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Abstract. We are concerned with the existence of multiple periodic solutions

for differential equations involving Fisher-Kolmogorov perturbations of the
relativistic operator of the form

−
[
φ(u′)

]′
= λu(1− |u|q),

as well as for difference equations, of type

−Δ[φ(Δu(n− 1))] = λu(n)(1− |u(n)|q);
here q > 0 is fixed, Δ is the forward difference operator, λ > 0 is a real
parameter and

φ(y) =
y

√
1− y2

(y ∈ (−1, 1)).

The approach is variational and relies on critical point theory for convex, lower
semicontinuous perturbations of C1-functionals.

1. Introduction

This paper is concerned with problems involving Fisher-Kolmogorov nonlineari-
ties of the type:

(1.1) − [φ(u′)]
′
= λu(1− |u|q), u(0)− u(T ) = 0 = u′(0)− u′(T ),

respectively,

(1.2) −Δ [φ(Δu(n− 1))] = λu(n)(1− |u(n)|q), u(n) = u(n+ T ) (n ∈ Z),

where q > 0 is fixed, Δu(n) = u(n + 1) − u(n) is the usual forward difference
operator, λ > 0 is a real parameter and

φ(y) =
y√

1− y2
(y ∈ (−1, 1)).

Notice that besides the trivial solution, problems (1.1) and (1.2) always have the
pair of constant solutions u ≡ ±1 and these are the only constant nontrivial so-
lutions of (1.1) and (1.2). Here we are interested in the multiplicity of pairs of
nonconstant solutions of (1.1) and (1.2).
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The typical example which involves the above type of nonlinearities was origi-
nally motivated by models in biological population dynamics and led to the scalar
reaction-diffusion equation

∂u

∂t
− ∂2u

∂x2
= u(1− u2),

referred to as the classical Fisher-Kolmogorov (FK) equation ([14], [15], [18]). In
the last years interest has turned to higher-order equations of type

uiv − pu′′ = u(1− u2),

which corresponds, if p > 0, to the extended Fisher-Kolmogorov (EFK) equations;
these are models for phase transitions and other bistable phenomena. In this direc-
tion we refer the reader to [11], [12], [21] - [24], [28] where existence of solutions was
studied by a variety of methods such as topological shooting methods, phase-plane
analysis and variational methods. Also, a difference equation related to the FK
equation was considered in [1], [10].

A multiplicity result as the one in this paper (Theorem 2.1) was obtained in
[11], [12], [28] for EFK equations. We notice also the paper [8], where a multiplicity
result is given for periodic problems involving the discrete p-Laplacian operator.

On the other hand, in recent years special attention was paid to various qualita-
tive aspects for boundary value problems involving the so-called relativistic opera-
tor: u �→ [φ(u′)]

′
. Among others and far from being exhausted, related to existence

and multiplicity of periodic solutions for such problems, we refer the reader to [3]
- [5], [7], [9], [16], respectively to [2], [17], [19], [20] for discrete versions.

It is the aim of this paper to obtain multiplicity of nonconstant solutions for
problems (1.1) and (1.2). First, let us note that both of them can be seen as
eigenvalue problems. In this view, we prove in Theorem 2.1 (resp. Theorem 3.1)
that (1.1) (resp. (1.2)) has a prescribed number of distinct pairs of nonconstant
solutions for large enough values of the parameter λ. On the other hand, for any
λ > 0 fixed, we obtain that a prescribed number of distinct pairs of nonconstant
solutions can be obtained for (1.1), provided that the period T is sufficiently large
(Theorem 2.1). Our approach is a variational one and relies on a generalization of
a result for smooth functionals due to Clark [13] to convex, lower semicontinuous
perturbations of C1-functionals.

Before concluding this introductory part, we briefly recall some topics in the
frame of Szulkin’s critical point theory [27], which will be needed in the sequel.

