THURSTON'S BOUNDARY FOR TEICHMÜLLER SPACES OF INFINITE SURFACES: THE LENGTH SPECTRUM

DRAGOMIR ŠARIĆ
(Communicated by Michael Wolf)

Abstract

Let X_{0} be an infinite area geodesically complete hyperbolic surface which can be decomposed into geodesic pairs of pants. We introduce Thurston's boundary to the Teichmüller space $T\left(X_{0}\right)$ of the surface X_{0} using the length spectrum analogous to Thurston's construction for finite surfaces. Thurston's boundary using the length spectrum is a "closure" of projective bounded measured laminations $P M L_{b d d}\left(X_{0}\right)$, and it coincides with $P M L_{b d d}\left(X_{0}\right)$ when X_{0} can be decomposed into a countable union of geodesic pairs of pants whose boundary geodesics $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ have lengths pinched between two positive constants. When a subsequence of the lengths of the boundary curves of the geodesic pairs of pants $\left\{\alpha_{n}\right\}_{n}$ converges to zero, Thurston's boundary using the length spectrum is strictly larger than $P M L_{b d d}\left(X_{0}\right)$.

1. Introduction

A geodesic pair of pants is a bordered hyperbolic surface homeomorphic to a sphere minus 3 disks such that the boundary consists of 3 closed geodesics (called cuffs) with possibly 1 or 2 geodesics degenerated to have length 0 , i.e. a cusp. Let X_{0} be a fixed, geodesically complete, borderless hyperbolic surface which is decomposed into a union of infinitely many geodesic pairs of pants called the geodesic pants decomposition. Each two geodesic pairs of pants are either disjoint or share a cuff. No end of X_{0} is a hyperbolic funnel, while an end can be a cusp. The fundamental group of X_{0} is infinitely generated and X_{0} has an infinite area.

The space of all quasiconformal deformations of X_{0} modulo post-compositions by conformal maps and homotopies is an infinite-dimensional manifold called the Teichmüller space $T\left(X_{0}\right)$ of X_{0}. Denote by $[f] \in T\left(X_{0}\right)$ the equivalence class of a quasiconformal map $f: X_{0} \rightarrow X$. We study the limiting behaviour of the quasiconformal deformations of X_{0} when the dilatations of the quasiconformal maps increase without a bound using the marked length spectrum of the image surfaces. Thurston [27], [14] used the length spectrum to compactify the Teichmüller space of a closed surface by adding to it the space of projective measured laminations of the surface. Bonahon [9] used geodesic currents to give an alternative description of Thurston's boundary for the Teichmüller space of a closed surface. In [10], geodesic currents were used to introduce a boundary to $T\left(X_{0}\right)$, and one of our goals is to compare how this geodesic currents boundary differs from Thurston's boundary defined using the length spectrum in the case of the above surface X_{0}.

[^0]Alvarez and Rodriguez [4] proved that any geodesically complete hyperbolic surface is obtained by gluing geodesic pairs of pants along their cuffs and by attaching at most countably many funnels with closed geodesic boundary and half-planes with boundary infinite geodesics (see also [5). Alessandrini, Liu, Papadopoulos, Su and Sun [3, Theorem 4.5] proved that if a complete hyperbolic surface has a geodesic pants decomposition, then any topological pants decomposition can be straightened to a geodesic pants decomposition (see [7, Proposition 3.1] for a related statement).

We restrict our attention to geodesically complete, infinite area hyperbolic surfaces that have geodesic pants decomposition into infinitely many geodesic pairs of pants (cf. [26], [6, [1]) since, in this case, the Teichmüller space is completely determined by the marked length spectrum. Shiga [26] initiated the study of Teichmüller spaces of such surfaces using the length spectrum, and this was continued by various authors (e.g. [1], 2], 6], 18], [17, [21).

Let S be a closed hyperbolic surface and let \mathcal{S} be the set of all simple closed geodesics on S. The homotopy class of a quasiconformal map $f: S \rightarrow S_{1}$ induces a function from \mathcal{S} to \mathbb{R} which assigns to each $\alpha \in \mathcal{S}$ the length of a geodesic in S_{1} that is homotopic to $f(\alpha)$. Thus we have an injective map

$$
\mathcal{X}: T(S) \rightarrow \mathbb{R}_{\geq 0}^{\mathcal{S}}
$$

The above map is a homeomorphism onto its image if $\mathbb{R}_{\geq 0}^{\mathcal{S}}$ is equipped with the weak* topology (cf. [14]).

In the case of a hyperbolic surface X_{0} equipped with a geodesic pants decomposition containing infinitely many geodesic pairs of pants, the length spectrum distance between $[f] \in T\left(X_{0}\right)$ and $[g] \in T\left(X_{0}\right)$ is defined by (cf. [26, [2])

$$
d_{l s}([f],[g])=\sup _{\alpha \in \mathcal{S}} \frac{1}{2}\left|\log \frac{l_{f\left(X_{0}\right)}(f(\alpha))}{l_{g\left(X_{0}\right)}(g(\alpha))}\right|,
$$

where \mathcal{S} is the set of all closed geodesics on X_{0} and $l_{f\left(X_{0}\right)}(f(\alpha))$ is the length of the closed geodesic on $f\left(X_{0}\right)$ homotopic to the closed curve $f(\alpha)$. Shiga [26] proved that the topology induced by the length spectrum distance on $T\left(X_{0}\right)$ is equal to the Teichmüller topology when the surface X_{0} has a geodesic pants decomposition with lengths of cuffs pinched between two positive constants. Alessandrini, Liu, Papadopoulos and $\mathrm{Su}[1]$ proved that the length spectrum distance on $T\left(X_{0}\right)$ is not complete when X_{0} contains a sequence of simple closed geodesics whose lengths go to zero. In fact, they [1] introduced a new space called the length spectrum Teichmüller space $T_{l s}\left(X_{0}\right)$ which contains $T\left(X_{0}\right)$ on which $d_{l s}$ is complete. We do not pursue the study of this space since we are interested in comparing the geodesic currents boundary of $T\left(X_{0}\right)$ to that of the length spectrum Thurston's boundary.

Define $l_{X_{0}}^{\infty}$ to be the set of all $h \in \mathbb{R}_{\geq 0}^{\mathcal{S}}$ that satisfy $\sup _{\alpha \in \mathcal{S}}\left|\frac{h(\alpha)}{l_{X_{0}}(\alpha)}\right|<\infty$. We introduce a normalized supremum norm on $l_{X_{0}}^{\infty}$ by

$$
\|h\|_{\infty}^{\text {norm }}=\sup _{\alpha \in \mathcal{S}}\left|\frac{h(\alpha)}{l_{X_{0}}(\alpha)}\right|
$$

for $h \in l_{X_{0}}^{\infty}$. Then $\mathcal{X}\left(T\left(X_{0}\right)\right) \subset l_{X_{0}}^{\infty}$ and the normalized supremum norm on $l_{X_{0}}^{\infty}$ makes the map $\mathcal{X}: T\left(X_{0}\right) \rightarrow l_{X_{0}}^{\infty}$ a homeomorphism onto its image (cf. Proposition (3.1).

