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PROJECTIVE MODULES FOR THE SUBALGEBRA

OF DEGREE 0 IN A FINITE-DIMENSIONAL HYPERALGEBRA

OF TYPE A1

YUTAKA YOSHII

(Communicated by Kailash Misra)

Abstract. We describe the structure of projective indecomposable modules
for the subalgebra consisting of the elements of degree 0 in the hyperalgebra of
the r-th Frobenius kernel for the algebraic group SL2(k), using the primitive
idempotents which were constructed before by the author.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Let G be a con-
nected, simply connected, and semisimple algebraic group over k which is split over
the finite field Fp of order p.

The representation theory of G is closely related to that of the r-th Frobenius
kernel Gr. Since the representation theory of G can be identified with the locally
finite representation theory of the corresponding (infinite-dimensional) k-algebra U
which is called the hyperalgebra of G, and since the representation theory of Gr can
be identified with that of the corresponding finite-dimensional hyperalgebra Ur, it is
important to study the structure of projective indecomposable modules (PIMs) for
Ur. Thus it is worthwhile constructing primitive idempotents in Ur. Unfortunately,
it seems that an explicit description of primitive idempotents in Ur has not been
known for general G. If G is of type A1 (i.e., G = SL(2, k)), the explicit description
is given in Seligman’s paper [5] for r = 1 and in the author’s paper [6] for general
r.

In this paper, using the primitive idempotents in Ur given in the author’s pa-
per, we shall study the projective indecomposable modules for the subalgebra Ar

consisting of the elements of degree 0 in Ur. More concretely, since any idempotent
in Ur lies in Ar, we can describe the structure of projective indecomposable Ar-
modules by giving that of the Ar-modules generated by the primitive idempotents
in Ur. Although the argument is not so difficult, the structure of these modules
can be completely determined. This result enables us to see the primitivity of
the idempotents without knowing dimensions of the simple Ur-modules. It is also
expected that the Ar-modules will be useful to study the structure of projective
indecomposable Ur-modules.

The main results will be given in Section 3. First we construct a basis of the
Ar-module generated by a primitive idempotent, using a method which generalizes
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the one to construct the idempotents in [6]. Then we describe the radical and socle
series of the Ar-modules. It turns out that each projective indecomposable Ar-
module is rigid and that each block algebra of Ar which corresponds to a primitive
idempotent is symmetric.

2. Preliminaries

Assume G = SL2(k) in the rest of this paper. Let

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
be the standard basis in the simple complex Lie algebra gC = sl2(C). We define
a subring UZ of the universal enveloping algebra UC of gC generated by X(m) =
Xm/m! and Y (m) = Y m/m! with m ∈ Z≥0. Set(

H + c

m

)
=

(H + c)(H + c− 1) · · · (H + c−m+ 1)

m!

for c ∈ Z and m ∈ Z≥0. The elements

Y (m)

(
H

n

)
X(m′)

with m,m′, n ∈ Z≥0 form a Z-basis of UZ. The k-algebra UZ ⊗Z k is denoted by
U or Dist(G), which is called the hyperalgebra of G. We use the same notation for
the images in U of the elements in UZ.

Let Fr : U → U be the k-algebra endomorphism which is defined by

Fr(X(m)) =

{
X(m/p) if p | m,

0 if p � m,
and Fr(Y (m)) =

{
Y (m/p) if p | m,

0 if p � m.

Then we also have

Fr

((
H

m

))
=

{ (
H

m/p

)
if p | m,

0 if p � m.

Let U0 be the subalgebra of U generated by
(
H
pi

)
with i ∈ Z≥0. The elements

Y (m)
(
H
n

)
X(m′) with m,m′, n ∈ Z≥0 form a k-basis of U . We say that an element

z ∈ U has degree d if it is a k-linear combination of the elements Y (m)
(
H
n

)
X(m′)

with m,m′, n ∈ Z≥0 and m′ − m = d. For a positive integer r ∈ Z>0, let Ur be

the subalgebra of U generated by X(pi) and Y (pi) with 0 ≤ i ≤ r − 1. This is
a finite-dimensional algebra of dimension p3r which has Y (m)

(
H
n

)
X(m′) with 0 ≤

m,m′, n ≤ pr − 1 as a k-basis, and it can be identified with the hyperalgebra of the
r-th Frobenius kernel Gr of G. Let U0

r be the subalgebra of U generated by
(
H
pi

)
with 0 ≤ i ≤ r − 1.

Let Fr′ : U → U be the k-linear map defined by

Y (m)

(
H

n

)
X(m′) �→ Y (mp)

(
H

np

)
X(m′p).

This map is not a homomorphism of k-algebras, whereas its restriction to U0
r is (for

details, see [1, §3] and [2, §1]). Clearly we have Fr ◦ Fr′ = idU .

