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THURSTON’S BOUNDARY FOR TEICHMÜLLER SPACES

OF INFINITE SURFACES: THE LENGTH SPECTRUM

DRAGOMIR ŠARIĆ

(Communicated by Michael Wolf)

Abstract. Let X0 be an infinite area geodesically complete hyperbolic sur-
face which can be decomposed into geodesic pairs of pants. We introduce

Thurston’s boundary to the Teichmüller space T (X0) of the surface X0 us-
ing the length spectrum analogous to Thurston’s construction for finite sur-
faces. Thurston’s boundary using the length spectrum is a “closure” of pro-
jective bounded measured laminations PMLbdd(X0), and it coincides with
PMLbdd(X0) when X0 can be decomposed into a countable union of geodesic
pairs of pants whose boundary geodesics {αn}n∈N have lengths pinched be-
tween two positive constants. When a subsequence of the lengths of the bound-
ary curves of the geodesic pairs of pants {αn}n converges to zero, Thurston’s
boundary using the length spectrum is strictly larger than PMLbdd(X0).

1. Introduction

A geodesic pair of pants is a bordered hyperbolic surface homeomorphic to a
sphere minus 3 disks such that the boundary consists of 3 closed geodesics (called
cuffs) with possibly 1 or 2 geodesics degenerated to have length 0, i.e. a cusp. Let
X0 be a fixed, geodesically complete, borderless hyperbolic surface which is decom-
posed into a union of infinitely many geodesic pairs of pants called the geodesic
pants decomposition. Each two geodesic pairs of pants are either disjoint or share
a cuff. No end of X0 is a hyperbolic funnel, while an end can be a cusp. The
fundamental group of X0 is infinitely generated and X0 has an infinite area.

The space of all quasiconformal deformations of X0 modulo post-compositions
by conformal maps and homotopies is an infinite-dimensional manifold called the
Teichmüller space T (X0) of X0. Denote by [f ] ∈ T (X0) the equivalence class
of a quasiconformal map f : X0 → X. We study the limiting behaviour of the
quasiconformal deformations ofX0 when the dilatations of the quasiconformal maps
increase without a bound using the marked length spectrum of the image surfaces.
Thurston [27], [14] used the length spectrum to compactify the Teichmüller space
of a closed surface by adding to it the space of projective measured laminations of
the surface. Bonahon [9] used geodesic currents to give an alternative description of
Thurston’s boundary for the Teichmüller space of a closed surface. In [10], geodesic
currents were used to introduce a boundary to T (X0), and one of our goals is to
compare how this geodesic currents boundary differs from Thurston’s boundary
defined using the length spectrum in the case of the above surface X0.

Received by the editors May 25, 2015 and, in revised form, January 22, 2017.
2010 Mathematics Subject Classification. Primary 30F60, 32G15.
This research was partially supported by National Science Foundation grant DMS 1102440.

c©2018 American Mathematical Society

2457

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13738


2458 DRAGOMIR ŠARIĆ

Alvarez and Rodriguez [4] proved that any geodesically complete hyperbolic sur-
face is obtained by gluing geodesic pairs of pants along their cuffs and by attaching
at most countably many funnels with closed geodesic boundary and half-planes with
boundary infinite geodesics (see also [5]). Alessandrini, Liu, Papadopoulos, Su and
Sun [3, Theorem 4.5] proved that if a complete hyperbolic surface has a geodesic
pants decomposition, then any topological pants decomposition can be straightened
to a geodesic pants decomposition (see [7, Proposition 3.1] for a related statement).

We restrict our attention to geodesically complete, infinite area hyperbolic sur-
faces that have geodesic pants decomposition into infinitely many geodesic pairs of
pants (cf. [26], [6], [1]) since, in this case, the Teichmüller space is completely
determined by the marked length spectrum. Shiga [26] initiated the study of
Teichmüller spaces of such surfaces using the length spectrum, and this was con-
tinued by various authors (e.g. [1], [2], [6], [18], [17], [21]).

Let S be a closed hyperbolic surface and let S be the set of all simple closed
geodesics on S. The homotopy class of a quasiconformal map f : S → S1 induces
a function from S to R which assigns to each α ∈ S the length of a geodesic in S1

that is homotopic to f(α). Thus we have an injective map

X : T (S) → R
S
≥0.

The above map is a homeomorphism onto its image if RS
≥0 is equipped with the

weak* topology (cf. [14]).
In the case of a hyperbolic surface X0 equipped with a geodesic pants decomposi-

tion containing infinitely many geodesic pairs of pants, the length spectrum distance
between [f ] ∈ T (X0) and [g] ∈ T (X0) is defined by (cf. [26], [2])

dls([f ], [g]) = sup
α∈S

1

2

∣∣∣ log lf(X0)(f(α))

lg(X0)(g(α))

∣∣∣,
where S is the set of all closed geodesics on X0 and lf(X0)(f(α)) is the length of
the closed geodesic on f(X0) homotopic to the closed curve f(α). Shiga [26] proved
that the topology induced by the length spectrum distance on T (X0) is equal to
the Teichmüller topology when the surface X0 has a geodesic pants decomposition
with lengths of cuffs pinched between two positive constants. Alessandrini, Liu,
Papadopoulos and Su [1] proved that the length spectrum distance on T (X0) is not
complete when X0 contains a sequence of simple closed geodesics whose lengths
go to zero. In fact, they [1] introduced a new space called the length spectrum
Teichmüller space Tls(X0) which contains T (X0) on which dls is complete. We do
not pursue the study of this space since we are interested in comparing the geodesic
currents boundary of T (X0) to that of the length spectrum Thurston’s boundary.