Analogous to the closed surface case, we projectivize \mathcal{X} and obtain an injective map

$$
P \mathcal{X}: T\left(X_{0}\right) \rightarrow P l_{X_{0}}^{\infty} .
$$

By definition, (the length spectrum) Thurston's boundary of $T\left(X_{0}\right)$ consists of the boundary points of the image $P \mathcal{X}\left(T\left(X_{0}\right)\right)$ of $T\left(X_{0}\right)$, where $P l_{X_{0}}^{\infty}$ is given the quotient topology with respect to the normalized supremum norm on $l_{X_{0}}^{\infty}$.

Let μ be a bounded measured lamination on X_{0} (see section 2 for the definition). For $\alpha \in \mathcal{S}$, let $i(\mu, \alpha)$ denote the geometric intersection number of the measured lamination μ and the closed geodesic α. Then $i(\mu, \cdot): \mathcal{S} \rightarrow \mathbb{R}$ is an element of $l_{X_{0}}^{\infty}$ (see section 4); $M L_{b d d}\left(X_{0}\right)$ is identified with its image in $l_{X_{0}}^{\infty} ; P M L_{b d d}\left(X_{0}\right)$ is identified with its image in $P l_{X_{0}}^{\infty}$.
Theorem 1. Let X_{0} be a borderless infinite area geodesically complete hyperbolic surface that has a geodesic pants decomposition with infinitely many geodesic pairs of pants. Let $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ be the family of cuffs of the pants decomposition that are closed geodesics; i.e. cusps are excluded. The (length spectrum) Thurston's boundary of $T\left(X_{0}\right)$ is the closure of the space of projective bounded measured laminations $P M L_{b d d}\left(X_{0}\right)$ in $P l_{X_{0}}^{\infty}$, where $P l_{X_{0}}^{\infty}$ has the quotient topology induced by the topology on $l_{X_{0}}^{\infty}$ coming from the normalized supremum norm.

If the lengths of $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ are pinched between two positive constants, then the length spectrum Thurston's boundary is equal to $P M L_{b d d}\left(X_{0}\right)$ as a set.

If the lengths of $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ are bounded from above and there exists a subsequence $\left\{\alpha_{n_{k}}\right\}$ whose lengths converge to 0 , then the length spectrum Thurston's boundary contains $P M L_{b d d}\left(X_{0}\right)$ as a proper subset.

In addition, Thurston's boundary of $T\left(X_{0}\right)$ when the hyperbolic surface X_{0} whose every geodesic pants decomposition does not have an upper bound on the lengths of cuffs but can be decomposed into bounded polygons with at most n sides (introduced by Kinjo [17]) equals $P M L_{b d d}\left(X_{0}\right)$. On the other hand, if X_{0} is the surface constructed by Shiga [26] such that the length spectrum distance is incomplete, then the length spectrum Thurston's boundary is strictly larger than $P M L_{b d d}\left(X_{0}\right)$ (cf. section 6).

Recall that the quasiconformal Mapping Class Group $M C G_{q c}\left(X_{0}\right)$ consists of all quasiconformal maps $g: X_{0} \rightarrow X_{0}$ up to homotopy (cf. [15]). The action of $M C G_{q c}\left(X_{0}\right)$ on the Teichmüller space $T\left(X_{0}\right)$ is given by $[f] \mapsto\left[f \circ g^{-1}\right]$ and it is continuous in the Teichmüller metric d_{T} (for the definition of d_{T} see, for example, [15] or section 2). Since $d_{l s}([f],[g]) \leq d_{T}([f],[g])$ for all $[f],[g] \in T\left(X_{0}\right)$, the action is also continuous for the length spectrum distance. We prove

Theorem 2. The action of the quasiconformal Mapping Class Group $M C G_{q c}\left(X_{0}\right)$ on the Teichmüller space $T\left(X_{0}\right)$ extends to a continuous action on the length spectrum Thurston's closure of $T\left(X_{0}\right)$ for the topology induced by the normalised supremum norm.

The following is a natural question regarding the convergence towards a boundary point.

Open problem. Assume that a sequence in $T\left(X_{0}\right)$ converges to a bounded projective measured lamination in the length spectrum Thurston's boundary of $T\left(X_{0}\right)$. Is it true that the sequence converges to the same point in the closure introduced using geodesic currents?

2. TEICHMÜLLER SPACE, MEASURED GEODESIC LAMINATIONS AND EARTHQUAKES FOR GEOMETRICALLY INFINITE HYPERBOLIC SURFACES

A geodesic pair of pants is a bordered hyperbolic surface homeomorphic to a sphere minus 3 disks such that the boundary components are closed geodesics with possibly one or two of them degenerated to a cusp. The boundary components are called cuffs. Let X_{0} be a fixed, borderless, geodesically complete hyperbolic surface equipped with a geodesic pants decomposition with infinitely many geodesic pairs of pants. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be the family of cuffs which are closed geodesics (i.e. noncusps) of the fixed pants decomposition of X_{0}.

The Teichmüller space $T\left(X_{0}\right)$ of the surface X_{0} is the space of equivalence classes of all quasiconformal maps $f: X_{0} \rightarrow X$ where X is an arbitrary complete hyperbolic surface. Two quasiconformal maps $f_{1}: X_{0} \rightarrow X_{1}$ and $f_{2}: X_{0} \rightarrow X_{2}$ are equivalent if there exists an isometry $I: X_{1} \rightarrow X_{2}$ such that $f_{2}^{-1} \circ I \circ f_{1}$ is homotopic to the identity. Denote by $[f]$ the equivalence class of a quasiconformal map $f: X_{0} \rightarrow X$.

The Teichmüller distance on $T\left(X_{0}\right)$ is defined by

$$
d_{T}\left(\left[f_{1}\right],\left[f_{2}\right]\right)=\frac{1}{2} \log \inf _{g \in\left[f_{2} \circ f_{1}^{-1}\right]} K(g)
$$

where the infimum is taken over all quasiconformal maps g equivalent to $f_{2} \circ f_{1}^{-1}$ and $K(g)$ is the quasiconformal constant of g. The Teichmüller topology on $T\left(X_{0}\right)$ is the topology induced by the Teichmüller distance.

If Y is a hyperbolic surface and α a closed curve on Y not homotopic to a point or a cusp of Y, we denote by $l_{Y}(\alpha)$ the length of the unique closed geodesic homotopic to α. The length spectrum distance on $T\left(X_{0}\right)$ is given by

$$
d_{l s}\left(\left[f_{1}\right],\left[f_{2}\right]\right)=\sup _{\delta \in \mathcal{S}}\left\{\left|\log \frac{l_{f_{2}\left(X_{0}\right)}\left(f_{2}(\delta)\right)}{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\delta)\right)}\right|\right\} .
$$

Shiga [26] proved that if the cuff family $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ has positive lower and upper bounds on their lengths, then the Teichmüller distance induces the same topology as the length spectrum distance on $T\left(X_{0}\right)$. However, there are examples of hyperbolic surfaces X_{0} for which the two distances do not induce the same topology on $T\left(X_{0}\right)$ (cf. [26]). We use the topology obtained from the length spectrum distance since our construction uses the length spectrum of surfaces.