Let A be the subalgebra of U which is generated by U0 and Y (pi)X(pi) with i ≥ 0.
This subalgebra is commutative and has the elements Y (m)

(
H
n

)
X(m) with m,n ∈

Z≥0 as a k-basis. For an integer r > 0, setAr = A∩Ur. This subalgebra is generated
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by U0
r and Y (pi)X(pi) with 0 ≤ i ≤ r − 1 and has the elements Y (m)

(
H
n

)
X(m) with

m,n ∈ {0, 1, . . . , pr − 1} as a k-basis.
For a finite-dimensional (associative) k-algebra R, let radR be the largest nilpo-

tent ideal of R which is called the Jacobson radical of R. For a finite-dimensional
(left) R-module M and a positive integer n, the R-submodule (radR)nM is denoted

by radnRM and is called the n-th radical of M . For convenience, set rad0RM = M .
If n = 1, the submodule rad1RM is denoted by radRM and is called the radical of
M .

In turn, for a finite-dimensional (left) R-module M and a positive integer n, the
R-submodule of M consisting of the elements annihilated by (radR)n is denoted
by socnRM , which is called the n-th socle of M . For convenience, set soc0RM = 0.
If n = 1, the submodule soc1RM is denoted by socRM and is called the socle of M ,
which is also the largest semisimple R-submodule of M .

3. PIMs for Ar

To study the projective indecomposable Ar-modules, we use the idempotents
constructed in the author’s paper [6].

For a ∈ Z, set

μa =

(
H − a− 1

p− 1

)
=

p−1∑
i=0

(
−a− 1

p− 1− i

)(
H

i

)
∈ U0

1 .

This is a U0
1 -weight vector of weight a in the U0

1 -module U0
1 : Hμa = aμa. Moreover,

we have μa = μb if and only if a ≡ b (mod p), and all μa with a ∈ {0, 1, . . . , p− 1}
are pairwise orthogonal primitive idempotents in U0

1 whose sum is 1 ∈ U0
1 .

Suppose for a moment that p is odd. Set S = {0, 1, . . . , (p−1)/2} ⊂ Z. We denote
by S again the image of the subset S ⊂ Z under the natural map Z → Fp. For ε ∈
{0, 1}, a ∈ Z, j ∈ S, and m ∈ Z≥0 we define polynomials ϕa,m(x), ψ(x), ψ

(ε)
j (x) ∈

Fp[x] as

ϕa,0(x) = 1,

ϕa,m(x) =
m−1∏
i=0

(
x− i(i+ a+ 1)

)
if m �= 0;

ψ(x) =
∏
i∈Fp

(x− i2) = x
∏

i∈S−{0}
(x− i2)2,

ψ
(1)
j (x) = ψ(x)/(x− j2),

ψ
(0)
0 (x) =

∏
i∈F×

p

(x− i2) =
∏

i∈S−{0}
(x− i2)2,

and

ψ(0)
s (x) = 2x(x+ s2)

∏
i∈F×

p −{s,p−s}

(x− i2) = 2x(x+ s2)
∏

i∈S−{0,s}
(x− i2)2

if s �= 0. Clearly ψ
(0)
0 (x) = ψ

(1)
0 (x), and we have

ψ
(
x+

(
(a+ 1)/2

)2)
= ϕa,p(x)
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and

ϕa,p(μaY X) = ϕ−a,p(μaXY ) = 0

(see [6, Lemma 4.3]). Set P = {0, 1, . . . , p− 1} × S and

B(ε)(a, j) = ψ
(ε)
j

(
μaY X +

(
(a+ 1)/2

)2) · μa

for ε ∈ {0, 1} and (a, j) ∈ P. This element also can be written as

B(ε)(a, j) = ψ
(ε)
j

(
μaXY +

(
(a− 1)/2

)2) · μa.

Note also that B(0)(a, 0) = B(1)(a, 0) for any a ∈ {0, 1, . . . , p− 1}.
In turn, suppose that p = 2. Then we consider the set

P = {(0, 1/2), (1, 0), (1, 1)} ⊂ {0, 1} × (1/2)Z

instead of P = {0, 1, . . . , p− 1} × S when p is odd and define

B(0)(0, 1/2) = μ0, B(1)(0, 1/2) = μ0Y X = μ0XY,

B(0)(1, 0) = B(1)(1, 0) = μ1Y X = μ1XY + μ1,

B(0)(1, 1) = B(1)(1, 1) = μ1Y X + μ1 = μ1XY.

For any prime number p and a pair (a, j) ∈ P, set E(a, j) = B(0)(a, j). The
elements E(a, j) with (a, j) ∈ P are pairwise orthogonal idempotents in U1 whose
sum is the unity 1 ∈ U1 (see [6, Proposition 4.5]).

To construct idempotents in Ar, we make some preparation.
First we shall define n(ε)(a, j) for each ε ∈ {0, 1} and a pair (a, j) in Z × S

(when p is odd) or P (when p = 2) as follows: if p is odd, n(ε)(a, j) is the largest
nonnegative integer n satisfying

ϕa,n(x) | ψ(ε)
j

(
x+

(
(a+ 1)/2

)2)
for (a, j) ∈ Z× S, and if p = 2, we set

n(0)(0, 1/2) = 0, n(0)(1, 0) = 1, n(0)(1, 1) = 0,

n(1)(0, 1/2) = 1, n(1)(1, 0) = 1, n(1)(1, 1) = 0.

