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RIESZ BASES OF EXPONENTIALS

ON UNBOUNDED MULTI-TILES

CARLOS CABRELLI AND DIANA CARBAJAL

(Communicated by Alexander Iosevich)

Abstract. We prove the existence of Riesz bases of exponentials of L2(Ω),
provided that Ω ⊂ Rd is a measurable set of finite and positive measure, not
necessarily bounded, that satisfies a multi-tiling condition and an arithmetic
property that we call admissibility. This property is satisfied for any bounded
domain, so our results extend the known case of bounded multi-tiles. We
also extend known results for submulti-tiles and frames of exponentials to the
unbounded case.

1. Introduction

The main goal of this paper is to study the existence of Riesz basis of exponen-
tials in L2(Ω) for domains Ω ⊂ Rd of finite and positive measure, not necessarily
bounded.

The existence of bases of exponentials is a very well-studied problem. For or-
thonormal bases, the question of existence is related to the famous Fuglede’s conjec-
ture [9] (also known as the spectral set conjecture). It states that if Ω is a domain
of positive and finite measure, an orthogonal basis of exponentials

{
e2πiγ.ω : γ ∈ Γ

}
for L2(Ω) exists if and only if the set Ω tiles Rd by translations along some discrete
set Λ. This latter means that∑

λ∈Λ

χΩ(ω + λ) = 1, a.e. ω ∈ Rd.

Fuglede’s conjecture is false in dimensions greater than or equal to 3, and it is
open for d = 1, 2. (See [7,8,17,23].) However, it has been proved for a great number
of special cases. For example, it is always true for lattices [9] (see also [12]). That
is, if H is a full lattice in Rd, the system

{
e2πih.ω : h ∈ H

}
is an orthogonal basis

of L2(Ω) if and only if Ω tiles Rd with translations by Λ, the dual lattice of H. It
is also true for convex bodies [13].

On the other hand, it has also been proved that there are sets Ω that do not
possess an orthonormal basis of exponentials, as it is the case, for example, of the
unit ball of Rd when d > 1 and the case of non-symmetric convex bodies [18]. Since
orthogonality imposes a very severe restriction, it is natural to look at Riesz bases
instead.
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The system {e2πiγ.ω : γ ∈ Γ} is a Riesz basis of L2(Ω) if it is complete and
satisfies that

A
∑
γ∈Γ

| cγ |2 ≤
∥∥∑

γ∈Γ

cγe
2πiγ.ω

∥∥2 ≤ B
∑
γ∈Γ

| cγ |2 ∀ {cγ} ∈ �2(Γ),

for some positive constants A,B > 0.
The more general problem of the existence of Riesz bases of exponentials is of

a different nature and brings new challenges. Again the relevant question here is
which domains Ω admit a Riesz basis of exponentials, and which discrete sets Γ
give rise to Riesz basis of exponentials for some domain. There are few cases of
sets where it is possible to prove the existence of such bases. However, as far as we
know, there is no example of a set Ω of finite measure (even in the line) that do
not support a basis of this type.

One of the reasons that makes the problem significant and relevant is that the
existence of a Riesz basis of exponentials for a set Ω is equivalent to the existence
of a set of stable sampling and interpolation for the associated Paley-Wiener space
PWΩ (see, for example, [22, 25]).

Recently, G. Kozma and S. Nitzan made a significative advance for this problem.
They proved that any finite union of rectangles in Rd admits a Riesz basis of
exponentials [14, 15].

Morover, S. Grepstad and N. Lev [10], discovered that bounded measurable sets
Ω ⊂ Rd that satisfy a multi-tiling condition, support a Riesz basis of exponentials.
The proof uses the theory of quasi-crystals developed in [19, 20], and requires the
condition that the boundary of the domain Ω has Lebesgue measure zero. Later
on, Kolountzakis [16] found a much simpler proof and was able to remove the
zero measure boundary condition. More precisely, they proved that if a bounded
measurable set k-tiles Rd by translations on a lattice Λ (see Definition 2.3), then
there exist vectors a1, . . . , ak ∈ Rd such that E(H, a1, . . . , ak) is a Riesz basis of
L2(Ω). Here,

(1.1) E(H ; a1, . . . , ak) := {e2πi(aj+h).ω : h ∈ H, j = 1, . . . , k},

where H is the dual lattice of Λ. That is, bounded multi-tile sets with respect to a
lattice, always support a basis of exponentials with the set of frequencies being a
finite union of translations on the dual lattice.

