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LOCAL HOMOLOGICAL PROPERTIES AND CYCLICITY

OF HOMOGENEOUS ANR-COMPACTA

V. VALOV

(Communicated by Kevin Whyte)

Abstract. In accordance with the Bing-Borsuk conjecture, we show that if X
is an n-dimensional homogeneous metric ANR-compactum and x ∈ X, then
there is a local basis at x consisting of connected open sets U such that the
homological properties of U and bd U are similar to the properties of the closed
ball Bn ⊂ Rn and its boundary Sn−1. We discuss also the following questions
raised by Bing-Borsuk [Ann. of Math. (2) 81 (1965), 100–111], where X is a

homogeneous ANR-compactum with dimX = n:
• Is it true that X is cyclic in dimension n?
• Is it true that no non-empty closed subset of X, acyclic in dimension

n− 1, separates X?
It is shown that both questions simultaneously have positive or negative an-
swers, and a positive solution to each one of them implies a solution to another
question of Bing-Borsuk (whether every finite-dimensional homogenous metric
AR-compactum is a point).

1. Introduction

There are few open problems concerning homogeneous compacta; see [2]. The
most important one is the well-known Bing-Borsuk conjecture stating that every
n-dimensional homogeneous metric ANR-compactum X is an n-manifold. Another
one is whether any such X has the following properties: (i) X is cyclic in dimension
n; (ii) no closed non-empty subset of X, acyclic in dimension n−1, separates X. It
is also unknown if there exists a non-trivial finite-dimensional metric homogeneous
AR-compactum.

In this paper we address the above problems and investigate the homological
structure of homogeneous metric ANR-compacta. In accordance with the Bing-
Borsuk conjecture, we prove that any such compactum has local homological prop-
erties similar to the local structure of Rn; see Theorem 1.1. It is also shown that
the properties (i) and (ii) from the second of the above questions are equivalent, so
each one of them implies that every finite-dimensional homogeneous metric AR is
a point.

Reduced Čech homology Hn(X;G) and cohomology groups Hn(X;G) with co-
efficients from G are considered everywhere below, where G is an abelian group.
Suppose (K,A) is a pair of closed subsets of a space X with A ⊂ K. By inA,K we
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denote the homomorphism from Hn(A;G) into Hn(K;G) generated by the inclu-
sion A ↪→ K. Following [2], we say that K is an n-homology membrane spanned on
A for an element γ ∈ Hn(A;G) provided γ is homologous to zero in K, but not
homologous to zero in any proper closed subset of K containing A. It is well known
[2, property 5, p. 103] that for every compact metric space X and a closed set
A ⊂ X the existence of a non-trivial element γ ∈ Hn(A;G) with inA,X(γ) = 0 yields
the existence of a closed set K ⊂ X containing A such that K is an n-homology
membrane for γ spanned on A. We also say that a space K is a homological
(n,G)-bubble if Hn(K;G) �= 0, but Hn(B;G) = 0 for every closed proper subset
B ⊂ K.

For any abelian group G, Alexandroff [1] introduced the dimension dGX of a
space X as the maximum integer n such that there exist a closed set F ⊂ X and
a non-trivial element γ ∈ Hn−1(F ;G) with γ being G-homologous to zero in X.
According to [1, p. 207] we have the following inequalities for any metric finite-
dimensional compactum X: dGX ≤ dimX and dimX = dQ1

X = dS1X, where G is
any abelian group, S1 is the circle group, and Q1 is the group of rational elements
of S1.

Because the definition of dGX does not provide any information for the homology
groups Hk−1(F ;G) when F ⊂ X is closed and k < dGX − 1, we consider the set
HX,G of all integers k ≥ 1 such that there exist a closed set F ⊂ X and a non-trivial

element γ ∈ Hk−1(F ;G) with ik−1
F,X(γ) = 0. Obviously, dGX = maxHX,G.

Using the properties of the sets HX,G, we investigate in Section 2 the local
homological properties of metric homogeneous ANR-compacta. The main result in
that section is Theorem 1.1 below, which is a homological version of [11, Theorem
1.1].