We consider the following four conditions for each pair (a, j) ∈ P:
(A) a is even and (p− a+ 1)/2 ≤ j ≤ (p− 1)/2,
(B) a is even and 0 ≤ j ≤ (p− a− 1)/2,
(C) a is odd and 0 ≤ j ≤ (a− 1)/2,
(D) a is odd and (a+ 1)/2 ≤ j ≤ (p− 1)/2.
Note that if p = 2, the pairs (0, 1/2), (1, 0), and (1, 1) in P satisfy (B), (C), and
(D) respectively.

Lemma 3.1. Let (a, j) ∈ P. Then the following hold.
(i) n(0)(a, j) = (p− a− 1)/2+ j and n(1)(a, j) = (3p− a− 1)/2− j under (A),
(ii) n(0)(a, j) = (p− a− 1)/2− j and n(1)(a, j) = (p− a− 1)/2 + j under (B),
(iii) n(0)(a, j) = (2p − a − 1)/2 − j and n(1)(a, j) = (2p − a − 1)/2 + j under

(C),
(iv) n(0)(a, j) = j − (a+ 1)/2 and n(1)(a, j) = (2p− a− 1)/2− j under (D).
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Proof. It is clear when p = 2. Suppose that p is odd. Then n(0)(a, j) is determined
in [6, Lemma 4.6], and so we only have to determine n(1)(a, j). We have n(0)(a, 0) =

n(1)(a, 0) since ψ
(0)
0 (x) = ψ

(1)
0 (x), and so the lemma holds for j = 0. Suppose that

j �= 0. Then the definition of n(1)(a, j) implies that it is the second smallest non-

negative integer n satisfying x − n(n + a + 1) = x +
(
(a + 1)/2

)2 − j2 in Fp[x],

and hence −n(n+ a+ 1) =
(
(a+ 1)/2

)2 − j2 in Fp. Thus we obtain the result for

n(1)(a, j) (see the second to fifth paragraphs in the proof of [6, Lemma 4.6]). �

If p is odd, we define an integer ñ(ε)(a, j) for ε ∈ {0, 1}, a ∈ Z, and j ∈ S as
ñ(ε)(a, j) = n(ε)(−a, j). If p = 2, set

ñ(0)(0, 1/2) = 0, ñ(0)(1, 0) = 0, ñ(0)(1, 1) = 1,

ñ(1)(0, 1/2) = 1, ñ(1)(1, 0) = 0, ñ(1)(1, 1) = 1.

It is easy to see that Lemma 3.1 implies the following (see [6, Lemma 4.7]).

Lemma 3.2. Let (a, j) ∈ P. Then the following hold.
(i) ñ(0)(a, j) = (−p+ a− 1)/2+ j and ñ(1)(a, j) = (p+ a− 1)/2− j under (A),
(ii) ñ(0)(a, j) = (p+ a− 1)/2− j and ñ(1)(a, j) = (p+ a− 1)/2 + j under (B),
(iii) ñ(0)(a, j) = (a− 1)/2− j and ñ(1)(a, j) = (a− 1)/2 + j under (C),
(iv) ñ(0)(a, j) = (a− 1)/2 + j and ñ(1)(a, j) = (2p+ a− 1)/2− j under (D).

The following lemma is a generalization of [6, Lemma 4.8].

Lemma 3.3. Let (a, j) ∈ P. Then the element B(ε)(a, j) with ε ∈ {0, 1} can be
written as

B(ε)(a, j) = μa

p−1∑
m=n(ε)(a,j)

c(ε)m Y mXm = μa

p−1∑
m=ñ(ε)(a,j)

c̃(ε)m XmY m

for some c
(ε)
m , c̃

(ε)
m ∈ Fp with c

(ε)

n(ε)(a,j)
�= 0 and c̃

(ε)

ñ(ε)(a,j)
�= 0.

Proof. The equalities for p = 2 are clear by the definition of B(ε)(a, j). Suppose
that p is odd. Then the equalities for E(a, j) = B(0)(a, j) are proved in [6, Lemma

4.8], using the integers n(0)(a, j), ñ(0)(a, j), and the polynomial ψ
(0)
j (x). The proof

for B(1)(a, j) is similar, using n(1)(a, j), ñ(1)(a, j), and ψ
(1)
j (x). �

Now we shall construct idempotents in Ar for r ∈ Z>0. First of all, we give the
primitive idempotents in U0

r . For an integer a ∈ Z, set

μ(r)
a =

(
H − a− 1

pr − 1

)
∈ U0

r .

This is a U0
r -weight vector of weight a in the U0

r -module U0
r :

(
H
n

)
μa =

(
a
n

)
μa for any

n ∈ {0, 1, . . . , pr − 1}. Moreover, we have μ
(r)
a = μ

(r)
b if and only if a ≡ b (mod pr),

and all μ
(r)
a with a ∈ {0, 1, . . . , pr−1} are pairwise orthogonal primitive idempotents

in U0
r whose sum is 1 ∈ U0

r . For details, see [3, §4.7].
If (a, j) ∈ P satisfies (A) or (C), then set s(a, j) = (p− a+ 1)/2 if p is odd and

a is even, s(a, j) = (p− a)/2 if both p and a are odd, and s(a, j) = 1 if p = 2.
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For ε ∈ {0, 1} and (a, j) ∈ P, we write

