LOCAL HOMOLOGICAL PROPERTIES AND CYCLICITY OF HOMOGENEOUS ANR-COMPACTA

V. VALOV
(Communicated by Kevin Whyte)

Abstract

In accordance with the Bing-Borsuk conjecture, we show that if X is an n-dimensional homogeneous metric $A N R$-compactum and $x \in X$, then there is a local basis at x consisting of connected open sets U such that the homological properties of \bar{U} and $b d \bar{U}$ are similar to the properties of the closed ball $\mathbb{B}^{n} \subset \mathbb{R}^{n}$ and its boundary \mathbb{S}^{n-1}. We discuss also the following questions raised by Bing-Borsuk [Ann. of Math. (2) $\mathbf{8 1}$ (1965), 100-111], where X is a homogeneous $A N R$-compactum with $\operatorname{dim} X=n$: - Is it true that X is cyclic in dimension n ? - Is it true that no non-empty closed subset of X, acyclic in dimension $n-1$, separates X ? It is shown that both questions simultaneously have positive or negative answers, and a positive solution to each one of them implies a solution to another question of Bing-Borsuk (whether every finite-dimensional homogenous metric $A R$-compactum is a point).

1. Introduction

There are few open problems concerning homogeneous compacta; see [2]. The most important one is the well-known Bing-Borsuk conjecture stating that every n-dimensional homogeneous metric $A N R$-compactum X is an n-manifold. Another one is whether any such X has the following properties: (i) X is cyclic in dimension n; (ii) no closed non-empty subset of X, acyclic in dimension $n-1$, separates X. It is also unknown if there exists a non-trivial finite-dimensional metric homogeneous $A R$-compactum.

In this paper we address the above problems and investigate the homological structure of homogeneous metric $A N R$-compacta. In accordance with the BingBorsuk conjecture, we prove that any such compactum has local homological properties similar to the local structure of \mathbb{R}^{n}; see Theorem [1.1. It is also shown that the properties (i) and (ii) from the second of the above questions are equivalent, so each one of them implies that every finite-dimensional homogeneous metric $A R$ is a point.

Reduced Čech homology $H_{n}(X ; G)$ and cohomology groups $H^{n}(X ; G)$ with coefficients from G are considered everywhere below, where G is an abelian group. Suppose (K, A) is a pair of closed subsets of a space X with $A \subset K$. By $i_{A, K}^{n}$ we

[^0]The author was partially supported by NSERC Grant 261914-13.
denote the homomorphism from $H_{n}(A ; G)$ into $H_{n}(K ; G)$ generated by the inclusion $A \hookrightarrow K$. Following [2], we say that K is an n-homology membrane spanned on A for an element $\gamma \in H_{n}(A ; G)$ provided γ is homologous to zero in K, but not homologous to zero in any proper closed subset of K containing A. It is well known [2, property 5, p. 103] that for every compact metric space X and a closed set $A \subset X$ the existence of a non-trivial element $\gamma \in H_{n}(A ; G)$ with $i_{A, X}^{n}(\gamma)=0$ yields the existence of a closed set $K \subset X$ containing A such that K is an n-homology membrane for γ spanned on A. We also say that a space K is a homological (n, G)-bubble if $H_{n}(K ; G) \neq 0$, but $H_{n}(B ; G)=0$ for every closed proper subset $B \subset K$.

For any abelian group G, Alexandroff [1] introduced the dimension $d_{G} X$ of a space X as the maximum integer n such that there exist a closed set $F \subset X$ and a non-trivial element $\gamma \in H_{n-1}(F ; G)$ with γ being G-homologous to zero in X. According to [1, p. 207] we have the following inequalities for any metric finitedimensional compactum $X: d_{G} X \leq \operatorname{dim} X$ and $\operatorname{dim} X=d_{\mathbb{Q}_{1}} X=d_{\mathbb{S}^{1}} X$, where G is any abelian group, \mathbb{S}^{1} is the circle group, and \mathbb{Q}_{1} is the group of rational elements of \mathbb{S}^{1}.

Because the definition of $d_{G} X$ does not provide any information for the homology groups $H_{k-1}(F ; G)$ when $F \subset X$ is closed and $k<d_{G} X-1$, we consider the set $\mathcal{H}_{X, G}$ of all integers $k \geq 1$ such that there exist a closed set $F \subset X$ and a non-trivial element $\gamma \in H_{k-1}(F ; G)$ with $i_{F, X}^{k-1}(\gamma)=0$. Obviously, $d_{G} X=\max \mathcal{H}_{X, G}$.

Using the properties of the sets $\mathcal{H}_{X, G}$, we investigate in Section 2 the local homological properties of metric homogeneous $A N R$-compacta. The main result in that section is Theorem 1.1 below, which is a homological version of [11, Theorem 1.1].