Let (Y, ‖ · ‖) be a real Banach space and let I : Y → (−∞,+∞] be a functional
of the type

I = F + ψ,(1.3)

where F ∈ C1(Y,R) and ψ : Y → (−∞,+∞] is convex, lower semicontinuous and
proper (i.e., D(ψ) := {u ∈ Y : ψ(u) < +∞} �= ∅). A point u ∈ Y is said to be a
critical point of I if u ∈ D(ψ) and satisfies the inequality

〈F ′(u), v − u〉+ ψ(v)− ψ(u) ≥ 0 ∀ v ∈ D(ψ).

A sequence {un} ⊂ D(ψ) is called a (PS)-sequence if I(un) → c ∈ R and

〈F ′(un), v − un〉+ ψ(v)− ψ(un) ≥ −εn‖v − un‖ ∀ v ∈ D(ψ),

where εn → 0. The functional I is said to satisfy the (PS) condition if any (PS)-
sequence has a convergent subsequence in Y .
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Let Σ be the collection of all symmetric subsets of Y \ {0} which are closed in
Y . A nonempty set A ∈ Σ is said to have genus k (denoted γ(A) = k) if k is the
smallest integer with the property that there exists an odd continuous mapping
h : A → R

k \ {0}. If such an integer does not exist, γ(A) = +∞. For properties
and more details of the notion of genus we refer the reader to [25, 26]. Let Γ ⊂ 2Y

be the collection of all nonempty compact symmetric subsets of Y , considered with
the Hausdorff-Pompeiu distance and

Γj := cl{A ∈ Γ : 0 �∈ A, γ(A) ≥ j}
(cl is the closure in Γ). The following is a generalization of the result for smooth
functions in [25, Theorem 5.19] to functionals of type (1.3) and it is proved in
[27, Theorem 4.3].

Theorem 1.1. Let I be of type (1.3) with F and ψ even. Also, suppose that I is
bounded from below, satisfies the (PS) condition and I(0) = 0. If

cm := inf
A∈Γm

sup
v∈A

I(v) < 0,

then the functional I has at least m distinct pairs of nontrivial critical points.

2. The differential problem (1.1)

Using the ideas from [4], we introduce a variational formulation for problem
(1.1). With this aim let C := C[0, T ] be endowed with the usual supremum norm

‖ · ‖∞ and W 1,∞ := W 1,∞(0, T ). For each v ∈ C we set v := 1
T

∫ T

0
v(t)dt and we

write v(t) = v+ ṽ(t), where ṽ = 0. If v ∈ W 1,∞, then ṽ vanishes at some t0 ∈ (0, T )
and so

|ṽ(t)| = |ṽ(t)− ṽ(t0)| ≤
∫ T

0

|v′(s)|ds ≤ T‖v′‖∞.

Next, denoting

K := {v ∈ W 1,∞ : ‖v′‖∞ ≤ 1, v(0) = v(T )},
it is clear that

(2.1) ‖ṽ‖∞ ≤ T ∀ v ∈ K.

Also, it is not difficult to show that (see [4, Lemma 4])

(2.2) |v(t)|p ≥ |v|p − pT |v|p−1 ∀ v ∈ K, ∀ t ∈ [0, T ] and p ≥ 1.

From [6] we know that the even functional Ψ : C → (−∞,+∞],

Ψ(v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ T

0

[1−
√
1− v′2] if v ∈ K,

+∞ otherwise,

is proper, convex and lower semicontinuous on C and it is easy to see that

(2.3) Ψ(v) ≤
∫ T

0

|v′|2 ∀ v ∈ K.

Next, let Gλ : C → R be defined by

Gλ(u) = λ

∫ T

0

[
|u|q+2

q + 2
− u2

2

]
.
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Notice that Gλ is even, of class C1 on C and its derivative is given by

〈G′
λ(u), v〉 = λ

∫ T

0

(|u|q − 1)uv, u, v ∈ C.

Then the energy functional Iλ : C → (−∞,+∞] associated to problem (1.1) is
given by

Iλ = Ψ+ Gλ

and it has the structure required by Szulkin’s critical point theory.
Recall, by a solution of (1.1) we mean a function u ∈ C1[0, T ], with ‖u′‖∞ < 1

and φ(u′) differentiable, which satisfies (1.1).
From Proposition 2 in [4], one has the following:

Proposition 2.1. If u ∈ K is a critical point of Iλ, then u is a solution of problem
(1.1).