B(ε)(a, j) = μa

p−1∑
m=n(ε)(a,j)

c(ε)m Y mXm = μa

p−1∑
m=ñ(ε)(a,j)

c̃(ε)m XmY m

following Lemma 3.3. Using this notation we define Z(ε)
(
z; (a, j)

)
for z ∈ U as

Z(ε)
(
z; (a, j)

)
= μa

p−1∑
m=n(ε)(a,j)

c(ε)m Y mXm−s(a,j)Fr′(z)Xs(a,j)

if (a, j) satisfies (A) or (C), and

Z(ε)
(
z; (a, j)

)
= Fr′(z)B(ε)(a, j)

if (a, j) satisfies (B) or (D). Clearly the map Z(ε)
(
−; (a, j)

)
: U → U , z �→

Z(ε)
(
z; (a, j)

)
is k-linear.

We introduce the following two lemmas to prove the main result.

Lemma 3.4. For a pair (a, j) ∈ P and a nonzero element z ∈ U , there is a nonzero
element z′ ∈ U which is independent of ε ∈ {0, 1} such that

Z(ε)
(
z; (a, j)

)
= Fr′(z′)B(ε)(a, j) = B(ε)(a, j)Fr′(z′).

Moreover, if z ∈ A, then z′ and Z(ε)
(
z; (a, j)

)
also lie in A.

Remark 1. This lemma implies the following facts:
(a) If p is odd and j = 0 or if p = 2 and a = 1, then we have

Z(0)
(
z; (a, j)

)
= Z(1)

(
z; (a, j)

)
since B(0)(a, j) = B(1)(a, j). Otherwise Z(0)

(
z0; (a, j)

)
and Z(1)

(
z1; (a, j)

)
are lin-

early independent over k for nonzero elements z0, z1 ∈ U .
(b) The k-linear map Z(ε)

(
−; (a, j)

)
is injective.

Lemma 3.5. Let u be an element of the k-subalgebra of U generated by all X(pi)

and Y (pi) with i ∈ Z>0. For (a, j) ∈ P, ε ∈ {0, 1}, and z ∈ U , we have

uZ(ε)
(
z; (a, j)

)
= Z(ε)

(
Fr(u)z; (a, j)

)
.

These lemmas are generalizations of Lemma 5.3 and Proposition 5.4(iv) in [6].
We can prove them similarly since Lemma 5.2 in [6] can be applied even if ε = 1
(note that n(1)(a, j) ≥ n(0)(a, j) and ñ(1)(a, j) ≥ ñ(0)(a, j) by Lemmas 3.1 and 3.2).

For a positive integer r, consider an r-tuple
(
(ai, ji)

)r−1

i=0
=

(
(a0, j0), . . . ,

(ar−1, jr−1)
)
of pairs (ai, ji) ∈ P (0 ≤ i ≤ r − 1). For convenience we shall

write this as

((a0, . . . , ar−1), (j0, . . . , jr−1))

or (a, j) with a = (a0, . . . , ar−1) and j = (j0, . . . , jr−1).
For r-tuples (ε0, . . . , εr−1) ∈ {0, 1}r and ((a0, . . . , ar−1), (j0, . . . , jr−1)) ∈ Pr, we

define an element B(ε0,...,εr−1)((a0, . . . , ar−1), (j0, . . . , jr−1)) ∈ U as B(ε0)(a0, j0) if
r = 1, and

Z(ε0)
(
B(ε1,...,εr−1)

(
(a1, . . . , ar−1), (j1, . . . , jr−1)

)
; (a0, j0)

)
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if r ≥ 2. We often denote this element by B(ε)(a, j) with ε = (ε0, . . . , εr−1),
a = (a0, . . . , ar−1), and j = (j0, . . . , jr−1). Clearly all

B(ε0,...,εr−1)((a0, . . . , ar−1), (j0, . . . , jr−1))

lie in Ar.
As in [6, Proposition 5.5(i)], for ε = (ε0, . . . , εr−1) and an r-tuple (a, j) =(

(ai, ji)
)r−1

i=0
∈ Pr, the element B(ε)(a, j) is a U0

r -weight vector of U0
r -weight∑r−1

i=0 bip
i, where

bi =

{
ai − p if (ai, ji) satisfies (A) or (C),
ai if (ai, ji) satisfies (B) or (D)

since μ
(r)
∑r−1

i=0 bipi
B(ε)(a, j) = B(ε)(a, j).

The proposition below is used to remove duplicates from the elements B(ε)(a, j)
with ε ∈ {0, 1}r.

Proposition 3.6. For ε = (ε0, . . . , εr−1), ε̃ = (ε̃0, . . . , ε̃r−1) ∈ {0, 1}r, and an r-

tuple (a, j) =
(
(ai, ji)

)r−1

i=0
∈ Pr, we have B(ε)(a, j) = B(ε̃)(a, j) if εs = ε̃s for any

integer s satisfying js �= 0 when p is odd or as �= 1 when p = 2.

Proof. If r = 1, the proposition holds since B(0)(a, 0) = B(1)(a, 0) for any a ∈
{0, 1, . . . , p− 1} when p is odd, and since B(0)(1, j) = B(1)(1, j) for any j ∈ {0, 1}
when p = 2.