Theorem 1.1. Let X be a finite-dimensional homogeneous metric $A N R$ with $\operatorname{dim} X \geq 2$. Then every point $x \in X$ has a basis $\mathcal{B}_{x}=\left\{U_{k}\right\}$ of open sets such that for any abelian group G and $n \geq 2$ with $n \in \mathcal{H}_{X, G}$ and $n+1 \notin \mathcal{H}_{X, G}$ almost all U_{k} satisfy the following conditions:
(1) $H_{n-1}\left(\operatorname{bd} \bar{U}_{k} ; G\right) \neq 0$ and \bar{U}_{k} is an $(n-1)$-homology membrane spanned on $\mathrm{bd} \bar{U}_{k}$ for any non-zero $\gamma \in H_{n-1}\left(\operatorname{bd} \bar{U}_{k} ; G\right)$;
(2) $H_{n-1}\left(\bar{U}_{k} ; G\right)=H_{n}\left(\bar{U}_{k} ; G\right)=0$ and $X \backslash \bar{U}_{k}$ is connected;
(3) $\operatorname{bd} \bar{U}_{k}$ is a homological $(n-1, G)$-bubble.

Corollary 1.2. Let X be as in Theorem [1.1. Then X has the following property for any abelian group G and $n \geq 2$ with $n \in \mathcal{H}_{X, G}$ and $n+1 \notin \mathcal{H}_{X, G}$: If a closed subset $K \subset X$ is an $(n-1)$-homology membrane spanned on B for some closed set $B \subset X$ and $\gamma \in H_{n-1}(B ; G)$, then $(K \backslash B) \cap \overline{X \backslash K}=\varnothing$.

In Section 3 we show that the following two statements are equivalent, where $\mathcal{H}(n)$ is the class of all homogeneous metric $A N R$-compacta X with $\operatorname{dim} X=n$:
(1) For all $n \geq 1$ and $X \in \mathcal{H}(n)$ there is a group G such that $H^{n}(X ; G) \neq 0$ (resp., $\left.H_{n}(X ; G) \neq 0\right)$.
(2) If $X \in \mathcal{H}(n)$ with $n \geq 1$ and $F \subset X$ is a closed separator of X with $\operatorname{dim} F=n-1$, then there exists a group G such that $H^{n-1}(F ; G) \neq 0$ (resp., $\left.H_{n-1}(F ; G) \neq 0\right)$.

Therefore, we have the following result (see Corollary 3.3):
Theorem 1.3. Suppose for all $n \geq 1$ and all $X \in \mathcal{H}(n)$ the following holds: For every closed separator F of X with $\operatorname{dim} F=n-1$ there exists a group G such that either $H^{n-1}(F ; G) \neq 0$ or $H_{n-1}(F ; G) \neq 0$. Then there is no homogeneous metric $A R$-compactum Y with $\operatorname{dim} Y<\infty$.

2. LOCAL homological properties of homogeneous $A N R$-compacta

We begin this section with the following analogue of Theorem 8.1 from [2].
Proposition 2.1. Let X be a locally compact and homogeneous separable metrizable $A N R$-space. Suppose there is a pair $F \subset K$ of compact proper subsets of X such that K is contractible in X and K is a homological membrane for some $\gamma \in H_{n-1}(F ; G)$. If $(K \backslash F) \cap \overline{X \backslash K} \neq \varnothing$, then there exists a proper compact subset $P \subset X$ contractible in X such that $H_{n}(P ; G) \neq 0$.

Proof. We follow the proof of [6, Lemma 1] (let us note that the proof of Proposition 2.1 can also be obtained following the arguments of [2, Theorem 8.1]). Let $a \in(K \backslash F) \cap \overline{X \backslash K}$. Then a is a boundary point for K. Because K is contractible in X, there is a homotopy $g: K \times[0,1] \rightarrow X$ such that $g(x, 0)=x$ and $g(x, 1)=c \in X$ for all $x \in K$. Then we can find an open set $U \subset X$ containing K and a homotopy $\bar{g}: \bar{U} \times[0,1] \rightarrow X$ extending g and connecting the identity on \bar{U} and the constant map $\bar{U} \rightarrow c$ (this can be done since X is an $A N R$). So, \bar{U} is also contractible in X. Moreover, we can assume that \bar{U} is compact. Fix a metric d on X generating its topology in the following way: consider X as a subspace of its one-point compactification αX and take d to be the restriction to X of some admissible metric on αX. Let $2 \epsilon=d(a, F)$ and take an open cover ω of U such that for any two ω-close maps $f_{1}, f_{2}: K \rightarrow U$ (i.e., for all $x \in K$ the points $f_{1}(x), f_{2}(x)$ are contained in some element of ω) there is an ϵ-homotopy $\Phi: K \times[0,1] \rightarrow U$ between f_{1} and f_{2} (i.e., each set $M_{\Phi}(x)=\{\Phi(x, t): t \in[0,1]\}, x \in K$, is of diameter $<\epsilon$). This can be done because U is an $A N R$. Now, we fix an open set $V \subset X$ containing K with $\bar{V} \subset U$ and let δ be the Lebesgue number of the open cover $\{\Gamma \cap \bar{V}: \Gamma \in \omega\}$ of \bar{V}. According to Effros' theorem [4], there is a positive number η such that if $x, y \in X$ are two points with $d(x, y)<\eta$, then $f(x)=y$ for some homeomorphism $h: X \rightarrow X$, which is $\min \{\delta, d(K, X \backslash V\}$-close to the identity on X (Effros' theorem can be applied because of the special choice of the metric d). Since a is a boundary point for K, we can choose a point $b \in V \backslash K$ with $d(a, b)<\eta$. Then, there exists a homeomorphism $h_{1}^{\prime}: X \rightarrow X$ such that $h_{1}^{\prime}(a)=b$ and $d\left(x, h_{1}^{\prime}(x)\right)<\min \left\{\delta, d(K, X \backslash V\}, x \in X\right.$. Let h_{1} be the restriction $h_{1}^{\prime} \mid K$. Obviously, $h_{1}: K \rightarrow h_{1}(K)$ is a homeomorphism with $h_{1}(K) \subset V$ and h_{1} is δ-close to the identity on K. Then, according to the choice of δ, there is homotopy $h: K \times[0,1] \rightarrow U$ such that $h(x, 0)=x, h(x, 1)=h_{1}(x)$, and $d(x, h(x, t))<\epsilon$ for all $x \in K$ and $t \in[0,1]$.