This result was extended in [1] to locally compact abelian groups. They used
fiberization techniques from the theory of shift-invariant spaces [6]. They also
proved, in this general setting, a converse of this result. That is, if a set Ω ⊂ Rd is
such that there exist a lattice H and vectors a1, . . . , ak ∈ Rd with E(H, a1, . . . , ak)
a Riesz basis of L2(Ω), then Ω must multi-tile Rd at level k for Λ, the dual lattice
of H. This can be seen as an extension of Fuglede’s Theorem for lattices, for the
case of multi-tiles and Riesz bases.

A natural question raised by Kolountzakis in [16] was if this result was still
valid for unbounded multi-tile sets of finite measure. In [1] the authors answered
this question in the negative. They constructed a counterexample of an unbounded
multi-tile set of level 2 in the line, that does not possess a Riesz basis of exponentials
with the special structure (1.1).

In this paper, we prove that unbounded multi-tile sets of Rd of finite measure do
support a Riesz basis of exponentials if they satisfy an extra arithmetic condition
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that we call admissibility (see Definition 2.4 for a precise definition). Our main
result is:

Theorem 1.1. Let Ω ⊂ Rd be a measurable set such that 0 < |Ω| < +∞ and let
Λ ⊂ Rd be a full lattice. If

(i) Ω multi-tiles Rd at level k by translations on Λ,
(ii) Ω is admissible for Λ,

then there exists a1, . . . , ak ∈ Rd such that the set E(H ; a1, . . . , ak) is a Riesz basis
of L2(Ω).

In the last section we apply our results to obtain relationships between submulti-
tiles (see Definition 4.1) and frames of exponentials.

The paper is organized as follows: In Section 2 we set the notation and introduce
the definition of admissibility. We also review the results from the theory of shift-
invariant spaces that we will need later. Section 3 is devoted to the proofs of our
results on multi-tiles and the existence of Riesz bases of exponentials. Finally, in
Section 4 we explore the relation between submulti-tiles and frames of exponentials.

2. Preliminaries

Let Λ ⊂ Rd be a full lattice. This means that there is a d× d invertible matrix
M such that Λ = MZd. Recall that the fundamental domain with respect to
the lattice Λ is the set D = MTd, which is a set of representatives of the quotient
Rd/Λ.

Let H ⊂ Rd be the dual lattice of Λ. This is the set

H = {h ∈ Rd : 〈h, λ〉 ∈ Z for all λ ∈ Λ}.
It is easy to see that H = (M t)−1Zd.

From now on, when working with a lattice Λ, we will always denote by D its
fundamental domain and by H its dual lattice. For notational simplicity, we will
denote by eα the function eα(ω) = e2πiα·ω, α, ω ∈ Rd, and #A will be the cardinal
of the set A.

We will also need the following definition.

Definition 2.1. We will say that a system of exponentials is structured if it is
of the form E(H, a1, . . . , ak) as in (1.1) with H ⊂ Rd a lattice and a1, . . . , ak ∈ Rd.

2.1. Multi-tiles. Hereafter, given a set Ω ⊂ Rd and a lattice Λ ⊂ Rd, for every
ω ∈ D we will denote Λω(Ω) = Λω := {λ ∈ Λ : ω + λ ∈ Ω }.
Remark 2.2. Observe that if Ω ⊂ Rd is a measurable set of finite measure, then Λω

must be finite for almost every ω ∈ D. This is because∫
D

∑
λ∈Λ

χΩ(ω + λ) dω =

∫
Rd

χΩ(ω) dω = |Ω| < +∞.

Definition 2.3. Let k be a positive integer. We say that a measurable set Ω ⊂ Rd

multi-tiles Rd at level k by translations on a lattice Λ (or that Ω k-tiles Rd) if
for almost every ω ∈ D, ∑

λ∈Λ

χΩ(ω + λ) = k.

Notice that if Ω is a k-tile by translations on Λ, then #Λω = k for almost every
ω ∈ D.
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2.2. Admissible sets. In this subsection we introduce the concept of admissible
sets.

Definition 2.4. Let Ω ⊂ Rd be a finite measure set and let Λ be a full lattice in Rd.
We will say that Ω is admissible for Λ if there exist a vector v ∈ H and a number
n ∈ N, such that for almost every ω ∈ D, the numbers {〈v, λ〉 : λ ∈ Λω} are
distinct elements (mod n). We will also say in that case that Ω is (n, v)-admissible
for Λ, if we want to emphasize the dependance on n and v.

When d = 1 and Λ = Z, this is equivalent to saying that for almost every ω ∈ D,
the elements of Λω ⊂ Z are all distinct (mod n).

A graphical way to describe admissibility is the following: Let Ω be admissible
with respect to Λ for some n ∈ N and some vector v ∈ H. Assume that we pick
a different color for each of the elements of Zn, and we colored Rd painting the
set D + λ with the color assigned to the remainder (mod n) of 〈v, λ〉. Then the
admissibility says that for almost all ω ∈ D the elements of the form ω + λ, with
λ ∈ Λ, that belongs to Ω have different colors!