Theorem 1.1. Let X be a finite-dimensional homogeneous metric ANR with
dimX ≥ 2. Then every point x ∈ X has a basis Bx = {Uk} of open sets such
that for any abelian group G and n ≥ 2 with n ∈ HX,G and n + 1 �∈ HX,G almost
all Uk satisfy the following conditions:

(1) Hn−1(bdUk;G) �= 0 and Uk is an (n− 1)-homology membrane spanned on
bdUk for any non-zero γ ∈ Hn−1(bdUk;G);

(2) Hn−1(Uk;G) = Hn(Uk;G) = 0 and X \ Uk is connected;
(3) bdUk is a homological (n− 1, G)-bubble.

Corollary 1.2. Let X be as in Theorem 1.1. Then X has the following property
for any abelian group G and n ≥ 2 with n ∈ HX,G and n + 1 �∈ HX,G: If a closed
subset K ⊂ X is an (n− 1)-homology membrane spanned on B for some closed set

B ⊂ X and γ ∈ Hn−1(B;G), then (K \B) ∩X \K = ∅.

In Section 3 we show that the following two statements are equivalent, where
H(n) is the class of all homogeneous metric ANR-compacta X with dimX = n:

(1) For all n ≥ 1 and X ∈ H(n) there is a group G such that Hn(X;G) �= 0
(resp., Hn(X;G) �= 0).

(2) If X ∈ H(n) with n ≥ 1 and F ⊂ X is a closed separator of X with
dimF = n − 1, then there exists a group G such that Hn−1(F ;G) �= 0
(resp.,Hn−1(F ;G) �= 0).
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Therefore, we have the following result (see Corollary 3.3):

Theorem 1.3. Suppose for all n ≥ 1 and all X ∈ H(n) the following holds: For
every closed separator F of X with dimF = n− 1 there exists a group G such that
either Hn−1(F ;G) �= 0 or Hn−1(F ;G) �= 0. Then there is no homogeneous metric
AR-compactum Y with dimY < ∞.

2. Local homological properties of homogeneous ANR-compacta

We begin this section with the following analogue of Theorem 8.1 from [2].

Proposition 2.1. Let X be a locally compact and homogeneous separable metriz-
able ANR-space. Suppose there is a pair F ⊂ K of compact proper subsets of
X such that K is contractible in X and K is a homological membrane for some
γ ∈ Hn−1(F ;G). If (K \F )∩X \K �= ∅, then there exists a proper compact subset
P ⊂ X contractible in X such that Hn(P ;G) �= 0.

Proof. We follow the proof of [6, Lemma 1] (let us note that the proof of Propo-
sition 2.1 can also be obtained following the arguments of [2, Theorem 8.1]). Let

a ∈ (K \ F ) ∩ X \K. Then a is a boundary point for K. Because K is con-
tractible in X, there is a homotopy g : K × [0, 1] → X such that g(x, 0) = x and
g(x, 1) = c ∈ X for all x ∈ K. Then we can find an open set U ⊂ X containing
K and a homotopy g : U × [0, 1] → X extending g and connecting the identity on
U and the constant map U → c (this can be done since X is an ANR). So, U is
also contractible in X. Moreover, we can assume that U is compact. Fix a metric
d on X generating its topology in the following way: consider X as a subspace of
its one-point compactification αX and take d to be the restriction to X of some
admissible metric on αX. Let 2ε = d(a, F ) and take an open cover ω of U such that
for any two ω-close maps f1, f2 : K → U (i.e., for all x ∈ K the points f1(x), f2(x)
are contained in some element of ω) there is an ε-homotopy Φ : K × [0, 1] → U
between f1 and f2 (i.e., each set MΦ(x) = {Φ(x, t) : t ∈ [0, 1]}, x ∈ K, is of di-
ameter < ε). This can be done because U is an ANR. Now, we fix an open set
V ⊂ X containing K with V ⊂ U and let δ be the Lebesgue number of the open
cover {Γ ∩ V : Γ ∈ ω} of V . According to Effros’ theorem [4], there is a positive
number η such that if x, y ∈ X are two points with d(x, y) < η, then f(x) = y
for some homeomorphism h : X → X, which is min{δ, d(K,X \ V }-close to the
identity on X (Effros’ theorem can be applied because of the special choice of the
metric d). Since a is a boundary point for K, we can choose a point b ∈ V \ K
with d(a, b) < η. Then, there exists a homeomorphism h′