Suppose that r ≥ 2 and that εs = ε̃s if js �= 0 when p is odd or if as �= 1 when
p = 2. By induction, we have

B(ε)(a, j) = Z(ε0)
(
B(ε1,...,εr−1)

(
(a1, . . . , ar−1), (j1, . . . , jr−1)

)
; (a0, j0)

)
= Z(ε0)

(
B(ε̃1,...,ε̃r−1)

(
(a1, . . . , ar−1), (j1, . . . , jr−1)

)
; (a0, j0)

)
.

Thus if j0 �= 0 when p is odd or if a0 �= 1 when p = 2, we have ε0 = ε̃0, and hence
B(ε)(a, j) = B(ε̃)(a, j). On the other hand, if j0 = 0 when p is odd or if a0 = 1
when p = 2, we have B(0)(a0, j0) = B(1)(a0, j0), and hence B(ε)(a, j) = B(ε̃)(a, j)
by (a) in the remark of Lemma 3.4. �

For an r-tuple (a, j) =
(
(ai, ji)

)r−1

i=0
∈ Pr, set E(a, j) = B(0,...,0)(a, j). The el-

ements E(a, j) are pairwise orthogonal idempotents in Ur whose sum is the unity
1 ∈ Ur. Actually it turns out that these idempotents are primitive, since we know
the dimensions of all simple Ur-modules (see [6, Proposition 5.5(iii)]). In this paper
we will see the primitivity as the result in Theorem 3.11 without using them.

Let ei denote an element of Zr with 1 in the i-th entry and 0 elsewhere.

Proposition 3.7. For ε = (ε0, . . . , εr−1) ∈ {0, 1}r, (a, j) =
(
(ai, ji)

)r−1

i=0
∈ Pr, and

an integer s with 0 ≤ s ≤ r − 1, Y (ps)X(ps)B(ε)(a, j) is equal to(
j2s −

(
as + 1

2

)2
)
B(ε)(a, j) + 4j2sB

(ε+es+1)(a, j)
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if εs = 0 and to (
j2s −

(
as + 1

2

)2
)
B(ε)(a, j)

if εs = 1.

Remark 2. The coefficients j2s −
(
(as + 1)/2

)2
and 4j2s make sense as elements in Fp

even if p = 2. Indeed, they are integers since (as, js) ∈ P = {(0, 1/2), (1, 0), (1, 1)}.

Proof. We use induction on r. If r = 1, we easily see that

Y XB(0)(a0, j0) =

(
j20 −

(
a0 + 1

2

)2
)
B(0)(a0, j0) + 4j20B

(1)(a0, j0)

and

Y XB(1)(a0, j0) =

(
j20 −

(
a0 + 1

2

)2
)
B(1)(a0, j0)

by the definition of B(ε0)(a0, j0), and the claim follows.
Suppose that r ≥ 2. By Lemma 3.4, there exists an element z′ ∈ A which is

independent of ε0 such that

B(ε)(a, j) = Fr′(z′)B(ε0)(a0, j0) = B(ε0)(a0, j0)Fr
′(z′).

This shows the desired equality for s = 0 as in the last paragraph, so we may assume

s ≥ 1. Set ε′ = (ε1, . . . , εr−1) ∈ {0, 1}r−1 and (a′, j′) =
(
(ai, ji)

)r−1

i=1
∈ Pr−1. By

Lemma 3.5 we have

Y (ps)X(ps)B(ε)(a, j) = Y (ps)X(ps)Z(ε0)
(
B(ε′)(a′, j′); (a0, j0)

)
= Z(ε0)

(
Y (ps−1)X(ps−1)B(ε′)(a′, j′); (a0, j0)

)
.

By induction, Y (ps−1)X(ps−1)B(ε′)(a′, j′) is equal to(
j2s −

(
as + 1

2

)2
)
B(ε′)(a′, j′) + 4j2sB

(ε′+e′
s)(a′, j′)

if εs = 0 and to (
j2s −

(
as + 1

2

)2
)
B(ε′)(a′, j′)

if εs = 1, where e′i denotes an element of Zr−1 with 1 in the i-th entry and 0 else-

where. Now the proposition follows from the linearity of the map Z(ε0)
(
−; (a0, j0)

)
.

�

A partial order in {0, 1}r can be defined as

(ε0, . . . , εr−1) ≤ (ε̃0, . . . , ε̃r−1) if εi ≤ ε̃i for each i.

For m = (m0, . . . ,mr−1) and m̃ = (m̃0, . . . , m̃r−1) ∈ Zr, define the Hamming
distance d(m, m̃) of m and m̃ as the number of the integers i with mi �= m̃i and
the Hamming weight W(m) of m as the number of the integers i with mi �= 0.
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For an r-tuple (a, j) =
(
(ai, ji)

)r−1

i=0
∈ Pr, define a subset Xr(a, j) of {0, 1}r as

follows:

Xr(a, j) = {(ε0, . . . , εr−1) ∈ {0, 1}r | εi = 0 whenever ji = 0}
if p is odd and

Xr(a, j) = {(ε0, . . . , εr−1) ∈ {0, 1}r | εi = 0 whenever ai = 1}
if p = 2.

