Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hermitian ranks of compact complex manifolds


Authors: Daniele Angella and Adriano Tomassini
Journal: Proc. Amer. Math. Soc. 146 (2018), 2195-2205
MSC (2010): Primary 32Q99, 32C35
DOI: https://doi.org/10.1090/proc/13938
Published electronically: February 1, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate degenerate special-Hermitian metrics on compact complex manifolds; in particular, degenerate Kähler and locally conformally Kähler metrics on special classes of non-Kähler manifolds.


References [Enhancements On Off] (What's this?)

  • [ADT14] Daniele Angella, Georges Dloussky, and Adriano Tomassini, On Bott-Chern cohomology of compact complex surfaces, Ann. Mat. Pura Appl. (4) 195 (2016), no. 1, 199-217. MR 3453598, https://doi.org/10.1007/s10231-014-0458-7
  • [Bis89] Jean-Michel Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), no. 4, 681-699. MR 1006380, https://doi.org/10.1007/BF01443359
  • [Buc99] Nicholas Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, vii, xi, 287-302 (English, with English and French summaries). MR 1688136
  • [COUV] M. Ceballos, A. Otal, L. Ugarte, and R. Villacampa, Invariant complex structures on 6-nilmanifolds: classification, Frölicher spectral sequence and special Hermitian metrics, J. Geom. Anal. 26 (2016), no. 1, 252-286. MR 3441513, https://doi.org/10.1007/s12220-014-9548-4
  • [Chi13] Ionuţ Chiose, The Kähler rank of compact complex manifolds, J. Geom. Anal. 26 (2016), no. 1, 603-615. MR 3441529, https://doi.org/10.1007/s12220-015-9564-z
  • [CT13] Ionuţ Chiose and Matei Toma, On compact complex surfaces of Kähler rank one, Amer. J. Math. 135 (2013), no. 3, 851-860. MR 3068405, https://doi.org/10.1353/ajm.2013.0022
  • [Con07] Sergio Console, Dolbeault cohomology and deformations of nilmanifolds, Rev. Un. Mat. Argentina 47 (2006), no. 1, 51-60 (2007). MR 2292941
  • [DO98] Sorin Dragomir and Liviu Ornea, Locally conformal Kähler geometry, Progress in Mathematics, vol. 155, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1481969
  • [FGV16] Anna Fino, Gueo Grantcharov, and Misha Verbitsky, Algebraic dimension of complex nilmanifolds, J. Math. Pures Appl., https://doi.org/10.1016/jmatpur.2017.11.010
  • [Fuj78] Akira Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225-258. MR 0481142, https://doi.org/10.1007/BF01403162
  • [Gau77] Paul Gauduchon, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387-A390 (French, with English summary). MR 0470920
  • [GOPP06] Rosa Gini, Liviu Ornea, Maurizio Parton, and Paolo Piccinni, Reduction of Vaisman structures in complex and quaternionic geometry, J. Geom. Phys. 56 (2006), no. 12, 2501-2522. MR 2252875, https://doi.org/10.1016/j.geomphys.2006.01.005
  • [HL83] Reese Harvey and H. Blaine Lawson Jr., An intrinsic characterization of Kähler manifolds, Invent. Math. 74 (1983), no. 2, 169-198. MR 723213, https://doi.org/10.1007/BF01394312
  • [Hat60] Akio Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289-331 (1960). MR 0124918
  • [JY93] Jürgen Jost and Shing-Tung Yau, A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math. 170 (1993), no. 2, 221-254. MR 1226528, https://doi.org/10.1007/BF02392786
  • [Lam99] Ahcène Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, vii, x, 263-285 (French, with English and French summaries). MR 1688140
  • [LZ09] Tian-Jun Li and Weiyi Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. MR 2601348, https://doi.org/10.4310/CAG.2009.v17.n4.a4
  • [Mag12] Gunnar Pór Magnússon, Automorphisms and examples of compact non-Kähler manifolds, Math. Scand. 121 (2017), no. 1, 49-56. MR 3708963, https://doi.org/10.7146/math.scand.a-25983
  • [Mic82] M. L. Michelsohn, On the existence of special metrics in complex geometry, Acta Math. 149 (1982), no. 3-4, 261-295. MR 688351, https://doi.org/10.1007/BF02392356
  • [Pop13] Dan Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics, Invent. Math. 194 (2013), no. 3, 515-534. MR 3127061, https://doi.org/10.1007/s00222-013-0449-0
  • [Rol11] Sönke Rollenske, Dolbeault cohomology of nilmanifolds with left-invariant complex structure, Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 369-392. MR 2964483, https://doi.org/10.1007/978-3-642-20300-8_18
  • [S$^+$09] Sage Mathematics Software (Version 6.10), The Sage Developers, 2015, http://www.sagemath.org.
  • [Sal01] S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 311-333. MR 1812058, https://doi.org/10.1016/S0022-4049(00)00033-5
  • [Saw07] Hiroshi Sawai, Locally conformal Kähler structures on compact nilmanifolds with left-invariant complex structures, Geom. Dedicata 125 (2007), 93-101. MR 2322542, https://doi.org/10.1007/s10711-007-9140-1
  • [ST10] Jeffrey Streets and Gang Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 16 (2010), 3101-3133. MR 2673720, https://doi.org/10.1093/imrn/rnp237
  • [Tos15] Valentino Tosatti, Non-Kähler Calabi-Yau manifolds, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., vol. 644, Amer. Math. Soc., Providence, RI, 2015, pp. 261-277. MR 3372471, https://doi.org/10.1090/conm/644/12770
  • [Uga07] Luis Ugarte, Hermitian structures on six-dimensional nilmanifolds, Transform. Groups 12 (2007), no. 1, 175-202. MR 2308035, https://doi.org/10.1007/s00031-005-1134-1
  • [Yos80] Hisao Yoshihara, Structure of complex tori with the automorphisms of maximal degree, Tsukuba J. Math. 4 (1980), no. 2, 303-311. MR 623443

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32Q99, 32C35

Retrieve articles in all journals with MSC (2010): 32Q99, 32C35


Additional Information

Daniele Angella
Affiliation: Dipartimento di Matematica e Informatica “Ulisse Dini” Università degli Studi di Firenze viale Morgagni 67/a 50134 Firenze, Italy
Email: daniele.angella@gmail.com, daniele.angella@unifi.it

Adriano Tomassini
Affiliation: Dipartimento di Scienze Matematiche, Fisiche e Informatiche Unità di Matematica e Informatica Università di Parma Parco Area delle Scienze 53/A 43124 Parma, Italy
Email: adriano.tomassini@unipr.it

DOI: https://doi.org/10.1090/proc/13938
Keywords: Complex manifold, non-K\"ahler geometry, Hermitian metric, degenerate metric, K\"ahler rank, pluri-closed rank
Received by editor(s): February 2, 2017
Received by editor(s) in revised form: June 28, 2017, June 30, 2017, and August 14, 2017
Published electronically: February 1, 2018
Additional Notes: The first author was supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by the Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”, by SIR2014 project RBSI14DYEB “Analytic aspects in complex and hypercomplex geometry”, and by GNSAGA of INdAM. The second author was supported by Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica” and by GNSAGA of INdAM
Communicated by: Filippo Bracci
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society