1 : X → X such that
h′
1(a) = b and d(x, h′

1(x)) < min{δ, d(K,X \ V }, x ∈ X. Let h1 be the restriction
h′
1|K. Obviously, h1 : K → h1(K) is a homeomorphism with h1(K) ⊂ V and h1 is

δ-close to the identity on K. Then, according to the choice of δ, there is homotopy
h : K × [0, 1] → U such that h(x, 0) = x, h(x, 1) = h1(x), and d(x, h(x, t)) < ε for
all x ∈ K and t ∈ [0, 1].

Let K1 = K ∪ h(F × I), K2 = h1(K), and K0 = K1 ∩ K2, where I = [0, 1].
Since 2ε = d(a, F ) and h is an ε-small homotopy, b ∈ K2 \K1. So, K0 is a proper
subset of K2 containing h1(F ). Hence, D = h−1

1 (K0) is a proper subset of K
containing F , which implies γ1 = in−1

F,D (γ) �= 0. Because h1 is a homeomorphism,

(ϕ1)∗ : Hn−1(D;G) → Hn−1(K0;G) is an isomorphism, where ϕ1 = h1|D. Thus,
γ̂ = (ϕ1)∗(γ1) �= 0.
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Claim 1. We have in−1
K0,K1

(γ̂) = 0 and in−1
K0,K2

(γ̂) = 0.

Let λ = in−1
F,h(F×I)(γ). Since h|(F × I) is a homotopy between the identity on F

and the map ϕ2 = h1|F , λ = in−1
h1(F ),h(F×I)((ϕ2)∗(γ)). We consider the following

commutative diagram:

γ ∈ Hn−1(F ;G)
in−1
F,D ��

(ϕ2)∗

��

Hn−1(D;G) � γ1

(ϕ1)∗

��
(ϕ2)∗(γ) ∈ Hn−1(h1(F );G)

in−1
h1(F ),K0 ��

in−1
h1(F ),h(F×I)

��

Hn−1(K0;G) � γ̂

in−1
K0,K1

�����
���

���
���

���
���

���
���

���
��

λ ∈ Hn−1(h(F × I);G)

in−1
h(F×I),K1

��
0 ∈ Hn−1(K1;G)

Obviously, in−1
F,K1

(γ) = in−1
h(F×I),K1

(λ) = in−1
K0,K1

(γ̂). On the other hand, in−1
F,K1

(γ) =

in−1
K,K1

(in−1
F,K (γ)) = 0 because in−1

F,K (γ) = 0. Hence, in−1
K0,K1

(γ̂) = 0.

For the second part of the claim, observe that in−1
D,K(γ1) = in−1

F,K (γ) = 0. Then,

the equality in−1
K0,K2

(γ̂) = 0 follows from the diagram

γ1 ∈ Hn−1(D;G)
in−1
D,K ��

(ϕ1)∗

��

Hn−1(K;G) � 0

(h1)∗

��
γ̂ ∈ Hn−1(K0;G)

in−1
K0,K2 �� Hn−1(K2;G) � 0

We are in a position now to complete the proof of Proposition 2.1. Let P =
K1 ∪ K2. Since h(K × I) ⊂ U , P ⊂ U . Therefore, P is contractible in X (recall
that U is contractible in X). Finally, by Claim 1 and the Phragmen-Brouwer
theorem (see [2]), there exists a non-trivial α ∈ Hn(P ;G). �

For simplicity, we say that a closed set F ⊂ X is strongly contractible in X if F
is contractible in a closed set A ⊂ X and A is contractible in X.