From now on we shall fix (a, j) =
(
(ai, ji)

)r−1

i=0
∈ Pr unless otherwise stated in

order to study the structure of the Ar-module Ar · E(a, j).

Theorem 3.8. For ε ∈ Xr(a, j), the elements B(θ)(a, j) with θ ∈ Xr(a, j) and
θ ≥ ε form a k-basis of the Ar-module Ar ·B(ε)(a, j).

Remark 3. This theorem implies some facts:
(a) For (a, j), (ã, j̃) ∈ Pr, ε ∈ Xr(a, j), and ε̃ ∈ Xr(ã, j̃), we have

B(ε)(a, j)B(ε̃)(ã, j̃) = 0

if (a, j) �= (ã, j̃), since B(ε)(a, j) ∈ Ar · E(a, j) and B(ε̃)(ã, j̃) ∈ Ar · E(ã, j̃).
(b) For ε, ε̃ ∈ Xr(a, j), we have Ar ·B(ε̃)(a, j) ⊆ Ar ·B(ε)(a, j) if and only if ε ≤ ε̃

and Ar ·B(ε̃)(a, j) = Ar ·B(ε)(a, j) if and only if ε = ε̃.
(c) The k-algebra Ar · E(a, j) has the elements B(θ)(a, j) with θ ∈ Xr(a, j) as a

k-basis.

Proof. First we claim that the elements B(θ)(a, j) for θ ∈ Xr(a, j) are linearly
independent over k. Note that X1(a0, j0) is equal to {0, 1} if j0 �= 0 when p is odd,
or if a0 �= 1 when p = 2, and to {0} otherwise. In the former case B(0)(a0, j0) and
B(1)(a0, j0) are linearly independent over k by Lemma 3.3. Hence the claim holds
for r = 1. Suppose that r ≥ 2 and∑

θ∈Xr(a,j)

αθB
(θ)(a, j) = 0,

where αθ ∈ k. If we write (a′, j′) =
(
(ai, ji)

)r−1

i=1
∈ Pr−1, θ = (θ0, . . . , θr−1) ∈

Xr(a, j), and θ′ = (θ1, . . . , θr−1) ∈ Xr−1(a
′, j′), we have

0 =
∑

θ∈Xr(a,j)

αθB
(θ)(a, j) =

∑
θ∈Xr(a,j)

αθZ
(θ0)

(
B(θ′)(a′, j′); (a0, j0)

)

=
∑

θ0∈X1(a0,j0)

Z(θ0)
( ∑

θ′∈Xr−1(a′,j′)

α(θ0,θ′)B
(θ′)(a′, j′); (a0, j0)

)
,

where (θ0, θ
′) means θ. By (a) in the remark of Lemma 3.4 we have

Z(θ0)
( ∑

θ′∈Xr−1(a′,j′)

α(θ0,θ′)B
(θ′)(a′, j′); (a0, j0)

)
= 0,

and hence
∑

θ′∈Xr−1(a′,j′) α(θ0,θ′)B
(θ′)(a′, j′) = 0 for each θ0 ∈ X1(a0, j0). Since

B(θ′)(a′, j′) with θ′ ∈ Xr−1(a
′, j′) are linearly independent by induction, we obtain

α(θ0,θ′) = 0 for each θ′ ∈ Xr−1(a
′, j′). It follows that αθ = 0 for each θ ∈ Xr(a, j),

and the claim follows.
Next we claim that Ar · B(ε)(a, j) is spanned by all B(θ)(a, j) with θ ∈ Xr(a, j)

and θ ≥ ε. Let V be the subspace spanned by all B(θ)(a, j) with θ ∈ Xr(a, j) and



1986 YUTAKA YOSHII

θ ≥ ε. Suppose that an element θ ∈ Xr(a, j) satisfies θ ≥ ε. For an integer s with
0 ≤ s ≤ r − 1, if s satisfies js �= 0 when p is odd or as �= 1 (i.e., (as, js) = (0, 1/2))
when p = 2, and if θs = 0, then θ+ es+1 ∈ Xr(a, j) and θ+ es+1 ≥ ε. Thus we see
that Y (ps)X(ps)B(θ)(a, j) ∈ V by Proposition 3.7. Since B(θ)(a, j) is a U0

r -weight
vector, V is closed under the action of Ar. Moreover, since B(ε)(a, j) ∈ V , we
obtain Ar · B(ε)(a, j) ⊆ V . To show the reverse inclusion, we have to check that
B(θ)(a, j) ∈ Ar · B(ε)(a, j) for any θ ∈ Xr(a, j) satisfying θ ≥ ε. It is clear when
d(θ, ε) = 0 (i.e., θ = ε), so suppose that d(θ, ε) > 0. There exists an integer s with
0 ≤ s ≤ r− 1 such that εs = 0 and θs = 1. For this integer s note that js �= 0 when
p is odd or as �= 1 (i.e., (as, js) = (0, 1/2)) when p = 2. Then

Y (ps)X(ps)B(θ−es+1)(a, j) =

(
j2s −

(
as + 1

2

)2
)
B(θ−es+1)(a, j) + 4j2sB

(θ)(a, j)

by Proposition 3.7. Since θ− es+1 is an element of Xr(a, j) satisfying θ− es+1 ≥ ε
and d(θ − es+1, ε) = d(θ, ε) − 1, we obtain B(θ−es+1)(a, j) ∈ Ar · B(ε)(a, j) by
induction. Moreover, since 4j2s �= 0 in Fp, we have

B(θ)(a, j) =
1

4j2s

(
Y (ps)X(ps) − j2s +

(
as + 1

2

)2
)
B(θ−es+1)(a, j) ∈ Ar ·B(ε)(a, j).