Define l∞X0
to be the set of all h ∈ R

S
≥0 that satisfy supα∈S

∣∣∣ h(α)
lX0

(α)

∣∣∣ < ∞. We

introduce a normalized supremum norm on l∞X0
by

‖h‖norm∞ = sup
α∈S

∣∣∣ h(α)

lX0
(α)

∣∣∣
for h ∈ l∞X0

. Then X (T (X0)) ⊂ l∞X0
and the normalized supremum norm on l∞X0

makes the map X : T (X0) → l∞X0
a homeomorphism onto its image (cf. Proposition

3.1).
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Analogous to the closed surface case, we projectivize X and obtain an injective
map

PX : T (X0) → Pl∞X0
.

By definition, (the length spectrum) Thurston’s boundary of T (X0) consists of the
boundary points of the image PX (T (X0)) of T (X0), where Pl∞X0

is given the quo-
tient topology with respect to the normalized supremum norm on l∞X0

.
Let μ be a bounded measured lamination on X0 (see section 2 for the definition).

For α ∈ S, let i(μ, α) denote the geometric intersection number of the measured
lamination μ and the closed geodesic α. Then i(μ, ·) : S → R is an element of
l∞X0

(see section 4); MLbdd(X0) is identified with its image in l∞X0
; PMLbdd(X0) is

identified with its image in Pl∞X0
.

Theorem 1. Let X0 be a borderless infinite area geodesically complete hyperbolic
surface that has a geodesic pants decomposition with infinitely many geodesic pairs of
pants. Let {αn}n∈N be the family of cuffs of the pants decomposition that are closed
geodesics; i.e. cusps are excluded. The (length spectrum) Thurston’s boundary
of T (X0) is the closure of the space of projective bounded measured laminations
PMLbdd(X0) in Pl∞X0

, where Pl∞X0
has the quotient topology induced by the topology

on l∞X0
coming from the normalized supremum norm.

If the lengths of {αn}n∈N are pinched between two positive constants, then the
length spectrum Thurston’s boundary is equal to PMLbdd(X0) as a set.

If the lengths of {αn}n∈N are bounded from above and there exists a subsequence
{αnk

} whose lengths converge to 0, then the length spectrum Thurston’s boundary
contains PMLbdd(X0) as a proper subset.

In addition, Thurston’s boundary of T (X0) when the hyperbolic surface X0

whose every geodesic pants decomposition does not have an upper bound on the
lengths of cuffs but can be decomposed into bounded polygons with at most n
sides (introduced by Kinjo [17]) equals PMLbdd(X0). On the other hand, if X0

is the surface constructed by Shiga [26] such that the length spectrum distance is
incomplete, then the length spectrum Thurston’s boundary is strictly larger than
PMLbdd(X0) (cf. section 6).

Recall that the quasiconformal Mapping Class Group MCGqc(X0) consists of
all quasiconformal maps g : X0 → X0 up to homotopy (cf. [15]). The action of
MCGqc(X0) on the Teichmüller space T (X0) is given by [f ] �→ [f ◦ g−1] and it is
continuous in the Teichmüller metric dT (for the definition of dT see, for example,
[15] or section 2). Since dls([f ], [g]) ≤ dT ([f ], [g]) for all [f ], [g] ∈ T (X0), the action
is also continuous for the length spectrum distance. We prove

Theorem 2. The action of the quasiconformal Mapping Class Group MCGqc(X0)
on the Teichmüller space T (X0) extends to a continuous action on the length spec-
trum Thurston’s closure of T (X0) for the topology induced by the normalised supre-
mum norm.

The following is a natural question regarding the convergence towards a bound-
ary point.

Open problem. Assume that a sequence in T (X0) converges to a bounded pro-
jective measured lamination in the length spectrum Thurston’s boundary of T (X0).
Is it true that the sequence converges to the same point in the closure introduced
using geodesic currents?
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2. Teichmüller space, measured geodesic laminations and

earthquakes for geometrically infinite hyperbolic surfaces

A geodesic pair of pants is a bordered hyperbolic surface homeomorphic to a
sphere minus 3 disks such that the boundary components are closed geodesics with
possibly one or two of them degenerated to a cusp. The boundary components are
called cuffs. Let X0 be a fixed, borderless, geodesically complete hyperbolic surface
equipped with a geodesic pants decomposition with infinitely many geodesic pairs
of pants. Let {αn}∞n=1 be the family of cuffs which are closed geodesics (i.e. non-
cusps) of the fixed pants decomposition of X0.