A geodesic lamination on a hyperbolic surface X_{0} is a closed subset of X_{0} that is foliated by non-intersecting complete geodesics called leaves of the lamination. A stratum of a geodesic lamination is either a leaf of the lamination or a connected component of the complement. A measured lamination μ on X_{0} is an assignment of a positive Radon measure on each arc transverse to a geodesic lamination $|\mu|$ that is invariant under homotopies setwise preserving each leaf of $|\mu|$, and the measure of a subarc is the restriction of the measure of the arc containing it (cf. [28]). The geodesic lamination $|\mu|$ is called the support of μ. A measured lamination on X lifts to a measured lamination on the hyperbolic plane \mathbb{H} that is invariant under the covering group of X.

A (left) earthquake $E: X_{0} \rightarrow X$ with support geodesic lamination λ is a surjective map that is an isometry on each stratum of λ such that each stratum is moved to the left relative to any other stratum. An earthquake E induces a measured lamination on its support given by the amount of the relative movement to the left;
an earthquake is uniquely determined by its induced measured lamination up to the post-composition by an isometry (cf. [28).

An earthquake $E: X_{0} \rightarrow X$ lifts to an earthquake of $\tilde{E}: \mathbb{H} \rightarrow \mathbb{H}$ where the support of \tilde{E} is the lift of the support on E (cf. Thurston [27]). The lifted earthquake \tilde{E} extends by the continuity to a homeomorphism of the unit circle S^{1}. Thurston's earthquake theorem states that any homeomorphism of the unit circle S^{1} can be obtained by continuous extension of a left earthquake (cf. Thurston [27]). Thus an earthquake induces a homeomorphism class of mappings from X_{0} to X.

We define Thurston's norm of a measured lamination μ as

$$
\|\mu\|_{T h}=\sup _{J} i(\mu, J)
$$

where the supremum is over all hyperbolic arcs J of length 1 and $i(\cdot, \cdot)$ is the intersection number (cf. [28, [27]).

A quasiconformal map of X_{0} onto another surface X lifts to a quasiconformal map of \mathbb{H}, and the latter extends to a quasisymmetric map of the unit circle S^{1}. Therefore we consider measured laminations whose earthquakes induce quasisymmetric maps of S^{1}. An earthquake \tilde{E}^{μ} extends by continuity to a quasisymmetric map of S^{1} if and only if $\|\mu\|_{T h}<\infty$ (cf. [27, [16, [21], [22]).

Denote by $M L_{b d d}\left(X_{0}\right)$ the space of all measured laminations with finite Thurston's norm on X_{0}. When $M L_{b d d}\left(X_{0}\right)$ is equipped with an appropriate topology, the map

$$
E M: T\left(X_{0}\right) \rightarrow M L_{b d d}\left(X_{0}\right)
$$

is a homeomorphism (cf. 19]).
Note that $\|t \mu\|_{T h}=t\|\mu\|_{T h}$, for $t>0$. Then, for $\|\mu\|_{T h}<\infty$, we have that $t \mapsto E^{t \mu}$, for $t>0$, is a path in $T\left(X_{0}\right)$ called an earthquake path. An earthquake path in $T\left(X_{0}\right)$ leaves every compact subset as $t \rightarrow \infty$ and is a convenient tool for studying Thurston's boundary. On the other hand, we note that not every earthquake path that starts in the length spectrum Teichmüller space $T_{l s}\left(X_{0}\right)$ stays inside $T_{l s}\left(X_{0}\right)$ (cf. [25]).

3. Thurston's boundary for Teichmüller spaces OF GENERAL SURFACES USING THE LENGTH SPECTRUM

Recall that X_{0} is a fixed, borderless, geodesically complete hyperbolic surface equipped with a geodesic pants decomposition that contains infinitely many geodesic pairs of pants. In other words, X_{0} is a geodesically complete hyperbolic surface formed by gluing infinitely many geodesic pairs of pants along their boundaries. Not every surface obtained by gluing infinitely many geodesic pairs of pants is complete (cf. Basmajian [5). However, each gluing can be adjusted by choosing an appropriate twist such that the surface is complete (cf. [7]). We are assuming that X_{0} is such a surface.

Denote by \mathcal{S} the set of all simple closed geodesics on X_{0}. Recall that $l_{X_{0}}^{\infty}$ is the space of functions $h: \mathcal{S} \rightarrow \mathbb{R}^{+}$such that $\sup _{\alpha \in \mathcal{S}}\left|\frac{h(\alpha)}{l_{X_{0}}(\alpha)}\right|<\infty$, where $l_{X_{0}}(\alpha)$ is the length of the closed geodesic α. We define a map \mathcal{X} from the Teichmüller space $T\left(X_{0}\right)$ into $\mathbb{R}_{\geq 0}^{\mathcal{S}}$, for $[f] \in T\left(X_{0}\right)$ and $\alpha \in \mathcal{S}$,

$$
\mathcal{X}([f])(\alpha)=l_{f\left(X_{0}\right)}(f(\alpha)),
$$

where $f\left(X_{0}\right)$ is the image hyperbolic surface under quasiconformal mapping f and $l_{f\left(X_{0}\right)}(f(\alpha))$ is the length of the simple closed geodesic on $f\left(X_{0}\right)$ homotopic to a simple closed curve $f(\alpha)$. The map $\mathcal{X}: T\left(X_{0}\right) \rightarrow \mathbb{R}_{\geq 0}^{\mathcal{S}}$ is injective because it uniquely determines the Fenchel-Nielsen coordinates which determine $f\left(X_{0}\right)$ up to an isometry (cf. 3).

Wolpert [29] proved that if $f: X_{0} \rightarrow X$ is a K-quasiconformal mapping and α a closed geodesic in X, then $\frac{1}{K} l_{X_{0}}(\alpha) \leq l_{X}(f(\alpha)) \leq K l_{X_{0}}(\alpha)$. This immediately gives $\mathcal{X}([f]) \in l_{X_{0}}^{\infty}$. Thus

$$
\mathcal{X}: T\left(X_{0}\right) \rightarrow l_{X_{0}}^{\infty} .
$$

We introduce the normalized supremum norm on $l_{X_{0}}^{\infty}$ by

$$
\|h\|_{\infty}^{\text {norm }}=\sup _{\alpha \in \mathcal{S}} \frac{|h(\alpha)|}{l_{X_{0}}(\alpha)}
$$

for all $h \in l_{X_{0}}^{\infty}$.
Proposition 3.1. The length spectrum distance on $T\left(X_{0}\right)$ is locally bi-Lipschitz equivalent to the normalized supremum norm on $\mathcal{X}\left(T\left(X_{0}\right)\right)$.