Corollary 2.2. Let X be a homogeneous compact metrizable ANR-space such that
n ∈ HX,G and n+ 1 �∈ HX,G. Then for every closed set F ⊂ X we have:

(1) Hn(F ;G) = 0 provided F is contractible in X;
(2) F separates X provided Hn−1(F ;G) �= 0 and F is strongly contractible in

X;
(3) if K is a homological membrane for some non-trivial element of Hn−1(F ;G)

and K is contractible in X, then (K \ F ) ∩X \K = ∅.

Proof. Since F is contractible in X, every γ ∈ Hn(F ;G) is homologous to zero inX.
So, the existence of a non-trivial element of Hn(F ;G) would imply n+ 1 ∈ HX,G,
a contradiction.

To prove the second item, supposeHn−1(F ;G) �= 0 and F is strongly contractible
in X. So, there exists a closed set A ⊂ X such that F is contractible in A and
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A is contractible in X. Then, by [2, property 5, p. 103], we can find a closed
set K ⊂ A containing F which is a homological membrane for some non-trivial
γ ∈ Hn−1(F ;G). Because K (as a subset of A) is contractible in X, the assumption

(K \ F ) ∩ X \K �= ∅ would yield the existence of a proper closed set P ⊂ X
contractible in X with Hn(P ;G) �= 0 (see Proposition 2.1). Consequently, there
would be a non-trivial α ∈ Hn(P ;G) homologous to zero inX. Hence, n+1 ∈ HX,G,

a contradiction. Therefore, (K \ F ) ∩ X \K = ∅. This means that X \ F =
(K \ F ) ∪ (X \ K) with both K \ F and X \ K being non-empty open disjoint
subsets of X.

The above arguments provide also the proof of the third item. �

Proof of Theorem 1.1. Suppose X satisfies the hypotheses of Theorem 1.1. By
[11, Theorem 1.1], every x ∈ X has a basis Bx = {Uk}k≥1 of open sets satisfying the

following conditions: bdUk = bdUk; the sets Uk, bdUk, and X \Uk are connected;
HdimX−1(A;Z) = 0 for all proper closed sets A ⊂ bdUk. We may also suppose that
each Uk+1 is contractible in Uk and all Uk are strongly contractible in X. Let G be
an abelian group and let n ≥ 2 with n+ 1 �∈ HX,G and n ∈ HX,G. So, there exist

a closed set B ⊂ X and a non-trivial element γ ∈ Hn−1(B;G) with in−1
B,X(γ) = 0.

Then, by [2, property 5, p. 103], there is a closed set K ⊂ X containing B which
is a homological membrane for γ. We fix a point x̃ ∈ K \ B and its open in K
neighborhood W with W ∩ B = ∅. According to [2, property 6, p. 103], W is an
(n − 1)-homological membrane for some non-trivial element of Hn−1(bdKW ;G).
We can choose W so small that W is contractible in X. Then Corollary 2.2 yields

(W \ bdKW ) ∩X \W = ∅. So, W \ bdKW is open in X and contains x̃. Hence,
there exists k0 such that Uk ⊂ W \ bdKW for all Uk ∈ Bx̃ with k ≥ k0. Below
we consider only the elements Uk with k ≥ k0. Applying again [2, property 6,
p. 103], we conclude that every Uk is a homological membrane for some non-trivial
element of Hn−1(bdUk;G). By Corollary 2.2(1), Hn(Uk;G) = 0. Suppose γ ∈
Hn−1(bdUk;G) is non-trivial. Since X \ Uk is connected, Corollary 2.2(2) implies
that Hn−1(Uk;G) = 0. Consequently, γ is homologous to zero in Uk. So, by
[2, property 5, p. 103], Uk contains a closed set P such that P is a homological

membrane for γ. Then Corollary 2.2(3) implies (P \ bdUk) ∩X \ P = ∅. Hence,
X \ bdUk is the union of the disjoint open sets P \ bdUk and X \P . Because Uk is
connected and Uk ∩P �= ∅, Uk ⊂ P \ bdUk. Therefore, P = Uk. This provides the
proof of the first two conditions of Theorem 1.1.