The Teichmüller space T (X0) of the surface X0 is the space of equivalence classes
of all quasiconformal maps f : X0 → X whereX is an arbitrary complete hyperbolic
surface. Two quasiconformal maps f1 : X0 → X1 and f2 : X0 → X2 are equivalent
if there exists an isometry I : X1 → X2 such that f−1

2 ◦ I ◦ f1 is homotopic to the
identity. Denote by [f ] the equivalence class of a quasiconformal map f : X0 → X.

The Teichmüller distance on T (X0) is defined by

dT ([f1], [f2]) =
1

2
log inf

g∈[f2◦f−1
1 ]

K(g)

where the infimum is taken over all quasiconformal maps g equivalent to f2 ◦ f−1
1

and K(g) is the quasiconformal constant of g. The Teichmüller topology on T (X0)
is the topology induced by the Teichmüller distance.

If Y is a hyperbolic surface and α a closed curve on Y not homotopic to a point or
a cusp of Y , we denote by lY (α) the length of the unique closed geodesic homotopic
to α. The length spectrum distance on T (X0) is given by

dls([f1], [f2]) = sup
δ∈S

{∣∣∣∣log lf2(X0)(f2(δ))

lf1(X0)(f1(δ))

∣∣∣∣
}
.

Shiga [26] proved that if the cuff family {αn}∞n=1 has positive lower and upper
bounds on their lengths, then the Teichmüller distance induces the same topology as
the length spectrum distance on T (X0). However, there are examples of hyperbolic
surfaces X0 for which the two distances do not induce the same topology on T (X0)
(cf. [26]). We use the topology obtained from the length spectrum distance since
our construction uses the length spectrum of surfaces.

A geodesic lamination on a hyperbolic surface X0 is a closed subset of X0 that
is foliated by non-intersecting complete geodesics called leaves of the lamination.
A stratum of a geodesic lamination is either a leaf of the lamination or a connected
component of the complement. A measured lamination μ on X0 is an assignment of
a positive Radon measure on each arc transverse to a geodesic lamination |μ| that
is invariant under homotopies setwise preserving each leaf of |μ|, and the measure
of a subarc is the restriction of the measure of the arc containing it (cf. [28]). The
geodesic lamination |μ| is called the support of μ. A measured lamination on X
lifts to a measured lamination on the hyperbolic plane H that is invariant under
the covering group of X.

A (left) earthquake E : X0 → X with support geodesic lamination λ is a surjec-
tive map that is an isometry on each stratum of λ such that each stratum is moved
to the left relative to any other stratum. An earthquake E induces a measured
lamination on its support given by the amount of the relative movement to the left;
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an earthquake is uniquely determined by its induced measured lamination up to
the post-composition by an isometry (cf. [28]).

An earthquake E : X0 → X lifts to an earthquake of Ẽ : H → H where the sup-
port of Ẽ is the lift of the support on E (cf. Thurston [27]). The lifted earthquake

Ẽ extends by the continuity to a homeomorphism of the unit circle S1. Thurston’s
earthquake theorem states that any homeomorphism of the unit circle S1 can be
obtained by continuous extension of a left earthquake (cf. Thurston [27]). Thus an
earthquake induces a homeomorphism class of mappings from X0 to X.

We define Thurston’s norm of a measured lamination μ as

‖μ‖Th = sup
J

i(μ, J)

where the supremum is over all hyperbolic arcs J of length 1 and i(·, ·) is the
intersection number (cf. [28], [27]).

A quasiconformal map of X0 onto another surface X lifts to a quasiconformal
map of H, and the latter extends to a quasisymmetric map of the unit circle S1.
Therefore we consider measured laminations whose earthquakes induce quasisym-
metric maps of S1. An earthquake Ẽμ extends by continuity to a quasisymmetric
map of S1 if and only if ‖μ‖Th < ∞ (cf. [27], [16], [21], [22]).

Denote by MLbdd(X0) the space of all measured laminations with finite Thur-
ston’s norm on X0. When MLbdd(X0) is equipped with an appropriate topology,
the map

EM : T (X0) → MLbdd(X0)

is a homeomorphism (cf. [19]).
Note that ‖tμ‖Th = t‖μ‖Th, for t > 0. Then, for ‖μ‖Th < ∞, we have that

t �→ Etμ, for t > 0, is a path in T (X0) called an earthquake path. An earthquake
path in T (X0) leaves every compact subset as t → ∞ and is a convenient tool
for studying Thurston’s boundary. On the other hand, we note that not every
earthquake path that starts in the length spectrum Teichmüller space Tls(X0) stays
inside Tls(X0) (cf. [25]).

3. Thurston’s boundary for Teichmüller spaces

of general surfaces using the length spectrum

Recall that X0 is a fixed, borderless, geodesically complete hyperbolic surface
equipped with a geodesic pants decomposition that contains infinitely many ge-
odesic pairs of pants. In other words, X0 is a geodesically complete hyperbolic
surface formed by gluing infinitely many geodesic pairs of pants along their bound-
aries. Not every surface obtained by gluing infinitely many geodesic pairs of pants
is complete (cf. Basmajian [5]). However, each gluing can be adjusted by choosing
an appropriate twist such that the surface is complete (cf. [7]). We are assuming
that X0 is such a surface.

