qν are of the form ςk = k−1−ν

2 , k ∈ {1, . . . , n},
and τs = −1 − ν − s, s ∈ N0. If ν > n − 1, n ∈ N0, then clearly none of the
above zeros is positive, and thus qν has 0 positive zeros in this case. According to

Obreschkoff’s Lemma 2 it follows that zn−νJ
(n)
ν (2z) has at most 0 complex zeros,

that is, it has only real zeros. Now, if we consider the entire function q−ν(z), then
for ν ≥ 0 it has [ν] + n positive zeros. Thus, again applying Obreschkoff’s Lemma
2 we conclude that

2νzν+nJ
(n)
−ν (2z) =

∑
m≥0

(−1)mq−ν(2m)

m!
z2m

has at most 2[ν]+2n complex zeros. In other words, if ν ≤ 0, then 2−νz−ν+nJ
(n)
ν (2z)

has at most 2[−ν]+2n complex zeros. This means that if n−2s−2 < ν < n−2s−1,

s ∈ N0, then J
(n)
ν (z) has at most 4s+2 complex zeros, while if n−2s−1 < ν < n−2s,

s ∈ N, then J
(n)
ν (z) has at most 4s complex zeros. �

Proof of Theorem 5. Consider the functions

aν(z) =
1

Γ(ν + z
2 + 1)Γ(ν + z + 2)

and bν(z) =
1

Γ(ν + z
2 + 1)Γ(ν + z + 1)

,

which are entire of growth order 1. Note that the zeros of aν(z) are of the form
zk = 2(−1− ν − k) and zl = −2− ν − l, where k, l ∈ N0 and the zeros of bν(z) are
of the form zs = 2(−1 − ν − s) and zt = −1 − ν − t, where s, t ∈ N0. Therefore
aν(z) and bν(z) have no positive zeros if ν > −1. Now, appealing to Obreschkoff’s
Lemma 2, we obtain that Aν(z) and Bν(z) have at most 0 complex zeros, that is,
all of their zeros are real. Hence all the zeros of Aν(

√
z) and Bν(

√
z) are real and

positive.
Alternatively, the positivity of the zeros of Aν(

√
z) and Bν(

√
z) can be proved

also by using Laguerre’s Lemma 1. For this we note that

aν(2z) =
1

Γ(ν + z + 1)Γ(ν + 2z + 2)
and bν(2z) =

1

Γ(ν + z + 1)Γ(ν + 2z + 1)

are entire functions of order 1 and they assume real values along the real axis and
possess only negative zeros if ν > −1. Therefore in view of Laguerre’s Lemma 1 we
obtain that the entire functions

uν(z) = 2
∑
n≥0

zn

n!Γ(ν + n+ 1)Γ(ν + 2n+ 2)

and

vν(z) =
∑
n≥0

zn

n!Γ(ν + n+ 1)Γ(ν + 2n+ 1)
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also have real and negative zeros. Hence uν(−z) and vν(−z) have real and positive
zeros. That is, Aν(

√
z) and Bν(

√
z) have real and positive zeros.

Now consider the entire functions a−ν(2z) and b−ν(2z). For ν ≥ 0, a−ν(2z) and
b−ν(2z) both have 2[ν] positive zeros. Therefore by using the Obreschkoff’s Lemma
2 we conclude that A−ν(z) and B−ν(z) have at most 4[ν] complex zeros. �

Proof of Theorem 6. Since the coefficients of ηs are positive, we just need to show
that ηs(z) ∈ LPI or equivalently ηs(−z) ∈ LPI. The entire function zs/
Γ(z + 1) has growth order 1, it belongs to LP, and it has only one zero in [0,∞),
and that is 0. Consequently by using Lemma 3 (for the function e−z ∈ LPI), we
obtain that ηs(−z) has exactly 1 nonpositive real root, and that is 0. In other
words, all zeros of ηs(−z) are strictly positive, that is, ηs(−z) ∈ LPI. �
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[BSY16] Á. Baricz, R. Szász, N. Yağmur, Products of Bessel and modified Bessel functions,
arXiv:1601.01998.

[CR15] H. Chaggara and N. Ben Romdhane, On the zeros of the hyper-Bessel function, Integral

Transforms Spec. Funct. 26 (2015), no. 2, 96–101, DOI 10.1080/10652469.2014.973191.
MR3275453

[CC06] Thomas Craven and George Csordas, The Fox-Wright functions and Laguerre
multiplier sequences, J. Math. Anal. Appl. 314 (2006), no. 1, 109–125, DOI
10.1016/j.jmaa.2005.03.058. MR2183541
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mials of Laguerre-Pólya entire functions, J. Comput. Appl. Math. 233 (2009), no. 3,
703–707, DOI 10.1016/j.cam.2009.02.039. MR2583006

[DR11] Dimitar K. Dimitrov and Peter K. Rusev, Zeros of entire Fourier transforms, East J.
Approx. 17 (2011), no. 1, 1–110. MR2882940

[Hi22] Emil Hilb, Die komplexen Nullstellen der Besselschen Funktionen (German), Math. Z.
15 (1922), no. 1, 274–279, DOI 10.1007/BF01494399. MR1544573
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