Remark 3.2. This statement holds for $T_{l s}\left(X_{0}\right)$ in the place of $T\left(X_{0}\right)$ with the same proof.
Proof. Indeed, if

$$
\sup _{\alpha \in \mathcal{S}}\left|\frac{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\alpha)\right)}{l_{X_{0}}(\alpha)}-\frac{l_{f_{2}\left(X_{0}\right)}\left(f_{2}(\alpha)\right)}{l_{X_{0}}(\alpha)}\right|<\epsilon,
$$

then

$$
\sup _{\alpha \in \mathcal{S}} \frac{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\alpha)\right)}{l_{X_{0}}(\alpha)}\left|1-\frac{l_{f_{2}\left(X_{0}\right)}\left(f_{2}(\alpha)\right)}{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\alpha)\right)}\right|<\epsilon .
$$

Since f_{1} is a quasiconformal map, there exists $M>1$ such that $1 / M \leq \frac{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\alpha)\right)}{l_{X_{0}}(\alpha)}$ $\leq M$ (cf. Wolpert [29]). The above and symmetry imply that

$$
\left|\frac{l_{f_{2}\left(X_{0}\right)}\left(f_{2}(\alpha)\right)}{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\alpha)\right)}-1\right|,\left|\frac{l_{f_{1}\left(X_{0}\right)}\left(f_{1}(\alpha)\right)}{l_{f_{2}\left(X_{0}\right)}\left(f_{2}(\alpha)\right)}-1\right| \leq M \epsilon
$$

for all $\alpha \in \mathcal{S}$, and one direction is obtained since $|\log x| /|x-1|$ is between two positive constants for $1 / 2<x<2$. The other direction is obtained by reversing the order of the above inequalities, and the two distances are locally bi-Lipschitz.

Denote by

$$
\mathcal{P X}: T\left(X_{0}\right) \rightarrow P l_{X_{0}}^{\infty}
$$

the map from $T\left(X_{0}\right)$ into the projective space $P l_{X_{0}}^{\infty}=\left(l_{X_{0}}^{\infty}-\{\overline{0}\}\right) / \mathbb{R}_{>0}$. The map $\mathcal{P X}$ is injective on $T\left(X_{0}\right)$. The length spectrum Thurston's boundary of $T\left(X_{0}\right)$ is, by definition, the space of all limit points in $P l_{X_{0}}^{\infty}$ of the set $\mathcal{P} \mathcal{X}\left(T\left(X_{0}\right)\right)$ for the topology induced by the normalized supremum norm (cf. [14] for Thurston's original discussion on closed surfaces).

Note that a measured lamination μ on X_{0} induces a real valued function on \mathcal{S} by the formula

$$
\mu(\alpha)=i(\mu, \alpha)
$$

for all $\alpha \in \mathcal{S}$, where $i(\mu, \alpha)$ is the intersection number. We have
Lemma 3.3. If $\mu \in M L_{b d d}\left(X_{0}\right)$, then $i(\mu, \cdot) \in l_{X_{0}}^{\infty}$.

Proof. Let α be a closed geodesic in X_{0}. If $l_{X_{0}}(\alpha)>1$, then we define $N=$ $\left[l_{X_{0}}(\alpha)\right]+1$, where $\left[l_{X_{0}}(\alpha)\right]$ is the integer part of $l_{X_{0}}(\alpha)$. Since $\mu \in M L_{b d d}\left(X_{0}\right)$, we have

$$
i(\mu, \alpha) \leq N\|\mu\|_{T h} \leq 2 l_{X_{0}}(\alpha)\|\mu\|_{T h},
$$

which gives

$$
\frac{i(\mu, \alpha)}{l_{X_{0}}(\alpha)} \leq 2\|\mu\|_{T h}
$$

If $l_{X_{0}}(\alpha) \leq 1$, let $N=\left[1 / l_{X_{0}}(\alpha)\right]+1$. Note that $\frac{1}{l_{X_{0}}(\alpha)} \leq N \leq \frac{2}{l_{X_{0}}(\alpha)}$ and that $1 \leq N l_{X_{0}}(\alpha) \leq 2$. Then we have

$$
N i(\mu, \alpha)=i(\mu, N \alpha) \leq 2\|\mu\|_{T h}
$$

since the length of N consecutive copies of α is at most 2 . The above gives

$$
i(\mu, \alpha) \leq \frac{2\|\mu\|_{T h}}{N} \leq 2\|\mu\|_{T h} l_{X_{0}}(\alpha)
$$

and the lemma follows.
From now on, we identify μ with this element $i(\mu, \cdot) \in l_{X_{0}}^{\infty}$. The proof of the above lemma gives

$$
\|i(\mu, \cdot)\|_{\infty}^{\text {norm }} \leq 2\|\mu\|_{T h} .
$$

We prove our first result on Thurston's boundary for $T\left(X_{0}\right)$ using the length spectrum.
Proposition 3.4. Let X_{0} be a fixed borderless geodesically complete hyperbolic surface equipped with a geodesic pants decomposition with infinitely many geodesic pairs of pants. Then the length spectrum Thurston's boundary of $T\left(X_{0}\right)$ contains the space of projective bounded measured lamination $P M L_{b d d}\left(X_{0}\right)$ and it equals the closure of $P M L_{b d d}\left(X_{0}\right)$ for the topology on $P_{X_{0}}^{\infty}$ induced by the normalized supremum norm.
Proof. Let $\mu \in M L_{b d d}\left(X_{0}\right)$ be a non-zero bounded measured lamination on X_{0}. Denote by $E^{t \mu}$, for $t>0$, an earthquake path with the earthquake measure $t \mu$. Then $t \mapsto E^{t \mu}\left(X_{0}\right)$ is a path in $T\left(X_{0}\right)$ which leaves every bounded set in $T\left(X_{0}\right)$ because $\mu \in M L_{b d d}\left(X_{0}\right)$ (cf. [21]). Let f_{t} be a quasiconformal map from X_{0} to X_{t} which belongs to the class represented by $E^{t \mu}$.