Remark 2.5. Every bounded set Ω ⊂ Rd is admissible. This is because, in this case,
the set

⋃
ω∈D Λω must be finite, so for any v ∈ H, one can just choose a number

n ∈ N large enough for which all the numbers of {〈v, λ〉 : λ ∈ Λω} are all distinct
(mod n).

The following example shows that there exist multi-tiles that are not admissible.

Example 2.6. Consider the partition of [0, 1) in intervals Ij :=
[
2j−2
2j , 2

j−1
2j

)
, j ≥ 1.

The set

Ω = [0, 1) ∪
∞⋃
j=1

(Ij + j)

is an unbounded subset of R that 2-tiles by translations on Z and which is not
admissible for Z (See Figure 1). In order to see that the admissibility fails, note
that if n is any fixed natural number and ω ∈ In, then Λω = {0, n}, which are
not distinct (mod n). This example is also interesting as this set does not admit a
structured Riesz basis of exponentials for any lattice; see [1] for more details.

0 1 2 3 4 5

...
I1 + 1 I2 + 2 I3 + 3 I4 + 4

Figure 1. The set Ω.

On the other hand, unbounded admissible multi-tiles do exist:

Example 2.7. If in the previous example one translate the intervals Ij only by
odd numbers, then

Ω = [0, 1) ∪
∞⋃
j=1

(Ij + 2j + 1)

is a 2-tile unbounded set of R by translations on Z that is admissible for Z taking
n = 2.
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2.3. Shift-invariant spaces. For the proof of our results we will need to recall
some facts from the theory of shift-invariant spaces. The reader is referred to [3]
and [6], where a more complete treatment of the general case of shift-invariant
spaces in locally compact abelian groups can be found.

Definition 2.8. We say that a closed subspace V ⊂ L2(Rd) is H-invariant if

f ∈ V, then τhf ∈ V ∀h ∈ H,

where τhf(x) = f(x− h).

Paley-Wiener spaces are a family of shift-invariant spaces in which we are
especially interested. These spaces are defined by

PWΩ = { f ∈ L2(Rd) : f̂ ∈ L2(Ω) },

where Ω ⊂ Rd is a measurable set of finite measure. It is easy to see that, in fact,
they are invariant by any translation.

An essential tool in the development of shift-invariant theory is the technique
known as fiberization that we will introduce now.

Proposition 2.9. The map T : L2(Rd) → L2(D, �2(Λ)) defined by

T f(ω) = {f̂(ω + λ)}λ∈Λ

is an isometric isomorphism.

The evaluation of elements of L2(Rd) could not make sense a priori, however, T
is a well-defined mapping by virtue of the next remark.

Remark 2.10. If f̂ and ĝ are equal almost everywhere, then for almost every ω ∈ D,

{f̂(ω + λ)}λ∈Λ = {ĝ(ω + λ)}λ∈Λ.

In [11], Helson proved the existence of measurable range functions of an H-
invariant space V ⊂ L2(Rd). A range function is a mapping

JV : D → { closed subspaces of �2(Λ) }
ω �→ JV (ω),

which has the property that f ∈ V if and only if for almost every ω ∈ D,

T f(ω) ∈ JV (ω).

Furthermore, if V = span{ τhf : h ∈ H, f ∈ A} for some countable set A ⊂
L2(Rd), then

JV (ω) = span{ T f(ω) : f ∈ A}.
We say JV is measurable in the following sense: for every v, w ∈ �2(Λ), the scalar

function ω �→ 〈PJV (ω)v, w〉 is measurable, where PJV (ω) is the orthogonal projection
onto JV (ω). Moreover, a measurable range function of V is essentially unique, i.e.,
if V has two measurable range functions JV and J ′

V , then JV = J ′
V for almost every

ω ∈ D.
Another remarkable result regarding range functions is the characterization of

frames and Riesz bases of a shift-invariant space V in terms of the properties of
fibers.
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Theorem 2.11. Let A ⊂ L2(Rd) be a countable set. Then,

(i) the system { τhf : h ∈ H, f ∈ A} is a frame of V with constants A,B > 0
if and only if { T f(ω) : f ∈ A} ⊂ �2(Λ) is a frame of JV (ω) with constants
A,B > 0 for almost every ω ∈ D,

(ii) the system { τhf : h ∈ H, f ∈ A} is a Riesz basis of V with constants
A,B > 0 if and only if { T f(ω) : f ∈ A} ⊂ �2(Λ) is a Riesz basis of JV (ω)
with constants A,B > 0 for almost every ω ∈ D.

