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Abstract. Let L ⊂ S3 denote an alternating link and Σ(L) its branched
double-cover. We give a short proof of the fact that the fundamental group of
Σ(L) admits a left-ordering iff L is an unlink. This result is originally due to
Boyer-Gordon-Watson.

1. A group presentation

Consider a link L ⊂ S3 presented by a connected planar diagram. Color its
regions black and white in checkerboard fashion, and assign each crossing a sign as
displayed in Figure 1. From this coloring we obtain the white graph W = (V,E).
This is the planar graph with one vertex for each white region, one signed edge
for each crossing where two white regions touch, and one arbitrary distinguished
vertex r (the root).

We form a group Γ as follows. It has one generator xv and one relation rv = 1 for
each v ∈ V , as well as one additional relation xr = 1 for the root. To describe the
relation rv, consider a small loop γv centered at v and oriented counter-clockwise.
Starting at an arbitrary point along γv, the loop meets edges (v, w1), . . . , (v, wk)

with respective signs ε1, . . . , εk in order; then rv =
∏k

i=1(x
−1
wi

xv)
εi .

Let Σ(L) denote the double-cover of S3 branched along L.

Proposition 1.1. The fundamental group of Σ(L) is isomorphic to Γ.

Proposition 1.1 is established in [5, §3.1], in which the presentation for Γ derives
from a specific Heegaard diagram of the branched double-cover Σ(L). We refer the
reader there for a worked example, as well as to [5, §3.2] for another derivation
of the relevant Heegaard diagram. Dylan Thurston points out that the standard
derivation of the Wirtinger presentation of a knot group suggests an alternate route
to Proposition 1.1.

2. Non-left-orderability

In this section we use Proposition 1.1 to establish the main result. Recall that
a left-ordering of a group is a total ordering of its elements that is invariant under
left-multiplication in the group.

Theorem 2.1 (Boyer-Gordon-Watson [1]). If L is an alternating link, then
π1(Σ(L)) admits a left-ordering iff L is an unlink.

Received by the editors February 13, 2017 and, in revised form, February 17, 2017.

2010 Mathematics Subject Classification. Primary 57M05, 57M25.
This work was supported by NSF CAREER Award DMS-1455132 and an Alfred P. Sloan

Research Fellowship.

c©2018 American Mathematical Society

2707

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13704


2708 JOSHUA EVAN GREENE

+1 −1

Figure 1. Crossings and signs.

Proof. First, suppose that L = L1∪L2 is a split link. In this case, L is a connect-sum
of L1, L2, and the two-component unlink, so Σ(L) ∼= Σ(L1)#Σ(L2)#(S1×S2) and
π1(Σ(L)) decomposes as the free product π1(Σ(L1))∗π1(Σ(L2))∗Z. Furthermore, a
free product admits a left-ordering iff each of its factors do [12]. Therefore, to prove
Theorem 2.1, it suffices to restrict attention to the case of a non-split alternating
link L. With this assumption in place, Theorem 2.1 follows once we establish that
π1(Σ(L)) admits a left-ordering iff L is the unknot.

Present L by a connected, alternating diagram; color it, distinguish a root r, and
let W denote the resulting white graph. It follows that every edge gets the same
sign ε. Mirroring L if necessary (which leaves π1 unchanged), we may assume that
ε = 1. Now suppose that Γ ∼= π1(Σ(L)) possesses a left-ordering <. Choose a vertex
v for which xw ≤ xv for all w ∈ V . If xv = xw for all w ∈ V , then from the relation
xr = 1 it follows that 1 = Γ ∼= π1(Σ(L)), but then 1 = |H1(Σ(L))| = det(L), and
since L is alternating, it follows that L = U .

Thus, we assume henceforth that L �= U and seek a contradiction. It follows
that there exists some w ∈ V for which xw < xv; from the connectivity of W , we
may assume that (v, w) ∈ E. It follows that 1 < x−1

w xv, while 1 ≤ x−1
wi

xv for every
other edge (v, wi) ∈ E. Therefore, the product of all these terms in any order is

greater than 1. In particular, 1 <
∏k

i=1(x
−1
wi

xv) = rv = 1, a contradiction. �

3. Discussion

It remains an outstanding problem to relate π1(Y ) to the Heegaard Floer homol-
ogy of a 3-manifold Y . As of this writing, it remains a possibility that a rational
homology sphere Y is an L-space iff π1(Y ) �= 1 does not admit a left-ordering. The-
orem 2.1 supports this conjecture, since Σ(L) is a rational homology sphere L-space
for a non-split alternating link L [10, Prop. 3.3]. Additional examples appear in
[1–4, 11].

In this spirit, Peter Ozsváth raises an interesting question. Let (Y0, Y1, Y2) denote
a surgery triple of rational homology spheres. That is, there exists a manifold M
with torus boundary and a triple of slopes (γ0, γ1, γ2) in ∂M such that Yi results
from filling M along slope γi and γi · γi+1 = +1, for all i (mod 3). Cyclically
permuting the indices if necessary, assume that |H1(Y0)| = |H1(Y1)|+ |H1(Y2)|.

Question 3.1. If π1(Y0) admits a left-ordering, does it follow that one of π1(Y1)
and π1(Y2) must as well?

Note that if Y1 and Y2 are L-spaces, then so is Y0 according to the surgery exact

triangle in ĤF . This is the motivation behind Question 3.1. An affirmative answer
would imply that Theorem 2.1 extends to quasi-alternating links.
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Updates. Ito has applied the idea in this paper to a different presentation for
π1(Σ(L)) to recover yet another proof of Theorem 2.1 [7]. Levine and Lewallen
proved that the fundamental group of any non-trivial strong L-space is not left-
orderable [8, Theorem 1]. Their result generalizes Theorem 2.1 in the sense that
Σ(L) is a strong L-space whenever L is a non-split alternating link [5, Corollary
3.5], although no examples of strong L-spaces are known besides these [6, Question
1.2]. Li and Watson applied the presentation and technique used here in their study
of genus one open books [9].
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