For $\alpha \in \mathcal{S}$, the inequality

$$
l_{f_{t}\left(X_{0}\right)}\left(f_{t}(\alpha)\right) \leq t i(\mu, \alpha)+l_{X_{0}}(\alpha)
$$

implies that

$$
\begin{equation*}
\frac{\frac{1}{t} \mathcal{X}\left(\left[f_{t}\right]\right)(\alpha)-i(\mu, \alpha)}{l_{X_{0}}(\alpha)} \leq \frac{1}{t} \tag{1}
\end{equation*}
$$

for all $\alpha \in \mathcal{S}$ and all $t>0$.
To obtain the opposite inequality, we choose the universal covering of X_{0} such that $B(z)=e^{-l_{X_{0}}(\alpha)} z$ is a cover transformation corresponding to α. Let O be the stratum of the lift $\tilde{\mu}$ of μ to the universal covering \mathbb{H} that contains $e^{l_{x_{0}}(\alpha)} i$, and let O_{1} be the stratum of $\tilde{\mu}$ that contains i. Normalize the earthquake $E^{t \tilde{\mu}}$ such that $\left.E^{t \tilde{\mu}}\right|_{O}=i d$. Then

$$
B^{t}=\left.E^{t \tilde{\mu}}\right|_{O_{1}} \circ B
$$

is a covering transformation that corresponds to the geodesic on $f_{t}\left(X_{0}\right)$ homotopic to $f_{t}(\alpha)$ (cf. [12]). Denote by l_{t} the translation length of B_{t} and $l=l_{X_{0}}(\alpha)$ the
translation length of B. Let $k_{1}<0$ and $k_{2}>0$ be the endpoints of the hyperbolic translation $\left.E^{t \check{\mu}}\right|_{O_{1}}$, and let m_{t} be its translation length (cf. Figure 1).

Figure 1. Computing $\left.E^{t \tilde{\mu}}\right|_{O_{1}}$.
A direct computation (cf. [25]) gives

$$
\operatorname{trace}\left(B^{t}\right)=2 \cosh \frac{m_{t}-l}{2}-\frac{2 k_{1}}{k_{2}-k_{1}}\left(\cosh \frac{m_{t}+l}{2}-\cosh \frac{m_{t}-l}{2}\right) .
$$

Consequently

$$
2 \cosh \frac{l_{t}}{2}=\operatorname{trace}\left(B^{t}\right) \geq 2 \cosh \frac{m_{t}-l}{2}
$$

which implies that

$$
l_{t} \geq m_{t}-l
$$

Since the translation length of a composition of two hyperbolic translations (with non-intersecting axis and translating in the same direction) is at least as large as the sum of their translation lengths (cf. [27]), it follows that

$$
m_{t} \geq t i(\mu, \alpha)
$$

The above two inequalities give

$$
\frac{1}{t} \frac{l_{t}}{l} \geq \frac{i(\mu, \alpha)}{l}-\frac{1}{t}
$$

which implies that

$$
\begin{equation*}
\frac{1}{t} \frac{\mathcal{X}\left(\left[f_{t}\right]\right)(\alpha)}{l_{X_{0}}(\alpha)}-\frac{i(\mu, \alpha)}{l_{X_{0}}(\alpha)} \geq-\frac{1}{t} . \tag{2}
\end{equation*}
$$

Then equations (1) and (2) give that, uniformly in $\alpha \in \mathcal{S}$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \frac{\mathcal{X}\left(\left[f_{t}\right]\right)(\alpha)}{l_{X_{0}}(\alpha)}=\frac{i(\mu, \alpha)}{l_{X_{0}}(\alpha)} .
$$

We established that each point in $P M L_{b d d}\left(X_{0}\right)$ is in Thurston's boundary.
Let $\sigma \in l_{X_{0}}^{\infty}$ be such that its projective class $[\sigma]$ is in the length spectrum Thurston's boundary. We need to establish that $[\sigma]$ is in the closure of $P M L_{b d d}\left(X_{0}\right)$ for the normalized supremum norm.

By assumption, there exists a sequence $\left[f_{n}\right] \in T\left(X_{0}\right)$ that converges to the projective class $[\sigma] \in P l_{X_{0}}^{\infty}$. Equivalently there exists a sequence $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that $\frac{1}{t_{n}} \mathcal{X}\left(\left[f_{n}\right]\right) \rightarrow \sigma$ as $n \rightarrow \infty$ in the normalized supremum norm. Necessarily we have $\sup _{n}\left\|\frac{1}{t_{n}} \mathcal{X}\left(\left[f_{n}\right]\right)\right\|_{\infty}^{\text {norm }}<\infty$.

Let f_{n} be represented by a sequence of earthquakes $E^{t_{n}^{\prime} \mu_{n}}$ with $\left\|\mu_{n}\right\|_{T h}=1$ and $t_{n}^{\prime}>0$. Then $t_{n}^{\prime} \rightarrow \infty$ as $n \rightarrow \infty$ and the first part of the proof gives

$$
\left\|\frac{1}{t_{n}^{\prime}} \mathcal{X}\left(\left[f_{n}\right]\right)-\mu_{n}\right\|_{\infty}^{n o r m}<\frac{1}{t_{n}^{\prime}} .
$$

Note that if $\left\|\mu_{n}\right\|_{T h}=1$, then $\left\|\mu_{n}\right\|_{\infty}^{n o r m} \leq 2$ by the proof of Lemma 3.3. Then the above inequality implies that $\left\|\frac{1}{t_{n}^{\prime}} \mathcal{X}\left(\left[f_{n}\right]\right)\right\|_{\infty}^{\text {norm }} \leq 3$ for all t_{n}^{\prime} with n large enough, and the sequence $\frac{t_{n}^{\prime}}{t_{n}}$ is bounded from above and below by positive numbers. By choosing a subsequence, if necessary, we can assume that $\frac{t_{n}^{\prime}}{t_{n}} \rightarrow c>0$ as $n \rightarrow \infty$. It follows that, as $n \rightarrow \infty$,

$$
\left\|\frac{1}{t_{n}} \mathcal{X}\left(\left[f_{n}\right]\right)-c \mu_{n}\right\|_{\infty}^{n o r m} \rightarrow 0
$$

which implies that

$$
\left\|c \mu_{n}-\sigma\right\|_{\infty}^{n o r m} \rightarrow 0
$$

and the proof is completed.
The first part of Theorem 1 from the introduction follows by the above proposition.

4. Infinite area surfaces with bounded geodesic PANTS DECOMPOSITIONS

As before, X_{0} is a fixed, borderless, geodesically complete hyperbolic surface equipped with a geodesic pants decomposition containing infinitely many geodesic pairs of pants. Let $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ be the family of cuffs (i.e. boundary components) that are closed geodesics (i.e. non-cusps) of the geodesic pants decomposition of X_{0}. We say that the geodesic pants decomposition of X_{0} is upper-bounded if there exists $M>0$ such that, for each $n \in \mathbb{N}$,

$$
l_{X_{0}}\left(\alpha_{n}\right) \leq M
$$

where $l_{X_{0}}\left(\alpha_{n}\right)$ is the length of α_{n} in the hyperbolic metric of X_{0} (cf. [1]). Moreover, the geodesic pants decomposition is lower-bounded if there exists $m>0$ such that, for each $n \in \mathbb{N}$,

$$
l_{X_{0}}\left(\alpha_{n}\right) \geq m .
$$

Finally, the geodesic pants decomposition of X_{0} is bounded if it is both upper- and lower-bounded.

The next proposition establishes that the length spectrum Thurston's boundary coincides with the boundary for $T\left(X_{0}\right)$ introduced using the geodesic currents when X_{0} has a bounded geodesic pants decomposition (cf. [10). We note that the convergence in the two closures of $T\left(X_{0}\right)$ might be different.