In particular, whenA ⊂ L2(Rd) is a finite set, this allows us to translate problems
in infinite dimensional H-invariant spaces, into problems of finite dimension that
can be treated with linear algebra.

When working with the shift-invariant space V = PWΩ, we denote its range
function as JΩ. Considering Remark 2.2, we are able to characterize JΩ as follows.

Proposition 2.12. Let Ω ⊂ Rd be a measurable set of finite measure. Then for
almost every ω ∈ D we have

JΩ(ω)  �2(Λω).

Proof. Let us fix ω ∈ D \ E where E ⊂ D is the zero measure set of exceptions
where Λω is not finite and define Sω := { a ∈ �2(Λ) : Supp(a) ⊆ Λω }, which is
isomorphic to �2(Λω). Let Cb(Ω) be the space of bounded continuous functions
defined on Ω; we have that Cb(Ω) ⊂ L2(Ω).

Let ã ∈ Sω; then there is a sequence a ∈ �2(Λω) such that

ãλ =

{
aλ if λ ∈ Λω,

0 otherwise.

By Tietze’s Extension Theorem, there exists fa ∈ Cb(Ω) such that fa(ω + λ) =

aλ. If we define f̃a as fa in Ω and zero in Rd \ Ω, then (f̃a)̌ ∈ PWΩ, thus

T (f̃a)̌ (ω) = ã ∈ JΩ(ω). This proves that Sω ⊆ JΩ(ω). It is easy to prove the
other inclusion. We conclude that JΩ(ω) = Sω. �

As a consequence, we see that Ω is a k-tile if and only if JΩ(ω) are k dimensional
for almost every ω ∈ D.

All these previous results lead to the following theorem whose proof can be found
in [1].

Theorem 2.13. Let Ω be a k-tile measurable subset of Rd. Given φ1, . . . , φk ∈
PWΩ we define

Tω =

⎛⎜⎝φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
...

. . .
...

φ̂1(ω + λk) . . . φ̂k(ω + λk)

⎞⎟⎠ ,

where the λj = λj(ω) for j = 1, . . . , k are the k values of Λ that belong to Λω.
Then, the subsequent statements are equivalent:

(i) The set ΦH = { τhφj : h ∈ H, j = 1, . . . , k } is a Riesz basis for PWΩ.
(ii) There exist A,B > 0 such that for almost every ω ∈ D,

(2.1) A||x||2 ≤ ‖Tω x‖2 ≤ B||x||2,

for every x ∈ Ck.
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Moreover, in this case the constants of the Riesz basis are

A = inf
ω∈D

‖T−1
ω ‖−1 and B = sup

ω∈D
‖Tω‖.

We will now show the connection between this theorem and the problem of the
existence of Riesz bases of exponentials.

Let Ω ⊂ Rd be a measurable k-tile by translations on a lattice Λ. We want to
find a1, . . . , ak ∈ Rd such that E(H ; a1, . . . , ak) = {eaj+h : h ∈ H, j = 1, . . . , k}
is a Riesz basis of L2(Ω).

Define φ1, . . . , φk by their Fourier transform as follows:

(2.2) φ̂j := eaj
χΩ, j = 1, . . . , k.

Hence, we are looking for a1, . . . , ak ∈ Rd such that {φ̂jeh : h ∈ H, j = 1, . . . , k}
is a Riesz basis of L2(Ω), which is equivalent to {τhφj : h ∈ H, j = 1, . . . , k} being
a Riesz basis for PWΩ.

Theorem 2.13 states that this will happen if and only if the matrices
(2.3)

Tω =

⎛⎜⎝φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
...

. . .
...

φ̂1(ω + λk) . . . φ̂k(ω + λk)

⎞⎟⎠ =

⎛⎜⎝ea1
(ω + λ1) . . . eak

(ω + λ1)
...

. . .
...

ea1
(ω + λk) . . . eak

(ω + λk)

⎞⎟⎠
are uniformly bounded for almost every ω ∈ D. Note that, in this case, the columns
of Tω form a Riesz basis of Ck for almost every ω ∈ D with uniform bounds.

To clarify the relation between (i) and (ii) in Theorem 2.13 we sketch the proof
from [1] adapted to our setting.

The collection {eaj+h : h ∈ H, j = 1, . . . , k} is a Riesz sequence in L2(Ω)
if there exist positive constants A and B such that for any sequence of complex
numbers {cj,h} with finitely many non-zero terms,

A
k∑

j=1

∑
h∈H

|cj,h|2 ≤ ‖P‖2L2(Ω) ≤ B
k∑

j=1

∑
h∈H

|cj,h|2,

where P is the exponential polynomial

P (ω) =

k∑
j=1

∑
h∈H

cj,h eaj+h(ω).