Denote by S the set of all simple closed geodesics on X0. Recall that l
∞
X0

is the

space of functions h : S → R
+ such that supα∈S

∣∣∣ h(α)
lX0

(α)

∣∣∣ < ∞, where lX0
(α) is the

length of the closed geodesic α. We define a map X from the Teichmüller space
T (X0) into R

S
≥0, for [f ] ∈ T (X0) and α ∈ S,

X ([f ])(α) = lf(X0)(f(α)),
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where f(X0) is the image hyperbolic surface under quasiconformal mapping f and
lf(X0)(f(α)) is the length of the simple closed geodesic on f(X0) homotopic to

a simple closed curve f(α). The map X : T (X0) → R
S
≥0 is injective because it

uniquely determines the Fenchel-Nielsen coordinates which determine f(X0) up to
an isometry (cf. [3]).

Wolpert [29] proved that if f : X0 → X is a K-quasiconformal mapping and α
a closed geodesic in X, then 1

K lX0
(α) ≤ lX(f(α)) ≤ KlX0

(α). This immediately
gives X ([f ]) ∈ l∞X0

. Thus

X : T (X0) → l∞X0
.

We introduce the normalized supremum norm on l∞X0
by

‖h‖norm∞ = sup
α∈S

|h(α)|
lX0

(α)

for all h ∈ l∞X0
.

Proposition 3.1. The length spectrum distance on T (X0) is locally bi-Lipschitz
equivalent to the normalized supremum norm on X (T (X0)).

Remark 3.2. This statement holds for Tls(X0) in the place of T (X0) with the
same proof.

Proof. Indeed, if

sup
α∈S

∣∣∣∣ lf1(X0)(f1(α))

lX0
(α)

−
lf2(X0)(f2(α))

lX0
(α)

∣∣∣∣ < ε,

then

sup
α∈S

lf1(X0)(f1(α))

lX0
(α)

∣∣∣∣1− lf2(X0)(f2(α))

lf1(X0)(f1(α))

∣∣∣∣ < ε.

Since f1 is a quasiconformal map, there exists M > 1 such that 1/M ≤ lf1(X0)(f1(α))

lX0
(α)

≤ M (cf. Wolpert [29]). The above and symmetry imply that∣∣∣∣ lf2(X0)(f2(α))

lf1(X0)(f1(α))
− 1

∣∣∣∣ ,
∣∣∣∣ lf1(X0)(f1(α))

lf2(X0)(f2(α))
− 1

∣∣∣∣ ≤ Mε

for all α ∈ S, and one direction is obtained since | log x|/|x − 1| is between two
positive constants for 1/2 < x < 2. The other direction is obtained by reversing the
order of the above inequalities, and the two distances are locally bi-Lipschitz. �

Denote by
PX : T (X0) → Pl∞X0

the map from T (X0) into the projective space Pl∞X0
= (l∞X0

− {0̄})/R>0. The map
PX is injective on T (X0). The length spectrum Thurston’s boundary of T (X0)
is, by definition, the space of all limit points in Pl∞X0

of the set PX (T (X0)) for
the topology induced by the normalized supremum norm (cf. [14] for Thurston’s
original discussion on closed surfaces).

Note that a measured lamination μ on X0 induces a real valued function on S
by the formula

μ(α) = i(μ, α)

for all α ∈ S, where i(μ, α) is the intersection number. We have

Lemma 3.3. If μ ∈ MLbdd(X0), then i(μ, ·) ∈ l∞X0
.
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Proof. Let α be a closed geodesic in X0. If lX0
(α) > 1, then we define N =

[lX0
(α)]+ 1, where [lX0

(α)] is the integer part of lX0
(α). Since μ ∈ MLbdd(X0), we

have
i(μ, α) ≤ N‖μ‖Th ≤ 2lX0

(α)‖μ‖Th,

which gives
i(μ, α)

lX0
(α)

≤ 2‖μ‖Th.

If lX0
(α) ≤ 1, let N = [1/lX0

(α)] + 1. Note that 1
lX0

(α) ≤ N ≤ 2
lX0

(α) and that

1 ≤ NlX0
(α) ≤ 2. Then we have

Ni(μ, α) = i(μ,Nα) ≤ 2‖μ‖Th

since the length of N consecutive copies of α is at most 2. The above gives

i(μ, α) ≤ 2‖μ‖Th

N
≤ 2‖μ‖ThlX0

(α),

and the lemma follows. �
From now on, we identify μ with this element i(μ, ·) ∈ l∞X0

. The proof of the
above lemma gives

‖i(μ, ·)‖norm∞ ≤ 2‖μ‖Th.

We prove our first result on Thurston’s boundary for T (X0) using the length
spectrum.