Therefore, we obtain Ar ·B(ε)(a, j) = V , and the proof is complete. �

The following lemma enables us to determine radical series of the Ar-modules
Ar ·B(ε)(a, j) with ε ∈ Xr(a, j).

Lemma 3.9. Let ε = (ε0, . . . , εr−1), ε̃ = (ε̃0, . . . , ε̃r−1) ∈ Xr(a, j). Then the prod-
uct B(ε)(a, j)B(ε̃)(a, j) is equal to zero if there is an integer s with 0 ≤ s ≤ r − 1
such that εs = ε̃s = 1 and to B(ε+ε̃)(a, j) otherwise. In the latter case ε + ε̃ also
lies in Xr(a, j).

Proof. Suppose that there is an integer s satisfying εs = ε̃s = 1. Note that 4j2s �= 0
in Fp. By Proposition 3.7 we have

B(ε)(a, j) =
1

4j2s

(
Y (ps)X(ps) − j2s +

(
as + 1

2

)2
)
B(ε−es+1)(a, j)

and Y (ps)X(ps)B(ε̃)(a, j) =
(
j2s −

(
(as + 1)/2

)2)
B(ε̃)(a, j). Then

B(ε)(a, j)B(ε̃)(a, j)

=
1

4j2s

(
Y (ps)X(ps) − j2s +

(
as + 1

2

)2
)
B(ε̃)(a, j)B(ε−es+1)(a, j)

= 0.

On the other hand, suppose that there are no integers s satisfying εs = ε̃s = 1.
Clearly ε+ ε̃ lies in Xr(a, j) again. We prove the lemma by induction on W(ε+ ε̃).
It is clear when W(ε+ ε̃) = 0, since ε = ε̃ = (0, . . . , 0). Suppose that W(ε+ ε̃) > 0.
We may assume that there is an integer s such that εs = 1. By induction, the
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product B(ε−es+1)(a, j)B(ε̃)(a, j) is equal to B(ε+ε̃−es+1)(a, j). Thus we have

B(ε)(a, j)B(ε̃)(a, j)

=
1

4j2s

(
Y (ps)X(ps) − j2s +

(
as + 1

2

)2
)
B(ε−es+1)(a, j)B(ε̃)(a, j)

=
1

4j2s

(
Y (ps)X(ps) − j2s +

(
as + 1

2

)2
)
B(ε+ε̃−es+1)(a, j)

= B(ε+ε̃)(a, j),

as required. �
Since all E(a, j) with (a, j) ∈ Pr are central idempotents of Ar whose sum is 1,

the representation theory for the algebras Ar · E(a, j) completely determines that
for Ar (see [4, ch. 1, Theorem 4.7]). For a fixed (a, j) ∈ Pr, set w = W(j) if p
is odd, and w = r − W(a) if p = 2 (i.e., w is the number of the integers s with
0 ≤ s ≤ r− 1 satisfying js �= 0 if p is odd or as �= 1 if p = 2). Then for ε ∈ Xr(a, j),
the Ar-module B(ε)(a, j) has dimension 2w−W(ε) by Theorem 3.8. In particular,
the k-algebra Ar ·E(a, j) has dimension 2w, which is also the cardinality of Xr(a, j).

Proposition 3.10. For a positive integer i, we have(
rad(Ar · E(a, j))

)i
=

∑
θ∈Xr(a,j), W(θ)=i

Ar ·B(θ)(a, j)

=
∑

θ∈Xr(a,j), W(θ)≥i

k ·B(θ)(a, j).

In particular,
(
rad(Ar · E(a, j))

)i
= 0 if and only if i > w.

Proof. The second equality follows immediately from Theorem 3.8, so we only have
to show the first equality. Lemma 3.9 implies that the subspace∑

θ∈Xr(a,j), W(θ)≥1

k ·B(θ)(a, j)

is an ideal of the algebra Ar · E(a, j) and that a product of w + 1 elements in
the subspace is equal to 0. Hence the subspace is a nilpotent ideal of Ar · E(a, j).
Moreover, by Theorem 3.8 we see that the nilpotent ideal has codimension one in
Ar ·E(a, j) and hence is equal to rad(Ar ·E(a, j)). Thus the result for i = 1 follows.
The result for arbitrary i follows easily from Lemma 3.9 using induction on i. �

Let τ = τ (a, j) = (τ0, . . . , τr−1) ∈ Xr(a, j) be the element such that τs = 0 if
js = 0 when p is odd or as = 1 when p = 2, and τs = 1 otherwise for 0 ≤ s ≤ r− 1.
This is a unique element of Xr(a, j) which has the largest Hamming weight w. Set
S(a,j) = Ar ·B(τ )(a, j) = k ·B(τ )(a, j). Clearly this is a simple Ar-module.