We see that

‖P‖2L2(Ω) =

∫
Rd

∣∣∣∣ k∑
j=1

∑
h∈H

cj,h eaj+h(ω)

∣∣∣∣2χΩ(ω) dω

=

∫
Rd

∣∣∣∣ k∑
j=1

mj(ω) eaj
(ω)

∣∣∣∣2χΩ(ω) dω,

where

mj(ω) :=
∑
h∈H

cj,h eh(ω), j = 1, . . . , k.
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By a Λ-periodization argument, this is equal to∑
λ∈Λ

∫
D

∣∣∣∣ k∑
j=1

mj(ω)eaj
(ω + λ)

∣∣∣∣2χΩ(ω + λ) dω.

Since Ω k-tiles Rd by translations on Λ, we have that for almost every ω ∈ D,
Λω = {λ1(ω), . . . , λk(ω)}. Therefore we get

(2.4) ‖P‖2L2(Ω) =

∫
D

k∑
l=1

∣∣∣∣ k∑
j=1

mj(ω)eaj
(ω + λl)

∣∣∣∣2 dω =

∫
D

‖Tωm(ω)‖2
Ck dω,

where m(ω) = (m1(ω), . . . ,mk(ω)) and Tω is the matrix defined before.
On the other hand, using that

{
1√
|D|

eh : h ∈ H
}
is an orthonormal basis of

L2(D), we have

(2.5)

∫
D

‖m(ω)‖2
Ck dω =

k∑
j=1

∫
D

|mj(ω)|2 dω = |D|
k∑

j=1

∑
h∈H

|cj,h|2.

Combining (2.4) and (2.5) and using standard arguments of measure theory, one
may check that E(H ; a1, . . . , ak) is a Riesz sequence of L2(Ω) if and only if there
exist A,B > 0 such that for almost every ω ∈ D, the inequalities in (2.1) hold for
every x ∈ Ck. Actually, inequality (2.1) implies the completeness in L2(Ω) of the
system {eaj+h : h ∈ H, j = 1, . . . , k} (see [1]).

3. Multi-tiles and Riesz bases

The proof of Theorem 1.1 is based on the techniques used in [1]. Without
the assumption that Ω is a bounded domain, we need admissibility as an extra
condition.

Proof of Theorem 1.1. As we discussed before, by Theorem 2.13, it suffices to find
vectors a1, . . . , ak ∈ Rd for which there exist A,B > 0 such that for almost every
ω ∈ D, the inequalities in (2.1) hold for every x ∈ Ck, where Tω are the matrices
(2.3).

Let us note that for every ω ∈ D, the matrix Tω can be decomposed as

⎛⎜⎝ea1
(λ1) . . . eak

(λ1)
...

. . .
...

ea1
(λk) . . . eak

(λk)

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎝
ea1

(ω) 0 . . . 0 0
0 ea2

(ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . eak−1
(ω) 0

0 0 . . . 0 eak
(ω)

⎞⎟⎟⎟⎟⎟⎠=Eω Uω ,

where Uω is a unitary matrix. Then, in order to see the inequalities in (2.1), it is
enough to prove that for almost every ω ∈ D,

(3.1) A||x||2 ≤ ‖Eω x‖2 ≤ B||x||2,
for every x ∈ Ck.

Since Ω is admissible for Λ, there exist v ∈ H and a number n ∈ N such that for
almost every ω ∈ D, the elements in {〈v, λ〉 : λ ∈ Λω} are distinct (mod n).

Set Fn =
{
e2πirs/n

}
0≤r,s≤n−1

to be the Fourier matrix of order n. Any k × k

submatrix of Fn, formed by choosing k consecutive columns and any k rows, is an
invertible matrix since it is a Vandermonde matrix.



RIESZ BASES OF EXPONENTIALS ON UNBOUNDED MULTI-TILES 1999

Now, we define aj :=
j−1
n v, j = 1, . . . , k. We obtain that for almost every ω ∈ D,

Eω =
{
e2πi(j−1)〈v,λl〉/n

}
1≤l,j≤k

is one of those submatrices of Fn except by a permutation of its rows, and hence
invertible.

Moreover, there are finitely many different matrices Eω because there are finitely
many k×k submatrices of Fn. Thus, there exist A,B > 0 such that the inequalities
in (3.1) hold for every x ∈ Ck and for almost every ω ∈ D. �

Remark 3.1. The vectors a1, . . . , ak defined in the proof of Theorem 1.1, depend
only on the vector v ∈ H and n ∈ N from the admissibility condition. Hence, the
same structured system of exponentials is a Riesz basis for any k-tile Ω which is
(n, v)-admissible for Λ .