Proposition 3.4. Let X0 be a fixed borderless geodesically complete hyperbolic
surface equipped with a geodesic pants decomposition with infinitely many geodesic
pairs of pants. Then the length spectrum Thurston’s boundary of T (X0) contains
the space of projective bounded measured lamination PMLbdd(X0) and it equals
the closure of PMLbdd(X0) for the topology on Pl∞X0

induced by the normalized
supremum norm.

Proof. Let μ ∈ MLbdd(X0) be a non-zero bounded measured lamination on X0.
Denote by Etμ, for t > 0, an earthquake path with the earthquake measure tμ.
Then t �→ Etμ(X0) is a path in T (X0) which leaves every bounded set in T (X0)
because μ ∈ MLbdd(X0) (cf. [21]). Let ft be a quasiconformal map from X0 to Xt

which belongs to the class represented by Etμ.
For α ∈ S, the inequality

lft(X0)(ft(α)) ≤ ti(μ, α) + lX0
(α)

implies that

(1)
1
tX ([ft])(α)− i(μ, α)

lX0
(α)

≤ 1

t

for all α ∈ S and all t > 0.
To obtain the opposite inequality, we choose the universal covering of X0 such

that B(z) = e−lX0
(α)z is a cover transformation corresponding to α. Let O be the

stratum of the lift μ̃ of μ to the universal covering H that contains elX0
(α)i, and let

O1 be the stratum of μ̃ that contains i. Normalize the earthquake Etμ̃ such that
Etμ̃|O = id. Then

Bt = Etμ̃|O1
◦B

is a covering transformation that corresponds to the geodesic on ft(X0) homotopic
to ft(α) (cf. [12]). Denote by lt the translation length of Bt and l = lX0

(α) the
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translation length of B. Let k1 < 0 and k2 > 0 be the endpoints of the hyperbolic
translation Etμ̃|O1

, and let mt be its translation length (cf. Figure 1).

elX0
(α)i

i

O

O1

k1 k2

Figure 1. Computing Etμ̃|O1
.

A direct computation (cf. [25]) gives

trace(Bt) = 2 cosh
mt − l

2
− 2k1

k2 − k1

(
cosh

mt + l

2
− cosh

mt − l

2

)
.

Consequently

2 cosh
lt
2
= trace(Bt) ≥ 2 cosh

mt − l

2
,

which implies that
lt ≥ mt − l.

Since the translation length of a composition of two hyperbolic translations (with
non-intersecting axis and translating in the same direction) is at least as large as
the sum of their translation lengths (cf. [27]), it follows that

mt ≥ ti(μ, α).

The above two inequalities give

1

t

lt
l
≥ i(μ, α)

l
− 1

t
,

which implies that

(2)
1

t

X ([ft])(α)

lX0
(α)

− i(μ, α)

lX0
(α)

≥ −1

t
.

Then equations (1) and (2) give that, uniformly in α ∈ S,

lim
t→∞

1

t

X ([ft])(α)

lX0
(α)

=
i(μ, α)

lX0
(α)

.
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We established that each point in PMLbdd(X0) is in Thurston’s boundary.
Let σ ∈ l∞X0

be such that its projective class [σ] is in the length spectrum
Thurston’s boundary. We need to establish that [σ] is in the closure of PMLbdd(X0)
for the normalized supremum norm.

By assumption, there exists a sequence [fn] ∈ T (X0) that converges to the
projective class [σ] ∈ Pl∞X0

. Equivalently there exists a sequence tn → ∞ as n → ∞
such that 1

tn
X ([fn]) → σ as n → ∞ in the normalized supremum norm. Necessarily

we have supn ‖ 1
tn
X ([fn])‖norm∞ < ∞.

Let fn be represented by a sequence of earthquakes Et′nμn with ‖μn‖Th = 1 and
t′n > 0. Then t′n → ∞ as n → ∞ and the first part of the proof gives

‖ 1

t′n
X ([fn])− μn‖norm∞ <

1

t′n
.

Note that if ‖μn‖Th = 1, then ‖μn‖norm∞ ≤ 2 by the proof of Lemma 3.3. Then the
above inequality implies that ‖ 1

t′n
X ([fn])‖norm∞ ≤ 3 for all t′n with n large enough,

and the sequence
t′n
tn

is bounded from above and below by positive numbers. By

choosing a subsequence, if necessary, we can assume that
t′n
tn

→ c > 0 as n → ∞.
It follows that, as n → ∞,

‖ 1

tn
X ([fn])− cμn‖norm∞ → 0,

which implies that

‖cμn − σ‖norm∞ → 0,

and the proof is completed. �

The first part of Theorem 1 from the introduction follows by the above proposi-
tion.

4. Infinite area surfaces with bounded geodesic

pants decompositions

As before, X0 is a fixed, borderless, geodesically complete hyperbolic surface
equipped with a geodesic pants decomposition containing infinitely many geodesic
pairs of pants. Let {αn}n∈N be the family of cuffs (i.e. boundary components) that
are closed geodesics (i.e. non-cusps) of the geodesic pants decomposition of X0. We
say that the geodesic pants decomposition of X0 is upper-bounded if there exists
M > 0 such that, for each n ∈ N,

lX0
(αn) ≤ M

where lX0
(αn) is the length of αn in the hyperbolic metric of X0 (cf. [1]). Moreover,

the geodesic pants decomposition is lower-bounded if there exists m > 0 such that,
for each n ∈ N,

lX0
(αn) ≥ m.