To prove the last item of Theorem 1.1, assume that Hn−1(F ;G) �= 0 for some
closed proper subset F of bdUk+1, where k ≥ k0. Because F (as a subset of Uk+1) is
strongly contractible in X, according to Corollary 2.2(2), F separates X. So, X \F
is the union of two disjoint non-empty open in X sets V1 and V2 with V 1∩V 2 ⊂ F .
Let us show that F separates Uk. Indeed, otherwise Uk \ F would be connected.
Then Uk \ F should be contained in one of the sets V1, V2, say V1. Since X \Uk is

also connected and V2 �= ∅, X \ Uk ⊂ V2. Hence, Uk \ F ∩ X \ Uk ⊂ F . On the
other hand, because Uk \ F is dense in Uk (recall that F does not contain interior

points), Uk \ F ∩ X \ Uk = bdUk. So, F ⊃ bdUk, a contradiction. Therefore, F
separates Uk.

The proof of Theorem 1.1(3) will be done if we show that F cannot separate Uk.
According to [11, Theorem 1.1], Uk is an (m−1)-cohomology membrane spanned on
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bdUk for some non-trivial α ∈ Hm−1(bdUk;Z), wherem = dimX. This means that
α (considered as a map from bdUk to the Eilenberg-MacLane complex K(Z,m−1))
is not extendable over Uk, but it is extendable over any proper closed subset of Uk.
Hence, by [9, Proposition 2.10], the couple (Uk, bdUk) is a strong Km

Z -manifold (see
[9] for the definition of a strong Km

Z -manifold). So, according to [9, Theorem 3.3],

Hm−1(F ;Z) �= 0 because F separates Uk and F ∩bdUk = ∅. Finally, we obtained a
contradiction because Hm−1(A;Z) = 0 for every proper closed subset A of bdUk+1.
Therefore, all Uk, k ≥ k0 + 1, satisfy conditions (1)− (3) from Theorem 1.1. �

Proof of Corollary 1.2. Suppose there exists a point a ∈ (K \B)∩X \K and take
a set U ∈ Ba satisfying conditions (1)− (3) from Theorem 1.1 such that U ∩B = ∅.
Then FU = bdK(U ∩K) is non-empty, and it follows from [2, property 6, p. 103]
that U ∩K is a homology membrane for some non-zero α ∈ Hn−1(FU ;G). Because
FU ⊂ bdU , by Theorem 1.1(3), FU = bdU . So, U is a homological membrane
for α; see Theorem 1.1(1). This implies that in−1

bdU,U∩K
(α) �= 0 provided U ∩K is a

proper subset of U . Therefore, U ∩K = U , which yields U ⊂ K. The last inclusion
contradicts the fact that a ∈ X \K. Hence, (K \B) ∩X \K = ∅. �

3. Cyclicity of homogeneous ANR’s

LetH(n) be the class of all homogeneous metricANR-compactaX with dimX =
n.

Theorem 3.1. The following conditions are equivalent:

(1) If n ≥ 1, then for every space X ∈ H(n) there exists a group G with
Hn(X;G) �= 0.

(2) If n ≥ 1 and X ∈ H(n), then for every closed set F ⊂ X separating X
there exists a group G with Hn−1(F ;G) �= 0.

(3) If n ≥ 1 and X ∈ H(n), then for every (n − 1)-dimensional closed set
F ⊂ X separating X there exists a group G with Hn−1(F ;G) �= 0.

Proof. (1) ⇒ (2) Suppose n ≥ 1 and X ∈ H(n). Then Hn(X;G) �= 0 for some
group G, and by [10, Corollary 1.2], Hn−1(F ;G) �= 0 for every non-empty closed
set F ⊂ X separating X.