Now we give radical series of the Ar-modules Ar ·B(ε)(a, j) for ε ∈ Xr(a, j).

Theorem 3.11. Let ε ∈ Xr(a, j). For i ∈ Z≥0 we have

radiAr
(Ar ·B(ε)(a, j)) =

∑
θ∈Xr(a,j), d(θ,ε)=i, θ≥ε

Ar ·B(θ)(a, j)

=
∑

θ∈Xr(a,j), d(θ,ε)≥i, θ≥ε

k ·B(θ)(a, j),
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and the Loewy length of Ar ·B(ε)(a, j) is w+ 1−W(ε). Moreover, for an integer i
with 0 ≤ i ≤ w −W(ε) the quotient

radiAr
(Ar ·B(ε)(a, j))/radi+1

Ar
(Ar ·B(ε)(a, j))

is isomorphic to a direct sum of
(
w−W(ε)

i

)
copies of S(a,j). In particular, Ar ·

B(ε)(a, j) is an indecomposable Ar-module whose head is isomorphic to S(a,j).

Proof. The first statement follows easily from Proposition 3.10 and Lemma 3.9 since

radiAr
(Ar ·B(ε)(a, j)) =

(
rad(Ar · E(a, j))

)i ·B(ε)(a, j)

if i ≥ 1. Then the second statement follows easily from the first statement and
Proposition 3.7. �

This theorem implies that all the idempotents E(a, j) are primitive and all S(a,j)

form a complete set of nonisomorphic simple Ar-modules. In particular, Ar ·E(a, j)
is a block algebra of Ar which has S(a,j) as a unique simple Ar · E(a, j)-module.

The following theorem shows that the Ar-modules Ar ·B(ε)(a, j) for ε ∈ Xr(a, j)
are rigid (i.e., have identical radical and socle series).

Theorem 3.12. Let ε ∈ Xr(a, j). For an integer i with 0 ≤ i ≤ w−W(ε) we have

radiAr
(Ar ·B(ε)(a, j)) = soc

w+1−W(ε)−i
Ar

(Ar ·B(ε)(a, j)).

In particular, the socle of the Ar-module Ar ·B(ε)(a, j) is isomorphic to S(a,j).

Proof. It is clear when i = 0 since the Ar-module Ar ·B(ε)(a, j) has Loewy length
w + 1−W(ε). So we may assume i ≥ 1. It is enough to show that

soc
w+1−W(ε)−i
Ar

(Ar ·B(ε)(a, j)) ⊆ radiAr
(Ar ·B(ε)(a, j)).

Suppose that an element u ∈ Ar · B(ε)(a, j) does not lie in radiAr
(Ar · B(ε)(a, j)).

We only have to check that u �∈ soc
w+1−W(ε)−i
Ar

(Ar ·B(ε)(a, j)). By Theorem 3.8, u

can be written as a k-linear combination of the elements B(θ)(a, j) with θ ∈ Xr(a, j)

and θ ≥ ε. By the assumption of u and by Theorem 3.11, if we choose θ̃ ∈ Xr(a, j)

where the coefficient of B(θ̃)(a, j) in u is nonzero such that d(θ̃, ε) is minimal, d(θ̃, ε)

must be smaller than i, and hence W(θ̃)−W(ε) ≤ i − 1. Then B(τ−θ̃)(a, j)u is a

nonzero multiple of B(τ)(a, j) by Lemma 3.9. Since τ − θ̃ ∈ Xr(a, j) and

W(τ − θ̃) = W(τ )−W(θ̃) = w −W(θ̃) ≥ w + 1−W(ε)− i,

the element B(τ−θ̃)(a, j) must lie in∑
θ∈Xr(a,j), W(θ)≥w+1−W(ε)−i

k ·B(θ)(a, j) =
(
rad(Ar · E(a, j))

)w+1−W(ε)−i
.

This means that u �∈ soc
w+1−W(ε)−i
Ar

(Ar · B(ε)(a, j)). Therefore, the result follows.
�

Actually, the k-algebra Ar · E(a, j) is symmetric.

Theorem 3.13. Ar · E(a, j) is a symmetric k-algebra.
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Proof. Let f : Ar · E(a, j) → k be the k-linear map defined as follows: for ε ∈
Xr(a, j), f(B

(ε)(a, j)) = 0 if ε �= τ , and f(B(τ )(a, j)) = 1. Let u be a nonzero
element of Ar ·E(a, j). By Theorem 3.8, u can be written as

∑
ε∈Xr(a,j)

αεB
(ε)(a, j),

αε ∈ k. Choose an element θ ∈ Xr(a, j) with αθ �= 0 such that W(θ) is minimal.
Since τ − θ ∈ Xr(a, j), the element B(τ−θ)(a, j) lies in Ar · E(a, j). By Lemma
3.9, we see that B(τ−θ)(a, j)u = αθB

(τ )(a, j). This fact implies that Kerf contains
no nonzero ideals of Ar · E(a, j). Thus Ar · E(a, j) is a Frobenius algebra (see
[4, ch. 2, Theorem 8.13]). But it is also symmetric since Ar (hence Ar · E(a, j)) is
commutative. �
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