Proposition 4.1. Assume that X_{0} has a bounded geodesic pants decomposition. Then the length spectrum Thurston's boundary is equal to the space of projective bounded measured laminations $P M L_{b d d}\left(X_{0}\right)$ on X_{0}.

Proof. Consider a sequence of points $\left[f_{k}\right] \in T\left(X_{0}\right)$ that converge to (the projective class) $[\sigma] \in P l_{X_{0}}^{\infty}$ in the length spectrum Thurston's boundary of $T\left(X_{0}\right)$. Then there exists a sequence $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that $\frac{1}{t_{k}} \mathcal{X}\left(\left[f_{k}\right]\right) \rightarrow \sigma$ in $l_{X_{0}}^{\infty}-\{\overline{0}\}$, where $\overline{0}(\alpha)=0$ for all $\alpha \in \mathcal{S}$. Let $E^{t_{k} \beta_{k}}$ be a sequence of earthquakes of X_{0} that represent the equivalence class $\left[f_{k}\right]$, where $\left\|\beta_{k}\right\|_{T h}<\infty$ (cf. [27]).

The proof of the above proposition gives

$$
\begin{equation*}
\left|\frac{1}{t_{k}} \frac{\mathcal{X}\left(E^{t_{k} \beta_{k}}\right)(\alpha)}{l_{X_{0}}(\alpha)}-\frac{i\left(\beta_{k}, \alpha\right)}{l_{X_{0}}(\alpha)}\right| \leq \frac{1}{t_{k}} \tag{3}
\end{equation*}
$$

for all $\alpha \in \mathcal{S}$.
Since $\frac{1}{t_{k}} \mathcal{X}\left(\left[f_{k}\right]\right) \rightarrow \sigma$, the above inequality implies that

$$
\left|\frac{i\left(\beta_{k}, \alpha\right)}{l_{X_{0}}(\alpha)}-\frac{\sigma(\alpha)}{l_{X_{0}}(\alpha)}\right| \rightarrow 0
$$

as $k \rightarrow \infty$ uniformly in $\alpha \in \mathcal{S}$. Define

$$
\|\beta\|_{l s}=\sup _{\alpha \in \mathcal{S}} \frac{i(\beta, \alpha)}{l_{X_{0}}(\alpha)}
$$

for any $\beta \in M L_{b d d}\left(X_{0}\right)$. The above convergence gives

$$
\sup _{k \in \mathbb{N}}\left\|\beta_{k}\right\|_{l s}=N<\infty
$$

We use the assumption that X_{0} has a bounded geodesic pants decomposition in order to prove that $\left\|\beta_{k}\right\|_{T h}$ is bounded in k. Indeed, let $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ be (non-cusp) cuffs of the geodesic pants decomposition of X_{0}. Then there exists $M>1$ with

$$
\frac{1}{M} \leq l_{X_{0}}\left(\alpha_{n}\right) \leq M
$$

for all $n \in \mathbb{N}$. Let P^{i} be a geodesic pair of pants in the above decomposition with the cuffs $\alpha_{i_{j}}$, for $j=1,2,3$. Assume first that $\alpha_{i_{j}}$, for $j=1,2,3$, are different geodesics of X_{0}. Denote by $P_{i_{j}}, j=1,2,3$, adjacent pairs of pants to P^{i} with common cuff $\alpha_{i_{j}}$. Then there exists a simple closed geodesic $\alpha_{i_{j}}^{*}$ in $P_{i_{j}} \cup P^{i}$ that intersects $\alpha_{i_{j}}$ in two points such that $l_{X_{0}}\left(\alpha_{i_{j}}^{*}\right)$ is bounded from above and below by positive constants depending only on $M>0$. The components of $P^{i}-\bigcup_{j=1}^{3}\left(\alpha_{i_{j}} \cup \alpha_{i_{j}}^{*}\right)$ are simply connected for each i (cf. Figure 2). If two of $\alpha_{i_{j}}$, for $j=1,2,3$, is the same geodesic, then a similar construction yields $\alpha_{i_{j}}^{*}$ such that components of $P_{i}-\bigcup_{j=1}^{3}\left(\alpha_{i_{j}} \cup \alpha_{i_{j}}^{*}\right)$ are simply connected and $l_{X_{0}}\left(\alpha_{i_{j}}^{*}\right)$ is bounded in terms of M.

The above convergence of β_{k} to σ and boundedness of the lengths of $\alpha_{i_{j}}$ and $\alpha_{i_{j}}^{*}$ on X_{0} imply that

$$
i\left(\beta_{k}, \alpha_{i_{j}}\right), i\left(\beta_{k}, \alpha_{i_{j}}^{*}\right)<C(M)
$$

for some constant $C=C(M)$ and for all $i, k \in \mathbb{N}$ and $j=1,2,3$. Since $X_{0}-$ $\bigcup_{i} \bigcup_{j=1}^{3}\left\{\alpha_{i_{j}}, \alpha_{i_{j}}^{*}\right\}$ has simply connected and uniformly bounded components (that are polygons with at most six sides) whose boundaries are subarcs of $\alpha_{i_{j}}, \alpha_{i_{j}}^{*}$, we conclude that the supremum over all k and over all above components of the β_{k}-mass of the geodesics intersecting components is finite. Since each geodesic arc of length

Figure 2. Decomposition of X_{0} into bounded polygons.
1 on X_{0} can intersect at most finitely many components of $X_{0}-\bigcup_{i} \bigcup_{j=1}^{3}\left\{\alpha_{i_{j}}, \alpha_{i_{j}}^{*}\right\}$, it follows that $\sup _{k \in \mathbb{N}}\left\|\beta_{k}\right\|_{T h}<\infty$.

By $\sup _{k \in \mathbb{N}}\left\|\beta_{k}\right\|_{T h}<\infty$, there exists a subsequence $\beta_{k_{j}}$ and $\beta^{*} \in M L_{b d d}\left(X_{0}\right)$ such that $\beta_{k_{j}} \rightarrow \beta^{*}$ as $j \rightarrow \infty$ in the weak* topology. (The weak* topology is described in terms of the lifts of the measured laminations β_{k} to the universal covering \mathbb{H}.) Then

$$
\sigma(\alpha)=\beta^{*}(\alpha)
$$

for all $\alpha \in \mathcal{S}$ and

$$
\left\|\beta^{*}\right\|_{T h}<\infty .
$$

Thus any point in the length spectrum Thurston's boundary is in $P M L_{b d d}\left(X_{0}\right)$. The above proposition gives that all points in $P M L_{b d d}\left(X_{0}\right)$ are also in the length spectrum Thurston's boundary for $T\left(X_{0}\right)$.