Finally, the geodesic pants decomposition of X0 is bounded if it is both upper- and
lower-bounded.

The next proposition establishes that the length spectrum Thurston’s boundary
coincides with the boundary for T (X0) introduced using the geodesic currents when
X0 has a bounded geodesic pants decomposition (cf. [10]). We note that the
convergence in the two closures of T (X0) might be different.
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Proposition 4.1. Assume that X0 has a bounded geodesic pants decomposition.
Then the length spectrum Thurston’s boundary is equal to the space of projective
bounded measured laminations PMLbdd(X0) on X0.

Proof. Consider a sequence of points [fk] ∈ T (X0) that converge to (the projective
class ) [σ] ∈ Pl∞X0

in the length spectrum Thurston’s boundary of T (X0). Then

there exists a sequence tk → ∞ as k → ∞ such that 1
tk
X ([fk]) → σ in l∞X0

− {0̄},
where 0̄(α) = 0 for all α ∈ S. Let Etkβk be a sequence of earthquakes of X0 that
represent the equivalence class [fk], where ‖βk‖Th < ∞ (cf. [27]).

The proof of the above proposition gives

(3)
∣∣∣ 1
tk

X (Etkβk)(α)

lX0
(α)

− i(βk, α)

lX0
(α)

∣∣∣ ≤ 1

tk

for all α ∈ S.
Since 1

tk
X ([fk]) → σ, the above inequality implies that∣∣∣∣ i(βk, α)

lX0
(α)

− σ(α)

lX0
(α)

∣∣∣∣ → 0

as k → ∞ uniformly in α ∈ S. Define

‖β‖ls = sup
α∈S

i(β, α)

lX0
(α)

for any β ∈ MLbdd(X0). The above convergence gives

sup
k∈N

‖βk‖ls = N < ∞.

We use the assumption that X0 has a bounded geodesic pants decomposition in
order to prove that ‖βk‖Th is bounded in k. Indeed, let {αn}n∈N be (non-cusp)
cuffs of the geodesic pants decomposition of X0. Then there exists M > 1 with

1

M
≤ lX0

(αn) ≤ M

for all n ∈ N. Let P i be a geodesic pair of pants in the above decomposition with the
cuffs αij , for j = 1, 2, 3. Assume first that αij , for j = 1, 2, 3, are different geodesics

of X0. Denote by Pij , j = 1, 2, 3, adjacent pairs of pants to P i with common

cuff αij . Then there exists a simple closed geodesic α∗
ij

in Pij ∪ P i that intersects

αij in two points such that lX0
(α∗

ij
) is bounded from above and below by positive

constants depending only on M > 0. The components of P i −
⋃3

j=1(αij ∪ α∗
ij
)

are simply connected for each i (cf. Figure 2). If two of αij , for j = 1, 2, 3, is
the same geodesic, then a similar construction yields α∗

ij
such that components of

Pi −
⋃3

j=1(αij ∪ α∗
ij
) are simply connected and lX0

(α∗
ij
) is bounded in terms of M .

The above convergence of βk to σ and boundedness of the lengths of αij and α∗
ij

on X0 imply that

i(βk, αij ), i(βk, α
∗
ij ) < C(M)

for some constant C = C(M) and for all i, k ∈ N and j = 1, 2, 3. Since X0 −⋃
i

⋃3
j=1{αij , α

∗
ij
} has simply connected and uniformly bounded components (that

are polygons with at most six sides) whose boundaries are subarcs of αij , α
∗
ij
, we

conclude that the supremum over all k and over all above components of the βk-mass
of the geodesics intersecting components is finite. Since each geodesic arc of length
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-

Pi2

Pi3

αi2

αi3

P i

αi1

Pi1α∗
i1

Figure 2. Decomposition of X0 into bounded polygons.

1 on X0 can intersect at most finitely many components of X0−
⋃

i

⋃3
j=1{αij , α

∗
ij
},

it follows that supk∈N ‖βk‖Th < ∞.
By supk∈N

‖βk‖Th < ∞, there exists a subsequence βkj
and β∗ ∈ MLbdd(X0)

such that βkj
→ β∗ as j → ∞ in the weak* topology. (The weak* topology is

described in terms of the lifts of the measured laminations βk to the universal
covering H.) Then

σ(α) = β∗(α)

for all α ∈ S and

‖β∗‖Th < ∞.