Let $K_{1}=K \cup h(F \times \mathbb{I}), K_{2}=h_{1}(K)$, and $K_{0}=K_{1} \cap K_{2}$, where $\mathbb{I}=[0,1]$. Since $2 \epsilon=d(a, F)$ and h is an ϵ-small homotopy, $b \in K_{2} \backslash K_{1}$. So, K_{0} is a proper subset of K_{2} containing $h_{1}(F)$. Hence, $D=h_{1}^{-1}\left(K_{0}\right)$ is a proper subset of K containing F, which implies $\gamma_{1}=i_{F, D}^{n-1}(\gamma) \neq 0$. Because h_{1} is a homeomorphism, $\left(\varphi_{1}\right)_{*}: H_{n-1}(D ; G) \rightarrow H_{n-1}\left(K_{0} ; G\right)$ is an isomorphism, where $\varphi_{1}=h_{1} \mid D$. Thus, $\hat{\gamma}=\left(\varphi_{1}\right)_{*}\left(\gamma_{1}\right) \neq 0$.

Claim 1. We have $i_{K_{0}, K_{1}}^{n-1}(\hat{\gamma})=0$ and $i_{K_{0}, K_{2}}^{n-1}(\hat{\gamma})=0$.
Let $\lambda=i_{F, h(F \times \mathbb{I})}^{n-1}(\gamma)$. Since $h \mid(F \times \mathbb{I})$ is a homotopy between the identity on F and the map $\varphi_{2}=h_{1} \mid F, \lambda=i_{h_{1}(F), h(F \times \mathbb{I})}^{n-1}\left(\left(\varphi_{2}\right)_{*}(\gamma)\right)$. We consider the following commutative diagram:

Obviously, $i_{F, K_{1}}^{n-1}(\gamma)=i_{h(F \times \mathbb{I}), K_{1}}^{n-1}(\lambda)=i_{K_{0}, K_{1}}^{n-1}(\hat{\gamma})$. On the other hand, $i_{F, K_{1}}^{n-1}(\gamma)=$ $i_{K, K_{1}}^{n-1}\left(i_{F, K}^{n-1}(\gamma)\right)=0$ because $i_{F, K}^{n-1}(\gamma)=0$. Hence, $i_{K_{0}, K_{1}}^{n-1}(\hat{\gamma})=0$.

For the second part of the claim, observe that $i_{D, K}^{n-1}\left(\gamma_{1}\right)=i_{F, K}^{n-1}(\gamma)=0$. Then, the equality $i_{K_{0}, K_{2}}^{n-1}(\hat{\gamma})=0$ follows from the diagram

$$
\begin{aligned}
& \gamma_{1} \in H_{n-1}(D ; G) \xrightarrow{i_{D, K}^{n-1}} H_{n-1}(K ; G) \ni 0 \\
& \begin{array}{c}
\left(\varphi_{1}\right)_{*} \downarrow \\
\downarrow \in H_{n-1}\left(K_{0} ; G\right) \xrightarrow{\substack{i_{K_{0}, K_{2}}^{n-1}}} \stackrel{\left(h_{1}\right)_{*} \downarrow}{ } H_{n-1}\left(K_{2} ; G\right) \ni 0
\end{array}
\end{aligned}
$$

We are in a position now to complete the proof of Proposition [2.1. Let $P=$ $K_{1} \cup K_{2}$. Since $h(K \times \mathbb{I}) \subset U, P \subset U$. Therefore, P is contractible in X (recall that \bar{U} is contractible in X). Finally, by Claim 1 and the Phragmen-Brouwer theorem (see [2]), there exists a non-trivial $\alpha \in H_{n}(P ; G)$.

For simplicity, we say that a closed set $F \subset X$ is strongly contractible in X if F is contractible in a closed set $A \subset X$ and A is contractible in X.

Corollary 2.2. Let X be a homogeneous compact metrizable ANR-space such that $n \in \mathcal{H}_{X, G}$ and $n+1 \notin \mathcal{H}_{X, G}$. Then for every closed set $F \subset X$ we have:
(1) $H_{n}(F ; G)=0$ provided F is contractible in X;
(2) F separates X provided $H_{n-1}(F ; G) \neq 0$ and F is strongly contractible in X;
(3) if K is a homological membrane for some non-trivial element of $H_{n-1}(F ; G)$ and K is contractible in X, then $(K \backslash F) \cap \overline{X \backslash K}=\varnothing$.