5. Infinite hyperbolic surfaces with upper-bounded GEODESIC PANTS DECOMPOSITIONS

Let X_{0} be a fixed, borderless, geodesically complete hyperbolic surface equipped with an upper-bounded geodesic pants decomposition. Namely, if $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ are cuffs (that are not cusps) of the geodesic pants decomposition, then

$$
\sup _{n} l_{X_{0}}\left(\alpha_{n}\right)=M<\infty
$$

In addition, we assume that there exists a subsequence $\left\{\alpha_{n_{j}}\right\}_{j}$ with $l_{X_{0}}\left(\alpha_{n_{j}}\right)>0$ and $l_{X_{0}}\left(\alpha_{n_{j}}\right) \rightarrow 0$ as $j \rightarrow \infty$. Let P_{n}^{1} and P_{n}^{2} be the geodesic pairs of pants in \mathcal{P} with a common cuff α_{n} (possibly $P_{n}^{1}=P_{n}^{2}$). Let γ_{n} be a shortest closed geodesic in $P_{n}^{1} \cup P_{n}^{2}$ that intersects α_{n} in either one point (when $P_{n}^{1}=P_{n}^{2}$) or in two points (when $P_{n}^{1} \neq P_{n}^{2}$). We have that (cf. [1)

$$
\frac{l_{X_{0}}\left(\gamma_{n}\right)}{\max \left\{1,\left|\log l_{X_{0}}\left(\alpha_{n}\right)\right|\right\}}=O(1)
$$

where $O(1)$ is a function pinched between two positive constants.
Proposition 5.1. Let X_{0} be a geodesically complete infinite area hyperbolic surface with an upper-bounded geodesic pants decomposition with (non-cusp) cuffs $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ such that a subsequence of cuffs $\alpha_{n_{j}}$ have lengths going to zero. Then the length spectrum Thurston's boundary of $T\left(X_{0}\right)$ is strictly larger than $P M L_{b d d}\left(X_{0}\right)$.

Proof. We use the description of the closure of $T\left(X_{0}\right)$ in the Fenchel-Nielsen coordinates for the pants decomposition with (non-cusp) cuffs $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$. Namely, a marked surface $f: X_{0} \rightarrow X$ is in $T\left(X_{0}\right)$ if and only if the corresponding FenchelNielsen coordinates $\left\{\left(\frac{l_{X}\left(\alpha_{n}\right)}{l_{X_{0}}\left(\alpha_{n}\right)}, t_{X}\left(\alpha_{n}\right)\right)\right\}_{n \in \mathbb{N}}$ are uniformly bounded; $f: X_{0} \rightarrow X$ is in the closure of $T\left(X_{0}\right)$ if and only if $\left\{\frac{l_{X}\left(f\left(\alpha_{n}\right)\right)}{l_{X_{0}}\left(\alpha_{n}\right)}\right\}_{n}$ is bounded and $\left|t_{X}\left(\alpha_{n}\right)\right|=$ $o\left(\max \left\{1,\left|\log l_{X_{0}}\left(\alpha_{n}\right)\right|\right\}\right)$ for all $n($ cf. [23] $)$.

Define a measured lamination $\mu=\sum_{j} w_{j} \alpha_{n_{j}}$ for some $w_{j}=o\left(\left|\log l_{X_{0}}\left(\alpha_{n_{j}}\right)\right|\right)$ with $w_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Then μ is not Thurston bounded and $E^{t \mu}\left(X_{0}\right)=X^{t}$ is in the closure of $T\left(X_{0}\right)$ for the length spectrum metric (cf. [23]). The proof of Proposition 3.4 extends to μ to get $\frac{1}{t} \mathcal{X}\left(X^{t}\right) \rightarrow \mu$ as $t \rightarrow \infty$ in the normalised supremum norm. Since each X^{t} is a limit of points in $T\left(X_{0}\right)$, it follows that μ is in Thurston's boundary and the proof is completed.

Theorem 1 from the introduction is established by Propositions 3.4 4.1 and 5.1.

6. Two infinite surfaces with unbounded geodesic PANTS DECOMPOSITIONS

The first surface X_{1} that we consider was introduced by Kinjo [17]. Let Γ^{\prime} be the hyperbolic triangle group of signature $(2,4,8)$. Let T^{\prime} be the triangle fundamental polygon for Γ^{\prime} with angles $\pi / 2, \pi / 4$ and $\pi / 8$. Then $\Gamma^{\prime}\left(T^{\prime}\right)$ tiles the hyperbolic plane \mathbb{H}. Let T be the union of T^{\prime} and $\gamma_{0}^{\prime}\left(T^{\prime}\right)$, where $\gamma_{0}^{\prime} \in \Gamma^{\prime}$ is a reflection in the geodesic containing the side of T^{\prime} which subtends the angles $\pi / 2$ and $\pi / 8$ of T^{\prime}. Denote the vertices of T by a, b and c; the vertex b is where T^{\prime} has angle $\pi / 8$ (cf. [17, Figure $2]$). We choose three points a^{\prime}, b^{\prime} and c^{\prime} close to a, b and c, respectively, in the interior of the triangle T such that b^{\prime} is on the side of T^{\prime} containing b. The surface X_{1} is obtained by puncturing the hyperbolic plane at the points $\Gamma^{\prime}\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ (cf. [17, Figures 2, 3]). Kinjo [17] proved that the length spectrum distance induces the same topology on $T\left(X_{0}\right)$ as the Teichmüller distance.

Let $\left\{\gamma_{i}\right\}_{i=1, \ldots, 8}$ be the elements of Γ^{\prime} that fix a. Let l_{a} be the simple closed geodesic which separates the eight points $\left\{\gamma_{i}\left(a^{\prime}\right)\right\}_{i=1, \ldots, 8}$ from the other punctures of X_{1}. We similarly define curves l_{b} and l_{c}, and then extend the definition using Γ^{\prime} to all other groups of eight cusps. The lengths of all $\Gamma^{\prime}\left(l_{a}\right)$ are the same, as well as the lengths of all $\Gamma^{\prime}\left(l_{b}\right)$, as well as the lengths of all $\Gamma^{\prime}\left(l_{c}\right)$.

For the triangle T, we denote by $l_{a^{\prime}, b^{\prime}}$ the simple closed geodesic which is homotopic to a simple closed curve in T that separates a^{\prime}, b^{\prime} from c^{\prime}. We similarly extend the definition to $l_{b^{\prime}, c^{\prime}}$ and $l_{c^{\prime}, a^{\prime}}$, and then extend it to all triangles using the invariance under Γ^{\prime}. Note that the lengths of $\Gamma^{\prime}\left(l_{a^{\prime}, b^{\prime}}\right)$ are the same, as well as the lengths of all $\Gamma^{\prime}\left(l_{b^{\prime}, c^{\prime}}\right)$, and the lengths of all $\Gamma^{\prime}\left(l_{c^{\prime}, a^{\prime}}\right)$.