Remark 3.2. If n is a prime number, any selection of k columns and k rows from Fn

forms an invertible matrix (see [24] and the references therein). Then, in the proof
of Theorem 1.1, if n is a prime number we could also define aj :=

sj
n v, j = 1, . . . , k

where s1, . . . , sk are distinct integers (mod n).
In a more general setting, if n is a power of a prime number, any submatrix of

Fn, formed by any k rows and k columns satisfying that their index set {s1, . . . , sk}
is uniformly distributed over the divisors of n, is invertible (see [2] for a definition
of uniformly distributed). Thus, in the proof of Theorem 1.1, if n = pl with p
prime and l a positive integer, we might as well define aj :=

sj
n v, j = 1, . . . , k where

{s1, . . . , sk} is uniformly distributed over the divisors of n.

It is important to remark that there exist multi-tile sets that admit a structured
Riesz basis of exponentials without being admissible. In the next example we will
construct a multi-tile set which is not admissible for Z but admits a Riesz basis like
in (1.1).

Example 3.3. Let {1, a1, a2} be linearly independent numbers over Q. Take the
partition of [0, 1) as in Example 2.6 and consider the following 2-tile set of R by
translations on Z:

(3.2) Ω = [0, 1) ∪
∞⋃
j=1

(Ij + nj),

where the infinite sequence {nj}j∈N ⊂ N will be adequately chosen to fit our purpose
(see Figure 2).

0 1 n1 n2

...
I1 + n1 I2 + n2

n1 + 1 n2 + 1
... ...

Figure 2. The set Ω.
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Consider the functions φ1 and φ2 as defined in (2.2). Recall that in Theorem
1.1 we saw that the integer translations of φ1 and φ2 form a Riesz basis for PWΩ

if and only if the matrices

Eω =

(
ea1

(λ1) ea2
(λ1)

ea1
(λ2) ea2

(λ2)

)
=

(
1 1

ea1
(λ2) ea2

(λ2)

)
satisfy that there exist A,B > 0 such that (3.1) hold.

Let β1, β2 ∈ [0, 1) be two distinct numbers. The matrix,

R :=

(
1 1

e2πiβ1 e2πiβ2

)
is invertible, and satisfies that,

γmin ||x||2 ≤ ‖Rx‖2 ≤ γmax ||x||2, x ∈ R2,

where γmin and γmax are the minimum and maximum eigenvalues of RR∗ respec-
tively.

For every j ∈ N, we have that {1, a1j, a2j} are also linearly independent over Q.
By Kronecker’s Approximation Theorem there exists mj ∈ Z for which∥∥ (e2πia1jmj , e2πia2jmj )− (e2πiβ1 , e2πiβ2)

∥∥
2
< ε.

Hence, for every j ∈ N, take nj = jmj as the sequence needed in (3.2).
Therefore, for almost every ω ∈ [0, 1), the matrices EωE

∗
ω and RR∗ are close to

each other. Thus, the eigenvalues of these matrices must be close too. Then, for a
small enough ε we get uniform bounds for (3.1) and consequently E(Z ; a1, a2) is a
Riesz basis of L2(Ω).

However, this set is not admissible for Z because for every j ∈ N, if ω ∈ Ij , then
Λω = {0, jmj} which are not distinct (mod j).

Remark 3.4. A similar argument can be done to extend the previous example to a
k-tile. If {1, a1, . . . , ak} are linearly independent numbers over Q, take the multi-tile
at level k by translations on Z set

Ω = [0, k − 1) ∪
∞⋃
j=1

(Ij + nj),

and choose {nj}j∈N ⊂ N≥k in order to adequately approximate Eω to an invertible
matrix for almost every ω ∈ [0, 1).

Hence, a natural question to ask is which sets Ω support a structured Riesz basis
of exponentials. For the bounded case, it was proved in [1] that a set Ω ⊂ Rd which
admits a Riesz basis of exponentials E(H ; a1, . . . , ak), for some a1, . . . , ak ∈ Rd,
must be a k-tile of Rd by translations on Λ. This result holds true in the case of
finite measure sets.

Theorem 3.5. Let H ⊂ Rd be a full lattice and Λ ⊂ Rd its dual lattice. Given a
measurable set of finite measure Ω ⊂ Rd, if L2(Ω) admits a Riesz basis of the form
E(H ; a1, . . . , ak) for some a1, . . . , ak ∈ Rd, then Ω k-tiles Rd by translations on Λ.