Proof. Since F is contractible in X, every $\gamma \in H_{n}(F ; G)$ is homologous to zero in X. So, the existence of a non-trivial element of $H_{n}(F ; G)$ would imply $n+1 \in \mathcal{H}_{X, G}$, a contradiction.

To prove the second item, suppose $H_{n-1}(F ; G) \neq 0$ and F is strongly contractible in X. So, there exists a closed set $A \subset X$ such that F is contractible in A and
A is contractible in X. Then, by [2, property 5, p. 103], we can find a closed set $K \subset A$ containing F which is a homological membrane for some non-trivial $\gamma \in H_{n-1}(F ; G)$. Because K (as a subset of A) is contractible in X, the assumption $(K \backslash F) \cap \overline{X \backslash K} \neq \varnothing$ would yield the existence of a proper closed set $P \subset X$ contractible in X with $H_{n}(P ; G) \neq 0$ (see Proposition [2.1]. Consequently, there would be a non-trivial $\alpha \in H_{n}(P ; G)$ homologous to zero in X. Hence, $n+1 \in \mathcal{H}_{X, G}$, a contradiction. Therefore, $(K \backslash F) \cap \overline{X \backslash K}=\varnothing$. This means that $X \backslash F=$ $(K \backslash F) \cup(X \backslash K)$ with both $K \backslash F$ and $X \backslash K$ being non-empty open disjoint subsets of X.

The above arguments provide also the proof of the third item.

Proof of Theorem 1.1. Suppose X satisfies the hypotheses of Theorem 1.1. By [11, Theorem 1.1], every $x \in X$ has a basis $\mathcal{B}_{x}=\left\{U_{k}\right\}_{k \geq 1}$ of open sets satisfying the following conditions: $\operatorname{bd} U_{k}=\operatorname{bd} \bar{U}_{k}$; the sets $U_{k}, \operatorname{bd} \bar{U}_{k}$, and $X \backslash \bar{U}_{k}$ are connected; $H^{\operatorname{dim} X-1}(A ; \mathbb{Z})=0$ for all proper closed sets $A \subset \operatorname{bd} \bar{U}_{k}$. We may also suppose that each \bar{U}_{k+1} is contractible in U_{k} and all \bar{U}_{k} are strongly contractible in X. Let G be an abelian group and let $n \geq 2$ with $n+1 \notin \mathcal{H}_{X, G}$ and $n \in \mathcal{H}_{X, G}$. So, there exist a closed set $B \subset X$ and a non-trivial element $\gamma \in H_{n-1}(B ; G)$ with $i_{B, X}^{n-1}(\gamma)=0$. Then, by [2, property 5, p. 103], there is a closed set $K \subset X$ containing B which is a homological membrane for γ. We fix a point $\widetilde{x} \in K \backslash B$ and its open in K neighborhood W with $\bar{W} \cap B=\varnothing$. According to [2, property 6 , p. 103], \bar{W} is an ($n-1$)-homological membrane for some non-trivial element of $H_{n-1}\left(\operatorname{bd}_{K} \bar{W} ; G\right)$. We can choose W so small that \bar{W} is contractible in X. Then Corollary 2.2 yields $\left(\bar{W} \backslash \operatorname{bd}_{K} \bar{W}\right) \cap \overline{X \backslash \bar{W}}=\varnothing$. So, $\bar{W} \backslash \operatorname{bd}_{K} \bar{W}$ is open in X and contains \widetilde{x}. Hence, there exists k_{0} such that $U_{k} \subset \bar{W} \backslash \operatorname{bd}_{K} \bar{W}$ for all $U_{k} \in \mathcal{B}_{\widetilde{x}}$ with $k \geq k_{0}$. Below we consider only the elements U_{k} with $k \geq k_{0}$. Applying again [2, property 6 , p. 103], we conclude that every \bar{U}_{k} is a homological membrane for some non-trivial element of $H_{n-1}\left(\mathrm{bd} U_{k} ; G\right)$. By Corollary [2.2(1), $H_{n}\left(\bar{U}_{k} ; G\right)=0$. Suppose $\gamma \in$ $H_{n-1}\left(\operatorname{bd} U_{k} ; G\right)$ is non-trivial. Since $X \backslash \bar{U}_{k}$ is connected, Corollary 2.2(2) implies that $H_{n-1}\left(\bar{U}_{k} ; G\right)=0$. Consequently, γ is homologous to zero in \bar{U}_{k}. So, by [2] property 5 , p. 103], \bar{U}_{k} contains a closed set P such that P is a homological membrane for γ. Then Corollary [2.2(3) implies $\left(P \backslash \operatorname{bd} U_{k}\right) \cap \overline{X \backslash P}=\varnothing$. Hence, $X \backslash \mathrm{bd} U_{k}$ is the union of the disjoint open sets $P \backslash \operatorname{bd} U_{k}$ and $X \backslash P$. Because U_{k} is connected and $U_{k} \cap P \neq \varnothing, U_{k} \subset P \backslash \operatorname{bd} U_{k}$. Therefore, $P=\bar{U}_{k}$. This provides the proof of the first two conditions of Theorem 1.1