Lemma 2.1. Iλ is bounded from below and satisfies the (PS) condition.

Proof. Let u ∈ K = D(Ψ). From (2.1) we have∫ T

0

u2

2
=

∫ T

0

(u+ ũ)2

2
≤ T 3

2
+

T

2
|u|2.

Also, on account of (2.2) we obtain

Gλ(u) ≥
λT

q + 2
|u|q+2 − λT 2|u|q+1 − λ

∫ T

0

u2

2
.

It follows

(2.4) Iλ(u) ≥ Gλ(u) ≥
λT

q + 2
|u|q+2 − λT 2|u|q+1 − λT

2
|u|2 − λT 3

2

which clearly shows that Iλ is bounded from below. To see that Iλ satisfies the
(PS) condition, let {un} ⊂ K = D(Ψ) be a (PS)-sequence. We write (2.4) with
un instead of u and, from the fact that {Iλ(un)} is bounded, we get that {un} is
bounded. Then, Lemma 3 ii) in [4] ensures that {un} has a convergent subsequence
in C. �

Theorem 2.1. If λ > 4π2m3/T 2 for some m ∈ N, m ≥ 2, then problem (1.1) has
at least m− 1 distinct pairs of nonconstant solutions.

Proof. Using that u = ±1 is the only pair of nontrivial constant solutions for (1.1),
it suffices to prove that (1.1) has at least m distinct pairs of nontrivial solutions.
From Theorem 1.1, Proposition 2.1 and Lemma 2.1 this can be reduced to showing
that there is some Am ∈ Γm ⊂ 2C such that

(2.5) sup
v∈Am

Iλ(v) < 0.

With this aim, we consider the finite dimensional space

Xm := span

{
sin

πx

T
, sin

2πx

T
, . . . , sin

mπx

T

}
equipped with the norm∥∥∥α1 sin

πx

T
+ · · ·+ αm sin

mπx

T

∥∥∥2
Xm

= α2
1 + · · ·+ α2

m.
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Since the norms ‖ · ‖Xm
and ‖ · ‖Lq+2 are equivalent on Xm, there exists a positive

constant c(m) such that

(2.6) ‖v‖Lq+2 ≤ c(m)‖v‖Xm
.

Next, as in e.g. [24], [28], we introduce the subset Am of C by

Am =

{
m∑

k=1

αk sin
kπx

T
: α2

1 + · · ·+ α2
m = ρ2

}
(⊂ Xm),

where, since λ > 4π2m3/T 2, the positive number ρ can be chosen ≤ 2/
√
λ and such

that

m3π2

T
− λT

4
+

λ(c(m))q+2

q + 2
ρq < 0.

It is easy to see that the odd mapping H : Am → Sm−1 (m − 1 dimension unit
sphere in the Euclidean space R

m) defined by

H

(
m∑

k=1

αk sin
kπx

T

)
=

(
α1

ρ
, . . . ,

αm

ρ

)

is a homeomorphism between Am and Sm−1. According to [26, Corrolary 5.5],
γ(Am) = m and so, Am ∈ Γm.

Let v ∈ Am. Clearly, v(0) = v(T ) and we have

|v′| ≤
m∑

k=1

∣∣∣∣αk
kπ

T
cos

kπx

T

∣∣∣∣ ≤ mπ

T

m∑
k=1

|αk|

≤ m3/2π

T

(
m∑

k=1

α2
k

)1/2

=
m3/2π

T
ρ.(2.7)

Therefore, as T > 2πm
√
m/λ ≥ πm3/2ρ, one has ‖v′‖∞ < 1, meaning that v ∈ K.