(2) ⇒ (3) This implication is trivial.
(3) ⇒ (1) Suppose that condition (3) holds, but there exists n ≥ 1 and X ∈ H(n)

such that Hn(X;G) = 0 for all groups G. Consider the two-dimensional sphere
S2 and a circle S1 separating S2. Then X × S2 ∈ H(n + 2) and X × S1 is a
closed separator of X × S2 of dimension n + 1. So, there is a group G′ such that
Hn+1(X × S1;G′) �= 0. On the other hand, according to the Künneth formula, we
have the exact sequence∑

i+j=n+1

Hi(X)⊗Hj(S1) → Hn+1(X × S1) →
∑

i+j=n+2

Hi(X) ∗Hj(S1),

where the coefficient group G′ is suppressed. Because dimX = n and dim S1 = 1,
Hn+i(X;G′) = 0 and H1+i(S1;G′) = 0 for all i ≥ 1. Moreover, Hn(X;G′) = 0.
So, ∑

i+j=n+1

Hi(X;G′)⊗Hj(S1;G′) =
∑

i+j=n+2

Hi(X;G′) ∗Hj(S1;G′) = 0.

Hence, Hn+1(X × S1;G′) = 0, a contradiction. �
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A homological version of Theorem 3.1 also holds.

Theorem 3.2. The following conditions are equivalent:

(1) If n ≥ 1, then for every space X ∈ H(n) there exists a group G with
Hn(X;G) �= 0.

(2) If n ≥ 1 and X ∈ H(n), then for every closed set F ⊂ X separating X
there exists a group G with Hn−1(F ;G) �= 0.

(3) If n ≥ 1 and X ∈ H(n), then for every (n − 1)-dimensional closed set
F ⊂ X separating X there exists a group G with Hn−1(F ;G) �= 0.

Proof. Everywhere below, Ĥ∗ denotes the exact homology (see [5], [7]), which for
locally compact metric spaces is equivalent to Steenrod’s homology [8]. For every
compact metric space X and every k there exists a surjective homomorphism T k

X :

Ĥk(X;G) → Hk(X;G). According to [7, Theorem 4], T k
X is an isomorphism in

each of the following cases: G is a vector space over a field, both Ĥk(X;G) and G
are countable modules, dimX = k, Hk+1(X;Z) is finitely generated.

(1) ⇒ (2) Suppose n ≥ 1 and X ∈ H(n). Then Hn(X;G) �= 0 for some group
G. By [7, Theorem 3], we have the exact sequence

(∗) Ext(Hn+1(X;Z), G) → Ĥn(X;G) → Hom(Hn(X;Z), G) → 0.

Since dimX = n, Hn+1(X;Z) = 0. Moreover Ĥn(X;G) is non-trivial because so
is Hn(X;G) and Tn

X is a surjective homomorphism. Hence, Hn(X;Z) �= 0 and
there exists a non-trivial homomorphism ϕ : Hn(X;Z) → G. Now, let F ⊂ X be a
closed separator of X and X \ F = X1 ∪X2, where X1, X2 ⊂ X are closed proper
subsets with X1 ∩ X2 = F . Since Hn(P ;Z) = 0 for every closed proper subset
P ⊂ X (see [10]), Hn(F ;Z) = Hn(X1;Z) = Hn(X2;Z) = 0. Then it follows from
the Mayer-Vietoris sequence

Hn−1(F ;Z)
∂−−−−→ Hn(X;Z)

ψ−−−−→ Hn(X1;Z)⊕Hn(X1;Z)

that Hn−1(F ;Z) �= 0 and ∂ is a surjective homomorphism. Consequently, ϕ ◦
∂ : Hn−1(F ;Z) → G is also a non-trivial surjective homomorphism. Hence,
Hom(Hn−1(F ;Z), G) �= 0, and the exact sequence

0 → Ext(Hn(F ;Z), G) → Ĥn−1(F ;G) → Hom(Hn−1(F ;Z), G) → 0

yields Ĥn−1(F ;G) �= 0. Finally, since Hn(F ;Z) = 0, Ĥn−1(F ;G) is isomorphic to
Hn−1(F ;G).