To prove the last item of Theorem [1.1, assume that $H_{n-1}(F ; G) \neq 0$ for some closed proper subset F of $\operatorname{bd} U_{k+1}$, where $k \geq k_{0}$. Because F (as a subset of \bar{U}_{k+1}) is strongly contractible in X, according to Corollary[2.2(2), F separates X. So, $X \backslash F$ is the union of two disjoint non-empty open in X sets V_{1} and V_{2} with $\bar{V}_{1} \cap \bar{V}_{2} \subset F$. Let us show that F separates \bar{U}_{k}. Indeed, otherwise $\bar{U}_{k} \backslash F$ would be connected. Then $\bar{U}_{k} \backslash F$ should be contained in one of the sets V_{1}, V_{2}, say V_{1}. Since $X \backslash \bar{U}_{k}$ is also connected and $V_{2} \neq \varnothing, X \backslash \bar{U}_{k} \subset V_{2}$. Hence, $\overline{\bar{U}_{k} \backslash F} \cap \overline{X \backslash \bar{U}_{k}} \subset F$. On the other hand, because $\bar{U}_{k} \backslash F$ is dense in \bar{U}_{k} (recall that F does not contain interior points), $\overline{\bar{U}_{k} \backslash F} \cap \overline{X \backslash \bar{U}_{k}}=\mathrm{bd} U_{k}$. So, $F \supset b d U_{k}$, a contradiction. Therefore, F separates \bar{U}_{k}.

The proof of Theorem 1.1(3) will be done if we show that F cannot separate \bar{U}_{k}. According to [11, Theorem 1.1], \bar{U}_{k} is an $(m-1)$-cohomology membrane spanned on
$\operatorname{bd} U_{k}$ for some non-trivial $\alpha \in H^{m-1}\left(\operatorname{bd} U_{k} ; \mathbb{Z}\right)$, where $m=\operatorname{dim} X$. This means that α (considered as a map from $\mathrm{bd} U_{k}$ to the Eilenberg-MacLane complex $K(\mathbb{Z}, m-1)$) is not extendable over \bar{U}_{k}, but it is extendable over any proper closed subset of \bar{U}_{k}. Hence, by [9, Proposition 2.10], the couple ($\bar{U}_{k}, \operatorname{bd} U_{k}$) is a strong $K_{\mathbb{Z}}^{m}$-manifold (see [9] for the definition of a strong $K_{\mathbb{Z}}^{m}$-manifold). So, according to [9, Theorem 3.3], $H^{m-1}(F ; \mathbb{Z}) \neq 0$ because F separates \bar{U}_{k} and $F \cap \mathrm{bd} U_{k}=\varnothing$. Finally, we obtained a contradiction because $H^{m-1}(A ; \mathbb{Z})=0$ for every proper closed subset A of $\operatorname{bd} U_{k+1}$. Therefore, all $U_{k}, k \geq k_{0}+1$, satisfy conditions (1) - (3) from Theorem 1.1 .
Proof of Corollary [1.2, Suppose there exists a point $a \in(K \backslash B) \cap \overline{X \backslash K}$ and take a set $U \in \mathcal{B}_{a}$ satisfying conditions (1)-(3) from Theorem 1.1 such that $U \cap B=\varnothing$. Then $F_{U}=\operatorname{bd}_{K}(U \cap K)$ is non-empty, and it follows from [2, property 6, p. 103] that $\overline{U \cap K}$ is a homology membrane for some non-zero $\alpha \in H_{n-1}\left(F_{U} ; G\right)$. Because $F_{U} \subset \mathrm{bd} U$, by Theorem 1.1(3), $F_{U}=\mathrm{bd} U$. So, \bar{U} is a homological membrane for α; see Theorem 1.1(1). This implies that $i_{\mathrm{bd} U, \overline{U \cap K}}^{n-1}(\alpha) \neq 0$ provided $\overline{U \cap K}$ is a proper subset of \bar{U}. Therefore, $\overline{U \cap K}=\bar{U}$, which yields $U \subset K$. The last inclusion contradicts the fact that $a \in \overline{X \backslash K}$. Hence, $(K \backslash B) \cap \overline{X \backslash K}=\varnothing$.

3. Cyclicity of homogeneous $A N R$'s

Let $\mathcal{H}(n)$ be the class of all homogeneous metric $A N R$-compacta X with $\operatorname{dim} X=$ n.