On the other hand, we compute

∫ T

0

v2 =

∫ T

0

(
m∑

k=1

αk sin
kπx

T

)2

=
m∑

k=1

α2
k

∫ T

0

sin2
kπx

T

=
1

2

m∑
k=1

α2
k

∫ T

0

(
1− cos

2kπx

T

)
=

T

2
ρ2.(2.8)

Then, using (2.3), (2.6) - (2.8), we estimate Iλ as follows:

Iλ(v) = Ψ(v) + λ

∫ T

0

|v|q+2

q + 2
− λ

∫ T

0

v2

2
≤

∫ T

0

|v′|2 + λ(c(m)ρ)q+2

q + 2
− λT

4
ρ2

≤ ρ2
[
m3π2

T
− λT

4
+

λ(c(m))q+2ρq

q + 2

]
(< 0− from the choice of ρ),

which shows that (2.5) holds true. �
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3. The difference problem (1.2)

Analogously to the previous section, we first give the variational formulation for
problem (1.2). Let HT be the space of all T -periodic Z-sequences in R, i.e., of
mappings u : Z → R such that u(n) = u(n+T ) for all n ∈ Z. On HT we shall refer
to the following two (equivalent) norms:

‖u‖ =

⎛
⎝ T∑

j=1

|u(j)|2
⎞
⎠

1/2

and ‖u‖q+2 =

⎛
⎝ T∑

j=1

|u(j)|q+2

⎞
⎠

1
q+2

.

Also, for each u ∈ HT we set

u :=
1

T

T∑
j=1

u(j), ũ := u− u.

Let the closed convex subset K of HT be defined by

K := {u ∈ HT : |Δu|∞ ≤ 1},
where |Δu|∞ := maxj=1,...,T |Δu(j)|. We introduce the (even) functions

Ψ(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T∑
j=1

Φ[Δu(j)] if u ∈ K,

+∞ otherwise,

where Φ(y) = 1−
√
1− y2 (y ∈ [−1, 1]), respectively

Gλ(u) = λ

T∑
j=1

[
|u(j)|q+2

q + 2
− u(j)2

2

]
.

Then the functional Iλ : HT → (−∞,+∞] associated to problem (1.2) will be given
by

Iλ = Ψ+Gλ

and it is not difficult to see that it has the structure required by Szulkin’s critical
point theory, the derivative of Gλ being given by

〈G′
λ(u), v〉 = λ

T∑
j=1

(|u(j)|q − 1)u(j)v(j), (u, v ∈ HT ).

A solution of problem (1.2) is an element u ∈ HT such that |Δu(n)| < 1, for all
n ∈ Z, which satisfies the equation in (1.2).

Proposition 3.1. Any critical point of Iλ is a solution of problem (1.2).

Proof. For any e ∈ HT , on account of Lemmas 5 and 6 in [19], problem

(3.1) Δ [φ(Δu(n− 1))] = u+ e(n), u(n) = u(n+ T ) (n ∈ Z)

has a unique solution ue, which is also a solution of the variational inequality

(3.2)
T∑

j=1

{Φ[Δv(j)]− Φ[Δu(j)] + u(v − u) + e(j)(v(j)− u(j))} ≥ 0 ∀ v ∈ K.
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We show that ue is actually the unique solution of (3.2). With this aim, let J :
K → R be defined by

J(u) =

T∑
j=1

{
Φ[Δu(j)] +

u2

2
+ e(j)u(j)

}
.

If u is a solution of (3.2), then the inequality
v2

2
− u2

2
≥ u(v − u) plugged in (3.2)

implies that

T∑
j=1

{
Φ[Δv(j)]− Φ[Δu(j)] +

v2

2
+ e(j)v(j)− u2

2
− e(j)u(j)

}
≥ 0 ∀ v ∈ K,

which shows that J has a minimum at u. Then the uniqueness of ue as a solution
of (3.2) follows by the strict convexity of J .

Next, let w be a critical point of Iλ. Then, for all v ∈ K, one has

T∑
j=1

{Φ[Δv(j)]− Φ[Δw(j)] + λ (|w(j)|q − 1)w(j)(v(j)− w(j))} ≥ 0,

which can be written
T∑

j=1

{Φ[Δv(j)]− Φ[Δw(j)] + w(v(j)− w(j))}

+

T∑
j=1

[λ (|w(j)|q − 1)w(j)− w] (v(j)− w(j)) ≥ 0,

for all v ∈ K. Hence, w is a solution of the variational inequality

(3.3)

T∑
j=1

{Φ[Δv(j)]− Φ[Δw(j)] + w(v − w) + ew(j)(v(j)− w(j))} ≥ 0 ∀ v ∈ K,

with ew ∈ HT given by ew(n) = λ (|w(n)|q − 1)w(n)− w (n ∈ Z).
Therefore, by (3.3) and the uniqueness of the solution of (3.2), one can see that

actually w solves problem (1.2). �

Lemma 3.1. Iλ is bounded from below and satisfies the (PS) condition.

