Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Distortion of Lipschitz functions on $ c_0(\Gamma)$


Authors: Petr Hájek and Matěj Novotný
Journal: Proc. Amer. Math. Soc. 146 (2018), 2173-2180
MSC (2010): Primary 46B20, 46T20
DOI: https://doi.org/10.1090/proc/13945
Published electronically: January 8, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma $ be an uncountable cardinal. We construct a real symmetric $ 1$-Lipschitz function on the unit sphere of $ c_0(\Gamma )$ whose restriction to any nonseparable subspace is a distortion.


References [Enhancements On Off] (What's this?)

  • [1] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673
  • [2] Daniel P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146. MR 0205031, https://doi.org/10.2307/1994591
  • [3] W. T. Gowers, Lipschitz functions on classical spaces, European J. Combin. 13 (1992), no. 3, 141-151. MR 1164759, https://doi.org/10.1016/0195-6698(92)90020-Z
  • [4] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851-874. MR 1201238, https://doi.org/10.2307/2152743
  • [5] Antonio J. Guirao, Vicente Montesinos, and Václav Zizler, Open problems in the geometry and analysis of Banach spaces, Springer, [Cham], 2016. MR 3524558
  • [6] Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26, Springer, New York, 2008. MR 2359536
  • [7] Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. MR 0173932, https://doi.org/10.2307/1970663
  • [8] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
  • [9] B. Maurey, Symmetric distortion in $ l_2$, Geometric aspects of functional analysis (Israel, 1992-1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 143-147. MR 1353457
  • [10] V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk 26 (1971), no. 6(162), 73-149 (Russian). MR 0420226
  • [11] Edward Odell and Thomas Schlumprecht, The distortion problem, Acta Math. 173 (1994), no. 2, 259-281. MR 1301394, https://doi.org/10.1007/BF02398436
  • [12] Edward Odell and Th. Schlumprecht, Distortion and asymptotic structure, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1333-1360. MR 1999198, https://doi.org/10.1016/S1874-5849(03)80038-4
  • [13] Baltasar Rodríguez-Salinas, On the complemented subspaces of $ c_0(I)$ and $ l_p(I)$ for $ 1<p<\infty$, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 2, 399-402. MR 1310440
  • [14] Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36. MR 0270122
  • [15] Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), no. 1-2, 81-95. MR 1177333, https://doi.org/10.1007/BF02782845

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B20, 46T20

Retrieve articles in all journals with MSC (2010): 46B20, 46T20


Additional Information

Petr Hájek
Affiliation: Mathematical Institute, Czech Academy of Science, Žitná 25, 115 67 Praha 1, Czech Republic – and – Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Jugoslávských partyzánů 3 166 27 Prague, Czech Republic
Email: hajek@math.cas.cz

Matěj Novotný
Affiliation: Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Jugoslávských partyzánů 3 166 27 Prague, Czech Republic
Email: novotny@math.feld.cvut.cz

DOI: https://doi.org/10.1090/proc/13945
Received by editor(s): April 29, 2017
Received by editor(s) in revised form: June 15, 2017, and August 9, 2017
Published electronically: January 8, 2018
Additional Notes: This work was supported in part by GAČR 16-07378S, RVO: 67985840 and by grant SGS15/194/OHK3/3T/13 of CTU in Prague.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society