Theorem 3.1. The following conditions are equivalent:
(1) If $n \geq 1$, then for every space $X \in \mathcal{H}(n)$ there exists a group G with $H^{n}(X ; G) \neq 0$.
(2) If $n \geq 1$ and $X \in \mathcal{H}(n)$, then for every closed set $F \subset X$ separating X there exists a group G with $H^{n-1}(F ; G) \neq 0$.
(3) If $n \geq 1$ and $X \in \mathcal{H}(n)$, then for every ($n-1$)-dimensional closed set $F \subset X$ separating X there exists a group G with $H^{n-1}(F ; G) \neq 0$.
Proof. (1) \Rightarrow (2) Suppose $n \geq 1$ and $X \in \mathcal{H}(n)$. Then $H^{n}(X ; G) \neq 0$ for some group G, and by [10, Corollary 1.2], $H^{n-1}(F ; G) \neq 0$ for every non-empty closed set $F \subset X$ separating X.
$(2) \Rightarrow(3)$ This implication is trivial.
(3) \Rightarrow (1) Suppose that condition (3) holds, but there exists $n \geq 1$ and $X \in \mathcal{H}(n)$ such that $H^{n}(X ; G)=0$ for all groups G. Consider the two-dimensional sphere \mathbb{S}^{2} and a circle \mathbb{S}^{1} separating \mathbb{S}^{2}. Then $X \times \mathbb{S}^{2} \in \mathcal{H}(n+2)$ and $X \times \mathbb{S}^{1}$ is a closed separator of $X \times \mathbb{S}^{2}$ of dimension $n+1$. So, there is a group G^{\prime} such that $H^{n+1}\left(X \times \mathbb{S}^{1} ; G^{\prime}\right) \neq 0$. On the other hand, according to the Künneth formula, we have the exact sequence

$$
\sum_{i+j=n+1} H^{i}(X) \otimes H^{j}\left(\mathbb{S}^{1}\right) \rightarrow H^{n+1}\left(X \times \mathbb{S}^{1}\right) \rightarrow \sum_{i+j=n+2} H^{i}(X) * H^{j}\left(\mathbb{S}^{1}\right)
$$

where the coefficient group G^{\prime} is suppressed. Because $\operatorname{dim} X=n$ and $\operatorname{dim} \mathbb{S}^{1}=1$, $H^{n+i}\left(X ; G^{\prime}\right)=0$ and $H^{1+i}\left(\mathbb{S}^{1} ; G^{\prime}\right)=0$ for all $i \geq 1$. Moreover, $H^{n}\left(X ; G^{\prime}\right)=0$. So,

$$
\sum_{i+j=n+1} H^{i}\left(X ; G^{\prime}\right) \otimes H^{j}\left(\mathbb{S}^{1} ; G^{\prime}\right)=\sum_{i+j=n+2} H^{i}\left(X ; G^{\prime}\right) * H^{j}\left(\mathbb{S}^{1} ; G^{\prime}\right)=0
$$

Hence, $H^{n+1}\left(X \times \mathbb{S}^{1} ; G^{\prime}\right)=0$, a contradiction.

A homological version of Theorem 3.1 also holds.
Theorem 3.2. The following conditions are equivalent:
(1) If $n \geq 1$, then for every space $X \in \mathcal{H}(n)$ there exists a group G with $H_{n}(X ; G) \neq 0$.
(2) If $n \geq 1$ and $X \in \mathcal{H}(n)$, then for every closed set $F \subset X$ separating X there exists a group G with $H_{n-1}(F ; G) \neq 0$.
(3) If $n \geq 1$ and $X \in \mathcal{H}(n)$, then for every $(n-1)$-dimensional closed set $F \subset X$ separating X there exists a group G with $H_{n-1}(F ; G) \neq 0$.

Proof. Everywhere below, \widehat{H}_{*} denotes the exact homology (see [5, 7), which for locally compact metric spaces is equivalent to Steenrod's homology 8. For every compact metric space X and every k there exists a surjective homomorphism T_{X}^{k} : $\widehat{H}_{k}(X ; G) \rightarrow H_{k}(X ; G)$. According to [7, Theorem 4], T_{X}^{k} is an isomorphism in each of the following cases: G is a vector space over a field, both $\widehat{H}_{k}(X ; G)$ and G are countable modules, $\operatorname{dim} X=k, H^{k+1}(X ; \mathbb{Z})$ is finitely generated.
(1) \Rightarrow (2) Suppose $n \geq 1$ and $X \in \mathcal{H}(n)$. Then $H_{n}(X ; G) \neq 0$ for some group G. By [7, Theorem 3], we have the exact sequence

$$
\begin{equation*}
\operatorname{Ext}\left(H^{n+1}(X ; \mathbb{Z}), G\right) \rightarrow \widehat{H}_{n}(X ; G) \rightarrow \operatorname{Hom}\left(H^{n}(X ; \mathbb{Z}), G\right) \rightarrow 0 \tag{*}
\end{equation*}
$$