Proof. Defining the functions φj , j = 1, . . . , k as in (2.2), we get that {τhφj : h ∈
H , j = 1, . . . , k} is a Riesz basis for PWΩ. This implies that for almost every
ω ∈ D, {T φ1(ω), . . . , T φk(ω)} is a Riesz basis of JΩ(ω), and hence dimJΩ(ω) = k
for almost every ω ∈ D. By Proposition 2.12, we conclude that Ω is a k-tile by
translations on Λ. �
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The results obtained so far can be summarized in Figure 3. Note that all the
inclusions in the picture are proper.

k-tiles

with structured
Riesz basis

k-tiles

Admissible
k-tiles

Bounded
k-tiles

Figure 3. k-tile sets of Rd.

4. Submulti-tiles and frames

In this section we turn our attention to frames of exponentials. Recall that the
system {e2πiγ.ω : γ ∈ Γ} is a frame of L2(Ω) if it satisfies that

A‖f‖2 ≤
∑
γ∈Γ

|〈f, e2πiγ.ω〉|2 ≤ B‖f‖2, ∀ f ∈ L2(Ω)

for some positive constants A,B > 0.
It is not difficult to see that any bounded measurable set Ω ⊂ Rd supports a

frame of exponentials. (This is an easy consequence of these two facts: i) for any
cube Q in Rd there exists an orthonormal basis of exponentials for L2(Q). ii) If
Ω ⊆ Q, the restriction of an orthonormal basis of exponentials of L2(Q) to L2(Ω)
is a frame for the latter.)

Recently S. Nitzan, A. Olevskii and A. Ulanovskii [21] extended the result for any
unbounded measurable set of finite measure. We want to note that the proof in [21]
used the recently proved Kadison-Singer conjecture and it is not constructive. The
goal of this section is to explore the relationship between unbounded submulti-tiles
and frames and construct concrete examples of frames of exponentials on unbounded
sets.

Definition 4.1. Let k be a positive integer. We say that a measurable set Ω ⊂ Rd

of finite measure, submulti-tiles Rd at level k by translations on a lattice Λ (or
that Ω, k-subtiles Rd) if for almost every ω ∈ D,∑

λ∈Λ

χΩ(x+ λ) ≤ k for almost all x ∈ D.

When Ω is a k-subtile that is admissible, we can no longer claim that L2(Ω) has
a structured Riesz basis of exponentials, but instead we can see that it supports a
structured frame of exponentials. Frames of exponentials are important since they
give sets of sampling for the corresponding Paley-Wiener spaces.

The relation between k-subtiles and frames of exponentials was first studied in
[5] for the case when Ω is a 1-subtile of finite measure in the context of locally
compact abelian groups. Later on, it was proved in [4] that if Ω is a bounded
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k-subtile, then it admits a structured frame of exponentials. In this section we
adapt this last result to the case where Ω is a finite measure set (not necessarily
bounded) with the extra hypothesis of the admissibility. More precisely, we prove
the following theorem.

Theorem 4.2. Let Ω ⊂ Rd be a measurable set such that 0 < |Ω| < +∞ and let
Λ ⊂ Rd be a full lattice. If

(i) Ω submulti-tiles Rd at level k by translations on Λ,
(ii) Ω is admissible for Λ,

then there exist a1, . . . , ak ∈ Rd such that the set E(H ; a1, . . . , ak) is a frame of
L2(Ω).

The strategy of the proof in [4] consists of giving a bounded k-subtile Ω, enlarging
it to obtain a k-tile Δ, and then selecting a structured Riesz basis of L2(Δ) (that
always exists in the bounded case for k-tiles). This basis, when restricted to Ω is a
structured frame for L2(Ω).

In our case, since the k-subtile Ω is not necessarily bounded, we need to enlarge
it to an admissible k-tile to guarantee the existence of the Riesz basis. This requires
an adaptation of the proof in [4]. This is done in the next proposition:

Proposition 4.3. Let Ω be a measurable set of finite measure that k-subtiles Rd

and is admissible for a lattice Λ ⊂ Rd. Then there exists a measurable set Δ of
finite measure which is a k-tile of Rd and admissible for Λ such that Ω ⊂ Δ.

Proof. We start by giving a characterization of sets that k-subtile Rd and are ad-
missibles. Let Λ be a full lattice in Rd, let v be a non-zero vector in the dual lattice
H and let n be a natural number. Consider the sublattice of Λ defined by

Λ(0) := {λ ∈ Λ : 〈v, λ〉 ≡ 0 (mod n)},
and let Λ(r), r = 0, . . . , n − 1, be the different cosets of the quotient Λ/Λ(0). Let
k ≥ 1 be an integer and Ω ⊂ Rd a k-subtile that is (n, v)−admissible for Λ.

Define

R := {R ⊂ Λ : #R ≤ k and λ− λ′ /∈ Λ(0) if λ, λ′ ∈ R, λ �= λ′}.
The properties imposed on Ω imply that Λω ∈ R for almost every ω ∈ D.