Thus any point in the length spectrum Thurston’s boundary is in PMLbdd(X0).
The above proposition gives that all points in PMLbdd(X0) are also in the length
spectrum Thurston’s boundary for T (X0). �

5. Infinite hyperbolic surfaces with upper-bounded

geodesic pants decompositions

Let X0 be a fixed, borderless, geodesically complete hyperbolic surface equipped
with an upper-bounded geodesic pants decomposition. Namely, if {αn}n∈N are cuffs
(that are not cusps) of the geodesic pants decomposition, then

sup
n

lX0
(αn) = M < ∞.
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In addition, we assume that there exists a subsequence {αnj
}j with lX0

(αnj
) > 0

and lX0
(αnj

) → 0 as j → ∞. Let P 1
n and P 2

n be the geodesic pairs of pants in P
with a common cuff αn (possibly P 1

n = P 2
n). Let γn be a shortest closed geodesic

in P 1
n ∪ P 2

n that intersects αn in either one point (when P 1
n = P 2

n) or in two points
(when P 1

n �= P 2
n). We have that (cf. [1])

lX0
(γn)

max{1, | log lX0
(αn)|}

= O(1),

where O(1) is a function pinched between two positive constants.

Proposition 5.1. Let X0 be a geodesically complete infinite area hyperbolic surface
with an upper-bounded geodesic pants decomposition with (non-cusp) cuffs {αn}n∈N

such that a subsequence of cuffs αnj
have lengths going to zero. Then the length

spectrum Thurston’s boundary of T (X0) is strictly larger than PMLbdd(X0).

Proof. We use the description of the closure of T (X0) in the Fenchel-Nielsen co-
ordinates for the pants decomposition with (non-cusp) cuffs {αn}n∈N. Namely, a
marked surface f : X0 → X is in T (X0) if and only if the corresponding Fenchel-

Nielsen coordinates {( lX(αn)
lX0

(αn)
, tX(αn))}n∈N are uniformly bounded; f : X0 → X

is in the closure of T (X0) if and only if { lX(f(αn))
lX0

(αn)
}n is bounded and |tX(αn)| =

o(max{1, | log lX0
(αn)|}) for all n (cf. [23]).

Define a measured lamination μ =
∑

j wjαnj
for some wj = o(| log lX0

(αnj
)|)

with wj → ∞ as j → ∞. Then μ is not Thurston bounded and Etμ(X0) = Xt

is in the closure of T (X0) for the length spectrum metric (cf. [23]). The proof
of Proposition 3.4 extends to μ to get 1

tX (Xt) → μ as t → ∞ in the normalised
supremum norm. Since each Xt is a limit of points in T (X0), it follows that μ is
in Thurston’s boundary and the proof is completed. �

Theorem 1 from the introduction is established by Propositions 3.4, 4.1 and 5.1.

6. Two infinite surfaces with unbounded geodesic

pants decompositions

The first surface X1 that we consider was introduced by Kinjo [17]. Let Γ′ be the
hyperbolic triangle group of signature (2, 4, 8). Let T ′ be the triangle fundamental
polygon for Γ′ with angles π/2, π/4 and π/8. Then Γ′(T ′) tiles the hyperbolic plane
H. Let T be the union of T ′ and γ′

0(T
′), where γ′

0 ∈ Γ′ is a reflection in the geodesic
containing the side of T ′ which subtends the angles π/2 and π/8 of T ′. Denote the
vertices of T by a, b and c; the vertex b is where T ′ has angle π/8 (cf. [17, Figure
2]). We choose three points a′, b′ and c′ close to a, b and c, respectively, in the
interior of the triangle T such that b′ is on the side of T ′ containing b. The surface
X1 is obtained by puncturing the hyperbolic plane at the points Γ′{a′, b′, c′} (cf.
[17, Figures 2, 3]). Kinjo [17] proved that the length spectrum distance induces the
same topology on T (X0) as the Teichmüller distance.

Let {γi}i=1,...,8 be the elements of Γ′ that fix a. Let la be the simple closed
geodesic which separates the eight points {γi(a′)}i=1,...,8 from the other punctures
of X1. We similarly define curves lb and lc, and then extend the definition using Γ′

to all other groups of eight cusps. The lengths of all Γ′(la) are the same, as well as
the lengths of all Γ′(lb), as well as the lengths of all Γ′(lc).



THURSTON’S BOUNDARY 2469

For the triangle T , we denote by la′,b′ the simple closed geodesic which is ho-
motopic to a simple closed curve in T that separates a′, b′ from c′. We similarly
extend the definition to lb′,c′ and lc′,a′ , and then extend it to all triangles using the
invariance under Γ′. Note that the lengths of Γ′(la′,b′) are the same, as well as the
lengths of all Γ′(lb′,c′), and the lengths of all Γ′(lc′,a′).

The lengths of the family of geodesics Γ′(la)∪Γ′(lb)∪Γ′(lc)∪Γ′(la′,b′)∪Γ′(lb′,c′)∪
Γ′(lc′,a′) are bounded from below and from above, and this family separates the
surface X1 into finite bounded polygons with a uniformly bounded number of
sides. Then the proof of Proposition 5.1 extends to show that the length spec-
trum Thurston’s boundary coincides with PMLbdd(X1).

