ADDENDUM TO "ON A GENERAL MACLAURIN'S INEQUALITY"

STEFANO FAVARO AND STEPHEN G. WALKER
(Communicated by Ken Ono)

Abstract. A short proof of a general Maclaurin inequality is presented.

1. Short proof

With $\left(x_{1}, \ldots, x_{n}\right)$ as positive real numbers, define

$$
\begin{equation*}
E_{k}(\mathbf{x})=\left[\frac{\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}}{\binom{n}{k}}\right]^{\frac{1}{k}} \tag{1.1}
\end{equation*}
$$

for any $k=1, \ldots, n$, where the numerator of (1.1) is the k th elementary symmetric polynomial in \mathbf{x} and where the binomial coefficient in the denominator of (1.1) is the number of terms in the numerator. The Maclaurin's inequality is given by

$$
\begin{equation*}
E_{1}(\mathbf{x}) \geq E_{2}(\mathbf{x}) \geq \cdots \geq E_{n-1}(\mathbf{x}) \geq E_{n}(\mathbf{x}) \tag{1.2}
\end{equation*}
$$

with the extreme terms $E_{1}(\mathbf{x})$ and $E_{n}(\mathbf{x})$ being the arithmetic mean and the geometric mean, respectively.

Suppose now we have $\left(y_{1}, \ldots, y_{m}\right)$, which is comprised of r_{i} copies of x_{i}, for $i=1, \ldots, n$, and $\sum_{i=1}^{n} r_{i}=m$. Then the following equality can be proven:

$$
\begin{equation*}
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq m} y_{i_{1}} \ldots y_{i_{l}}=\sum_{\sum_{i=1}^{n} l_{i}=l} \prod_{i=1}^{n}\binom{r_{i}}{l_{i}} x_{i}^{l_{i}}, \tag{1.3}
\end{equation*}
$$

and it is this which forms the basis of the short proof.
Then (1.3) combined with (1.2) implies

$$
T_{1}(\mathbf{x}, \mathbf{r}) \geq T_{2}(\mathbf{x}, \mathbf{r}) \geq \cdots \geq T_{m-1}(\mathbf{x}, \mathbf{r}) \geq T_{m}(\mathbf{x}, \mathbf{r})
$$

where

$$
T_{l}(\mathbf{x}, \mathbf{r})=\left[\sum_{\left(l_{1}, \ldots, l_{n}\right) \in \mathcal{P}_{n, l}} \frac{\prod_{i=1}^{n}\binom{r_{i}}{l_{i}} x_{i}^{l_{i}}}{\binom{m}{l}}\right]^{1 / l}
$$

and $\mathcal{P}_{n, l}=\left\{\left(l_{1}, \ldots, l_{n}\right): l_{i} \geq 0\right.$ and $\left.\sum_{1 \leq i \leq n} l_{i}=l\right\}$. This result was proved in [1] using inequalities between Jacobi polynomials.

Acknowledgment

The authors acknowledge Richard Stong for pointing out the short proof.
Received by the editors August 15, 2017.
2010 Mathematics Subject Classification. Primary 26D15.

References

[1] S. Favaro and S. G. Walker, On a General Maclaurin's inequality. Proceedings of the American Mathematical Society, to appear.

Department of Economics and Statistics, University of Torino, Corso Unione Sovietica 218/bis, 10134 Torino, Italy

Email address: stefano.favaro@unito.it
Department of Mathematics, University of Texas at Austin, One University Station, C1200 Austin, Texas

Email address: s.g.walker@math.utexas.edu