Now, for R ∈ R set DR := {ω ∈ D : Λω = R}. (Note that if R �= R′, then
DR ∩DR′ = ∅ and that DR could be empty for some R ∈ R.)

We have DR +R ⊆ Ω and we obtain (up to measure zero) the decomposition:

(4.1) Ω =
⋃

R∈R
DR +R.

We will see now that the sets DR are measurables. Consider the functions

ψr(ω) =
∑

λ∈Λ(r)

χΩ(ω + λ), ω ∈ D, r = 0, . . . , n− 1,

and let [R] :=
{
r ∈ {0, . . . , n− 1} : r ≡ 〈v, λ〉 (mod n), for some λ ∈ R

}
.

Thus,

DR =
⋂

r∈[R]

ψ−1
r (1) ∩

⋂
r/∈[R]

ψ−1
r (0),

which is an intersection of measurable sets.
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Conversely, for each partition
{
DR : R ∈ R

}
of D, in measurable sets (we allow

here some of the partition elements to have measure zero), the set Ω defined by
(4.1), necessarily k-subtiles Rd and is (n, v)−admissible for Λ.

Now that we obtained the desired decomposition, the proposition follows defining

Δ =
⋃

R∈R
DR + (R ∪R′),

where for each R ∈ R we have chosen a set R′ ⊆ Λ complementary to R, in the
sense that [R] ∩ [R′] = ∅ and #

(
[R] ∪ [R′]

)
= k. �

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. By Proposition 4.3, there exists a measurable set of finite
measure Δ, such that k-tiles Rd and is admissible for Λ, which contains Ω. Then, by
Theorem 1.1 we know that there exist vectors a1, . . . , ak ∈ Rd such that
E(H ; a1, . . . , ak) is a Riesz basis of L2(Δ). Hence, E(H ; a1, . . . , ak) is a frame
of L2(Ω). �

As we saw in the previous section, Theorem 3.5 states that if Ω supports a Riesz
basis of exponentials E(H ; a1, . . . , ak), for some a1, . . . , ak ∈ Rd, then it must k-
tile Rd by translations on Λ. When E(H ; a1, . . . , ak) is a frame instead, a similar
result can be proved.

Theorem 4.4. Let H ⊂ Rd be a full lattice and let Λ ⊂ Rd be its dual lattice.
Given a measurable set of finite measure Ω ⊂ Rd, if L2(Ω) admits a frame of the
form E(H ; a1, . . . , ak) for some a1, . . . , ak ∈ Rd, then there exists � ≤ k, such that
Ω �-subtiles Rd by translations on Λ.

Proof. Proceeding analogously as in Theorem 3.5, we see that {τhφj : h ∈ H , j =
1, . . . , k} is a frame for PWΩ. Which implies that {T φ1(ω), . . . , T φk(ω)} is a frame
of JΩ(ω) for almost every ω ∈ D, and thus dim(JΩ(ω)) ≤ k for almost every ω ∈ D.
By Proposition 2.12, we get that #Λw ≤ k. Hence, if we take

� := sup ess
ω∈D

∑
λ∈Λ

χΩ(ω + λ),

Ω is an �-subtile of Rd by translations on Λ. �
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[17] Mihail N. Kolountzakis and Máté Matolcsi, Tiles with no spectra, Forum Math. 18 (2006),

no. 3, 519–528. MR2237932
[18] Mihail N. Kolountzakis,Non-symmetric convex domains have no basis of exponentials, Illinois

J. Math. 44 (2000), no. 3, 542–550. MR1772427
[19] Basarab Matei and Yves Meyer, Simple quasicrystals are sets of stable sampling, Complex

Var. Elliptic Equ. 55 (2010), no. 8-10, 947–964. MR2674875
[20] Basarab Matei and Yves Meyer, Quasicrystals are sets of stable sampling (English, with

English and French summaries), C. R. Math. Acad. Sci. Paris 346 (2008), no. 23-24, 1235–
1238. MR2473299

[21] Shahaf Nitzan, Alexander Olevskii, and Alexander Ulanovskii, Exponential frames on un-
bounded sets, Proc. Amer. Math. Soc. 144 (2016), no. 1, 109–118. MR3415581

[22] Kristian Seip, Interpolation and sampling in spaces of analytic functions, University Lecture
Series, vol. 33, American Mathematical Society, Providence, RI, 2004. MR2040080

[23] Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11

(2004), no. 2-3, 251–258. MR2067470
[24] Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12

(2005), no. 1, 121–127. MR2122735
[25] Robert M. Young, An introduction to nonharmonic Fourier series, 1st ed., Academic Press,

Inc., San Diego, CA, 2001. MR1836633
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