Since $\operatorname{dim} X=n, H^{n+1}(X ; \mathbb{Z})=0$. Moreover $\widehat{H}_{n}(X ; G)$ is non-trivial because so is $H_{n}(X ; G)$ and T_{X}^{n} is a surjective homomorphism. Hence, $H^{n}(X ; \mathbb{Z}) \neq 0$ and there exists a non-trivial homomorphism $\varphi: H^{n}(X ; \mathbb{Z}) \rightarrow G$. Now, let $F \subset X$ be a closed separator of X and $X \backslash F=X_{1} \cup X_{2}$, where $X_{1}, X_{2} \subset X$ are closed proper subsets with $X_{1} \cap X_{2}=F$. Since $H^{n}(P ; \mathbb{Z})=0$ for every closed proper subset $P \subset X($ see [10] $), H^{n}(F ; \mathbb{Z})=H^{n}\left(X_{1} ; \mathbb{Z}\right)=H^{n}\left(X_{2} ; \mathbb{Z}\right)=0$. Then it follows from the Mayer-Vietoris sequence

$$
H^{n-1}(F ; \mathbb{Z}) \xrightarrow{\partial} H^{n}(X ; \mathbb{Z}) \xrightarrow{\psi} H^{n}\left(X_{1} ; \mathbb{Z}\right) \oplus H^{n}\left(X_{1} ; \mathbb{Z}\right)
$$

that $H^{n-1}(F ; \mathbb{Z}) \neq 0$ and ∂ is a surjective homomorphism. Consequently, $\varphi \circ$ $\partial: H^{n-1}(F ; \mathbb{Z}) \rightarrow G$ is also a non-trivial surjective homomorphism. Hence, $\operatorname{Hom}\left(H^{n-1}(F ; \mathbb{Z}), G\right) \neq 0$, and the exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(H^{n}(F ; \mathbb{Z}), G\right) \rightarrow \widehat{H}_{n-1}(F ; G) \rightarrow \operatorname{Hom}\left(H^{n-1}(F ; \mathbb{Z}), G\right) \rightarrow 0
$$

yields $\widehat{H}_{n-1}(F ; G) \neq 0$. Finally, since $H^{n}(F ; \mathbb{Z})=0, \widehat{H}_{n-1}(F ; G)$ is isomorphic to $H_{n-1}(F ; G)$.
(2) \Rightarrow (3) This implication is obvious.
$(3) \Rightarrow(1)$ As in the proof of Theorem 3.1 (3) $\Rightarrow(1)$, suppose there exists $n \geq 1$ and $X \in \mathcal{H}(n)$ such that $H_{n}(X ; G)=0$ for all groups G. Since $\widehat{H}_{n}(X ; G)$ is isomorphic to $H_{n}(X ; G)$ and $H^{n+1}(X ; \mathbb{Z})=0$ (recall that $\operatorname{dim} X=n$), it follows from the exact sequence $(*)$ that $\operatorname{Hom}\left(H^{n}(X ; \mathbb{Z}), G\right)=0$ for all groups G. This implies that $H^{n}(X ; \mathbb{Z})=0$. As above, the product $X \times \mathbb{S}^{1}$ is a closed separator of $X \times \mathbb{S}^{2}$, and according to our assumption, $H_{n+1}\left(X \times \mathbb{S}^{1} ; G^{\prime}\right) \neq 0$ for some group G^{\prime}. Because $\operatorname{dim} X \times \mathbb{S}^{1}=n+1, H_{n+1}\left(X \times \mathbb{S}^{1} ; G^{\prime}\right) \cong \widehat{H}_{n+1}\left(X \times \mathbb{S}^{1} ; G^{\prime}\right)$ and $H^{n+2}\left(\operatorname{dim} X \times \mathbb{S}^{1}, \mathbb{Z}\right)=0$. Therefore, the exact sequence

$$
\operatorname{Ext}\left(H^{n+2}\left(X \times \mathbb{S}^{1}\right), G^{\prime}\right) \rightarrow \widehat{H}_{n+1}\left(X \times \mathbb{S}^{1} ; G^{\prime}\right) \rightarrow \operatorname{Hom}\left(H^{n+1}\left(X \times \mathbb{S}^{1}\right), G^{\prime}\right)
$$

where the coefficient groups \mathbb{Z} in $H^{n+2}\left(X \times \mathbb{S}^{1}\right)$ and $H^{n+1}\left(X \times \mathbb{S}^{1}\right)$ are suppressed, yields that $H^{n+1}\left(X \times \mathbb{S}^{1} ; \mathbb{Z}\right) \neq 0$. On the other hand, the Künneth formula from
the proof of Theorem 3.1 (with \mathbb{Z} being the coefficient group in all cohomology groups) implies $H^{n+1}\left(X \times \mathbb{S}^{1} ; \mathbb{Z}\right)=0$, a contradiction.

Corollary 3.3. Suppose for all $n \geq 1$ and all $X \in \mathcal{H}(n)$ the following holds: For every closed separator F of X with $\operatorname{dim} F=n-1$ there exists a group G such that either $H^{n-1}(F ; G) \neq 0$ or $H_{n-1}(F ; G) \neq 0$. Then there is no homogeneous metric AR-compactum Y with $\operatorname{dim} Y<\infty$.

If $\mathcal{H}(G, n)$ denotes the class of all homogeneous metric $A N R$-compacta X with $\operatorname{dim}_{G} X=n$, the arguments from Theorem 3.1 provide the following result:

Proposition 3.4. The following conditions are equivalent:
(1) $H^{n}(X ; G) \neq 0$ for all $X \in \mathcal{H}(G, n)$ and all $n \geq 1$.
(2) If $X \in \mathcal{H}(G, n)$ and $n \geq 1$, then $H^{n-1}(F ; G) \neq 0$ for every closed set $F \subset X$ separating X.
(3) If $X \in \mathcal{H}(G, n)$ and $n \geq 1$, then $H^{n-1}(F ; G) \neq 0$ for every closed set $F \subset X$ separating X with $\operatorname{dim}_{G} F=n-1$.