Denote by X2 an infinite hyperbolic surface defined by Shiga [26] that has geo-
desic pants decomposition with cuff lengths converging to infinity. The surface X2

contains a sequence γn of simple closed geodesics with lX2
(γn) → ∞ as n → ∞

such that for each closed geodesic δ we have

(4) lX2
(δ) ≥

∞∑
k=1

klX2
(γk)i(γk, δ),

where only finitely many terms are non-zero. Shiga [26] proved that a sequence of
full Dehn twists fn around the curve γn diverges in the Teichmüller metric and it
converges to the identity in the length spectrum distance. Thus the two metrics
produce different topologies on T (X2).

We define βn to be a measured lamination whose support is {γk}k=1,...,n such
that, for k = 1, . . . , n,

βn|γk
= lX2

(γk).

The projective class [βn] is in PMLbdd(X2). Define β∗ to be a measured lamination
on X2 whose support is {γk}∞k=1 such that, for all k = 1, 2, . . . ,

β∗|γk
= lX2

(γk).

It is clear that the projective class [β∗] is not in PMLbdd(X2).
We prove that [βn] → [β∗] as n → ∞ in the normalized supremum norm. Indeed,

let δ be a simple closed geodesic in X2. Then

|i(βn, δ)− i(β∗, δ)|
lX2

(δ)
=

∞∑
k=n+1

i(βk, δ)

lX2
(δ)

=

∑∞
k=n+1 i(δ, γk)lX2

(γk)∑∞
k=1 ki(δ, γk)lX2

(γk)
≤ 1

n+ 1
,

and [β∗] is in the length spectrum Thurston’s boundary of T (X2). Therefore the
boundary is larger than PMLbdd(X2).

7. Proof of Theorem 2

Let [h] ∈ Pl∞X0
be a point in the length spectrum Thurston’s closure of T (X0).

Let [fn] ∈ T (X0) be a sequence which converges to [h]. Thus there exists tn → ∞
as n → ∞ such that

sup
α∈S

∣∣∣∣ 1tn
lfn(X0)(fn(α))

lX0
(α)

− h(α)

lX0
(α)

∣∣∣∣ → 0

as n → ∞.
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Let g ∈ MCGqc(X0). We need to prove that [fn ◦ g−1] → [h ◦ g−1] as n → ∞.
Note that

sup
α∈S

∣∣∣∣ 1tn
lfn(g−1(X0))(fn(g

−1(α)))

lX0
(α)

− h(g−1(α))

lX0
(α)

∣∣∣∣
≤ K sup

g−1(α)∈S

∣∣∣∣ 1tn
lfn((X0))(fn(g

−1(α)))

lX0
(g−1(α))

− h(g−1(α))

lX0
(g−1(α))

∣∣∣∣
where g is a K-quasiconformal map, because

lX0
(g−1(α))

lX0
(α) ≤ K, g−1(X0) = X0 and

g−1 is a bijection between homotopy classes of closed curves on X0. The theorem
follows by letting n → ∞ in the above inequality.
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sics, Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition. MR2742784

[12] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sulli-
van, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space
(Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ.
Press, Cambridge, 1987, pp. 113–253. MR903852

[13] D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the
convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305–336, DOI 10.4007/an-
nals.2004.159.305. MR2052356

[14] Albert Fathi, François Laudenbach, and Valentin Poénaru, Thurston’s work on surfaces,
Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012. Translated
from the 1979 French original by Djun M. Kim and Dan Margalit. MR3053012

http://www.ams.org/mathscinet-getitem?mr=2865518
http://www.ams.org/mathscinet-getitem?mr=3449399
http://www.ams.org/mathscinet-getitem?mr=2865518
http://www.ams.org/mathscinet-getitem?mr=2025333
http://www.ams.org/mathscinet-getitem?mr=1087051
http://www.ams.org/mathscinet-getitem?mr=2449153
http://www.ams.org/mathscinet-getitem?mr=698777
http://www.ams.org/mathscinet-getitem?mr=931208
http://www.ams.org/mathscinet-getitem?mr=2742784
http://www.ams.org/mathscinet-getitem?mr=903852
http://www.ams.org/mathscinet-getitem?mr=2052356
http://www.ams.org/mathscinet-getitem?mr=3053012


THURSTON’S BOUNDARY 2471

[15] Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical
Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000.
MR1730906

[16] F. P. Gardiner, J. Hu, and N. Lakic, Earthquake curves, Complex manifolds and hyperbolic
geometry (Guanajuato, 2001), Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI,
2002, pp. 141–195, DOI 10.1090/conm/311/05452. MR1940169

[17] Erina Kinjo, On Teichmüller metric and the length spectrums of topologically infinite Rie-

mann surfaces, Kodai Math. J. 34 (2011), no. 2, 179–190, DOI 10.2996/kmj/1309829545.
MR2811639

[18] Katsuhiko Matsuzaki, A classification of the modular transformations of infinite dimensional
Teichmüller spaces, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer.
Math. Soc., Providence, RI, 2007, pp. 167–177, DOI 10.1090/conm/432/08307. MR2342814
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[21] Dragomir Šarić, Real and complex earthquakes, Trans. Amer. Math. Soc. 358 (2006), no. 1,
233–249, DOI 10.1090/S0002-9947-05-03651-2. MR2171231
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