(2) ⇒ (3) This implication is obvious.
(3) ⇒ (1) As in the proof of Theorem 3.1, (3) ⇒ (1), suppose there exists

n ≥ 1 and X ∈ H(n) such that Hn(X;G) = 0 for all groups G. Since Ĥn(X;G) is
isomorphic to Hn(X;G) and Hn+1(X;Z) = 0 (recall that dimX = n), it follows
from the exact sequence (∗) that Hom(Hn(X;Z), G) = 0 for all groups G. This
implies that Hn(X;Z) = 0. As above, the product X × S1 is a closed separator of
X × S2, and according to our assumption, Hn+1(X × S1;G′) �= 0 for some group

G′. Because dimX × S1 = n + 1, Hn+1(X × S1;G′) ∼= Ĥn+1(X × S1;G′) and
Hn+2(dimX × S1,Z) = 0. Therefore, the exact sequence

Ext(Hn+2(X × S1), G′) → Ĥn+1(X × S1;G′) → Hom(Hn+1(X × S1), G′),

where the coefficient groups Z in Hn+2(X×S1) and Hn+1(X×S1) are suppressed,
yields that Hn+1(X × S1;Z) �= 0. On the other hand, the Künneth formula from
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the proof of Theorem 3.1 (with Z being the coefficient group in all cohomology
groups) implies Hn+1(X × S1;Z) = 0, a contradiction. �

Corollary 3.3. Suppose for all n ≥ 1 and all X ∈ H(n) the following holds: For
every closed separator F of X with dimF = n− 1 there exists a group G such that
either Hn−1(F ;G) �= 0 or Hn−1(F ;G) �= 0. Then there is no homogeneous metric
AR-compactum Y with dimY < ∞.

If H(G,n) denotes the class of all homogeneous metric ANR-compacta X with
dimG X = n, the arguments from Theorem 3.1 provide the following result:

Proposition 3.4. The following conditions are equivalent:

(1) Hn(X;G) �= 0 for all X ∈ H(G,n) and all n ≥ 1.
(2) If X ∈ H(G,n) and n ≥ 1, then Hn−1(F ;G) �= 0 for every closed set

F ⊂ X separating X.
(3) If X ∈ H(G,n) and n ≥ 1, then Hn−1(F ;G) �= 0 for every closed set

F ⊂ X separating X with dimG F = n− 1.

The corresponding homological analogue of Proposition 3.4 also holds for some
groups G.

Proposition 3.5. The following conditions are equivalent, where G is either a field
or a torsion free group:

(1) Hn(X;G) �= 0 for all X ∈ H(n) and all n ≥ 1.
(2) If X ∈ H(n), n ≥ 1, and F ⊂ X is a closed set separating X, then

Hn−1(F ;G) �= 0.
(3) If X ∈ H(n), n ≥ 1, and F ⊂ X is a closed set separating X with dimF =

n− 1, then Hn−1(F ;G) �= 0.

Proof. All implications except (3) ⇒ (1) follow from the proof of Theorem 3.2. To
prove (3) ⇒ (1), we suppose there exists a space X ∈ H(n) with Hn(X;G) = 0.
Considering the (n+1)-dimensional separator X × S1 of X × S2, we conclude that
Hn+1(X × S1;G) �= 0. Because X and X × S1 are ANR’s, their Čech homology
groups are isomorphic to the singular homology groups. Thus, we can apply the
Künneth formula∑

i+j=n+1

Hi(X)⊗Hj(S
1) → Hn+1(X × S1) →

∑
i+j=n

Hi(X) ∗Hj(S
1),

where G is the coefficient group. Since Hn(X;G) = Hn+1(X;G) = 0 and Hj(S
1;G)

= 0 for all j > 1,
∑

i+j=n+1 Hi(X;G)⊗Hj(S
1;G) = 0. If G is a torsion free group,

then the group
∑

i+j=n Hi(X;G) ∗Hj(S
1;G) is also trivial because H1(S

1;G) = G

yields Hn−1(X;G) ∗H1(S
1;G) = 0. Therefore, Hn+1(X × S1;G) = 0, a contradic-

tion.
When G is a field, the group Hn+1(X × S1;G) is isomorphic to the trivial group∑
i+j=n+1 Hi(X;G)⊗Hj(S

1;G). So, again we have a contradiction. �
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