The corresponding homological analogue of Proposition 3.4 also holds for some groups G.

Proposition 3.5. The following conditions are equivalent, where G is either a field or a torsion free group:
(1) $H_{n}(X ; G) \neq 0$ for all $X \in \mathcal{H}(n)$ and all $n \geq 1$.
(2) If $X \in \mathcal{H}(n), n \geq 1$, and $F \subset X$ is a closed set separating X, then $H_{n-1}(F ; G) \neq 0$.
(3) If $X \in \mathcal{H}(n), n \geq 1$, and $F \subset X$ is a closed set separating X with $\operatorname{dim} F=$ $n-1$, then $H_{n-1}(F ; G) \neq 0$.

Proof. All implications except $(3) \Rightarrow(1)$ follow from the proof of Theorem 3.2. To prove $(3) \Rightarrow(1)$, we suppose there exists a space $X \in \mathcal{H}(n)$ with $H_{n}(X ; G)=0$. Considering the $(n+1)$-dimensional separator $X \times \mathbb{S}^{1}$ of $X \times \mathbb{S}^{2}$, we conclude that $H_{n+1}\left(X \times \mathbb{S}^{1} ; G\right) \neq 0$. Because X and $X \times \mathbb{S}^{1}$ are $A N R$'s, their Čech homology groups are isomorphic to the singular homology groups. Thus, we can apply the Künneth formula

$$
\sum_{i+j=n+1} H_{i}(X) \otimes H_{j}\left(\mathbb{S}^{1}\right) \rightarrow H_{n+1}\left(X \times \mathbb{S}^{1}\right) \rightarrow \sum_{i+j=n} H_{i}(X) * H_{j}\left(\mathbb{S}^{1}\right)
$$

where G is the coefficient group. Since $H_{n}(X ; G)=H_{n+1}(X ; G)=0$ and $H_{j}\left(\mathbb{S}^{1} ; G\right)$ $=0$ for all $j>1, \sum_{i+j=n+1} H_{i}(X ; G) \otimes H_{j}\left(\mathbb{S}^{1} ; G\right)=0$. If G is a torsion free group, then the group $\sum_{i+j=n} H_{i}(X ; G) * H_{j}\left(\mathbb{S}^{1} ; G\right)$ is also trivial because $H_{1}\left(\mathbb{S}^{1} ; G\right)=G$ yields $H_{n-1}(X ; G) * H_{1}\left(\mathbb{S}^{1} ; G\right)=0$. Therefore, $H_{n+1}\left(X \times \mathbb{S}^{1} ; G\right)=0$, a contradiction.

When G is a field, the group $H_{n+1}\left(X \times \mathbb{S}^{1} ; G\right)$ is isomorphic to the trivial group $\sum_{i+j=n+1} H_{i}(X ; G) \otimes H_{j}\left(\mathbb{S}^{1} ; G\right)$. So, again we have a contradiction.

References

[1] P. Alexandroff, Introduction to homological dimension theory and general combinatorial topology, Nauka, Moscow, 1975 (in Russian).
[2] R. H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. (2) $\mathbf{8 1}$ (1965), 100-111. MR0172255
[3] Glen E. Bredon, Sheaf theory, 2nd ed., Graduate Texts in Mathematics, vol. 170, SpringerVerlag, New York, 1997. MR1481706
[4] Edward G. Effros, Transformation groups and C^{*}-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR0174987
[5] William S. Massey, Homology and cohomology theory, An approach based on AlexanderSpanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46, Marcel Dekker, Inc., New York-Basel, 1978. MR0488016
[6] Deane Montgomery, Locally homogeneous spaces, Ann. of Math. (2) 52 (1950), 261-271. MR0043794
[7] E. G. Skljarenko, Homology theory and the exactness axiom (Russian), Uspehi Mat. Nauk 24 (1969), no. 5 (149), 87-140. MR0263071
[8] N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. (2) 41 (1940), 833851. MR0002544
[9] V. Todorov and V. Valov, Alexandroff type manifolds and homology manifolds, Houston J. Math. 40 (2014), no. 4, 1325-1346. MR3298753
[10] V. Valov, Homogeneous ANR-spaces and Alexandroff manifolds, Topology Appl. 173 (2014), 227-233. MR3227218
[11] V. Valov, Local cohomological properties of homogeneous ANR compacta, Fund. Math. 233 (2016), no. 3, 257-270. MR 3480120

Department of Computer Science and Mathematics, Nipissing University, 100 College
Drive, P.O. Box 5002, North Bay, Ontario, P1B 8L7, Canada
Email address: veskov@nipissingu.ca

[^0]: Received by the editors January 25, 2016, and in revised form, September 18, 2016.
 2010 Mathematics Subject Classification. Primary 55M10, 55M15; Secondary 54F45, 54C55.
 Key words and phrases. Bing-Borsuk conjecture for homogeneous compacta, dimensionally full-valued compacta, homology membrane, homological dimension, homology groups, homogeneous metric $A N R$-compacta.