Proof. Let u ∈ K = D(Ψ). By the equivalence of the norms in HT , there exists a
positive constant C1 such that

‖u‖q+2
q+2 ≥ C1‖u‖q+2.

Then, we have

(3.4) Iλ(u) ≥ Gλ(u) ≥
λC1

q + 2
‖u‖q+2 − λ

2
‖u‖2

which clearly shows that Iλ is bounded from below. Now, if {uk} is a sequence in
K such that {Iλ(uk)} is bounded, then one has from (3.4) that {uk} is bounded in
HT and hence it contains a convergent subsequence.

Theorem 3.1. If λ > 8mT for some m ∈ N with 2 ≤ m ≤ T , then problem (1.2)
has at least m− 1 distinct pairs of nonconstant solutions.
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Proof. Similar to the proof of Theorem 2.1, since u = ±1 is the only pair of non-
trivial constant solutions for (1.2), it is sufficient to show that (1.2) has at least
m distinct pairs of nontrivial solutions. By virtue of Theorem 1.1, Proposition 3.1
and Lemma 3.1 we have to prove that there is some Am ∈ Γm ⊂ 2HT such that

(3.5) sup
v∈Am

Iλ(v) < 0.

For this, let w1, w2, . . . , wT be an orthonormal basis in the space HT endowed with
the Euclidean norm ‖ · ‖. We consider the set

Am :=

{
m∑

k=1

αkw
k : α2

1 + · · ·+ α2
m = ρ2

}

where, since λ > 8mT , the positive number ρ can be chosen ≤ 1/(2
√
m) and such

that

4mT − λ

2
+

λT
√
mq+2

q + 2
ρq < 0.

Since the mapping H : Am → Sm−1 defined by

H

(
m∑

k=1

αkw
k

)
=

(
α1

ρ
, . . . ,

αm

ρ

)

is an odd homeomorphism between Am and Sm−1, then we have γ(Am) = m.
Hence, Am ∈ Γm.

Now, let v =
∑m

k=1 αkw
k ∈ Am. Then, for each j = 1, . . . , T , we obtain

|Δv(j)| ≤
m∑

k=1

∣∣αkw
k(j + 1)

∣∣+ m∑
k=1

∣∣αkw
k(j)

∣∣ ≤ 2
m∑

k=1

|αk|

≤ 2
√
m

(
m∑

k=1

α2
k

)1/2

= 2ρ
√
m(3.6)

and since ρ ≤ 1/(2
√
m), one has |Δv|∞ ≤ 1, which shows that v ∈ K. On the other

hand, we have

T∑
j=1

v(j)2 = ‖v‖2 =

m∑
k=1

α2
k = ρ2(3.7)

and

T∑
j=1

|v(j)|q+2 ≤
T∑

j=1

(
m∑

k=1

|αk||wk(j)|
)q+2

≤ T

(
m∑

k=1

|αk|‖wk‖
)q+2

= T

(
m∑

k=1

|αk|
)q+2

≤ T
(
ρ
√
m
)q+2

.(3.8)
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Then, using (3.6) - (3.8), it follows

Iλ(v) = Ψ(v) +
λ

q + 2

T∑
j=1

|v(j)|q+2 − λ

2

T∑
j=1

v(j)2

≤
T∑

j=1

|Δv(j)|2 + λT (ρ
√
m)

q+2

q + 2
− λρ2

2

≤ ρ2

[
4mT − λ

2
+

λT
√
mq+2

q + 2
ρq

]
(< 0− from the choice of ρ).

Therefore, (3.5) holds true and the proof is complete. �
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