The lengths of the family of geodesics $\Gamma^{\prime}\left(l_{a}\right) \cup \Gamma^{\prime}\left(l_{b}\right) \cup \Gamma^{\prime}\left(l_{c}\right) \cup \Gamma^{\prime}\left(l_{a^{\prime}, b^{\prime}}\right) \cup \Gamma^{\prime}\left(l_{b^{\prime}, c^{\prime}}\right) \cup$ $\Gamma^{\prime}\left(l_{c^{\prime}, a^{\prime}}\right)$ are bounded from below and from above, and this family separates the surface X_{1} into finite bounded polygons with a uniformly bounded number of sides. Then the proof of Proposition 5.1 extends to show that the length spectrum Thurston's boundary coincides with $P M L_{b d d}\left(X_{1}\right)$.

Denote by X_{2} an infinite hyperbolic surface defined by Shiga [26] that has geodesic pants decomposition with cuff lengths converging to infinity. The surface X_{2} contains a sequence γ_{n} of simple closed geodesics with $l_{X_{2}}\left(\gamma_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ such that for each closed geodesic δ we have

$$
\begin{equation*}
l_{X_{2}}(\delta) \geq \sum_{k=1}^{\infty} k l_{X_{2}}\left(\gamma_{k}\right) i\left(\gamma_{k}, \delta\right), \tag{4}
\end{equation*}
$$

where only finitely many terms are non-zero. Shiga [26] proved that a sequence of full Dehn twists f_{n} around the curve γ_{n} diverges in the Teichmüller metric and it converges to the identity in the length spectrum distance. Thus the two metrics produce different topologies on $T\left(X_{2}\right)$.

We define β_{n} to be a measured lamination whose support is $\left\{\gamma_{k}\right\}_{k=1, \ldots, n}$ such that, for $k=1, \ldots, n$,

$$
\left.\beta_{n}\right|_{\gamma_{k}}=l_{X_{2}}\left(\gamma_{k}\right) .
$$

The projective class $\left[\beta_{n}\right]$ is in $P M L_{b d d}\left(X_{2}\right)$. Define β_{*} to be a measured lamination on X_{2} whose support is $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ such that, for all $k=1,2, \ldots$,

$$
\left.\beta_{*}\right|_{\gamma_{k}}=l_{X_{2}}\left(\gamma_{k}\right) .
$$

It is clear that the projective class $\left[\beta_{*}\right]$ is not in $P M L_{b d d}\left(X_{2}\right)$.
We prove that $\left[\beta_{n}\right] \rightarrow\left[\beta_{*}\right]$ as $n \rightarrow \infty$ in the normalized supremum norm. Indeed, let δ be a simple closed geodesic in X_{2}. Then

$$
\frac{\left|i\left(\beta_{n}, \delta\right)-i\left(\beta_{*}, \delta\right)\right|}{l_{X_{2}}(\delta)}=\sum_{k=n+1}^{\infty} \frac{i\left(\beta_{k}, \delta\right)}{l_{X_{2}}(\delta)}=\frac{\sum_{k=n+1}^{\infty} i\left(\delta, \gamma_{k}\right) l_{X_{2}}\left(\gamma_{k}\right)}{\sum_{k=1}^{\infty} k i\left(\delta, \gamma_{k}\right) l_{X_{2}}\left(\gamma_{k}\right)} \leq \frac{1}{n+1},
$$

and $\left[\beta_{*}\right]$ is in the length spectrum Thurston's boundary of $T\left(X_{2}\right)$. Therefore the boundary is larger than $P M L_{b d d}\left(X_{2}\right)$.

7. Proof of Theorem 2

Let $[h] \in P l_{X_{0}}^{\infty}$ be a point in the length spectrum Thurston's closure of $T\left(X_{0}\right)$. Let $\left[f_{n}\right] \in T\left(X_{0}\right)$ be a sequence which converges to $[h]$. Thus there exists $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
\sup _{\alpha \in \mathcal{S}}\left|\frac{1}{t_{n}} \frac{l_{f_{n}\left(X_{0}\right)}\left(f_{n}(\alpha)\right)}{l_{X_{0}}(\alpha)}-\frac{h(\alpha)}{l_{X_{0}}(\alpha)}\right| \rightarrow 0
$$

as $n \rightarrow \infty$.

Let $g \in M C G_{q c}\left(X_{0}\right)$. We need to prove that $\left[f_{n} \circ g^{-1}\right] \rightarrow\left[h \circ g^{-1}\right]$ as $n \rightarrow \infty$. Note that

$$
\begin{aligned}
& \sup _{\alpha \in \mathcal{S}}\left|\frac{1}{t_{n}} \frac{l_{f_{n}\left(g^{-1}\left(X_{0}\right)\right)}\left(f_{n}\left(g^{-1}(\alpha)\right)\right)}{l_{X_{0}}(\alpha)}-\frac{h\left(g^{-1}(\alpha)\right)}{l_{X_{0}}(\alpha)}\right| \\
& \leq K \sup _{g^{-1}(\alpha) \in \mathcal{S}}\left|\frac{1}{t_{n}} \frac{l_{f_{n}\left(\left(X_{0}\right)\right)}\left(f_{n}\left(g^{-1}(\alpha)\right)\right)}{l_{X_{0}}\left(g^{-1}(\alpha)\right)}-\frac{h\left(g^{-1}(\alpha)\right)}{l_{X_{0}}\left(g^{-1}(\alpha)\right)}\right|
\end{aligned}
$$

where g is a K-quasiconformal map, because $\frac{l_{X_{0}\left(g^{-1}(\alpha)\right)}}{l_{X_{0}}(\alpha)} \leq K, g^{-1}\left(X_{0}\right)=X_{0}$ and g^{-1} is a bijection between homotopy classes of closed curves on X_{0}. The theorem follows by letting $n \rightarrow \infty$ in the above inequality.

Acknowledgement

The author is greatly indebted to an anonymous referee for useful comments on the exposition of the paper.

References

[1] Daniele Alessandrini, Lixin Liu, Athanase Papadopoulos, Weixu Su, and Zongliang Sun, On Fenchel-Nielsen coordinates on Teichmüller spaces of surfaces of infinite type, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 621-659, DOI 10.5186/aasfm.2011.3637. MR2865518
[2] D. Alessandrini, L. Liu, A. Papadopoulos, and W. Su, On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space, Monatsh. Math. 179 (2016), no. 2, 165-189, DOI 10.1007/s00605-015-0813-9. MR3449399
[3] Daniele Alessandrini, Lixin Liu, Athanase Papadopoulos, Weixu Su, and Zongliang Sun, On Fenchel-Nielsen coordinates on Teichmuiller spaces of surfaces of infinite type, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 621-659, DOI 10.5186/aasfm.2011.3637. MR2865518
[4] Venancio Álvarez and José M. Rodríguez, Structure theorems for Riemann and topological surfaces, J. London Math. Soc. (2) 69 (2004), no. 1, 153-168, DOI 10.1112/S0024610703004836. MR2025333
[5] Ara Basmajian, Hyperbolic structures for surfaces of infinite type, Trans. Amer. Math. Soc. 336 (1993), no. 1, 421-444, DOI 10.2307/2154353. MR1087051
[6] Ara Basmajian and Youngju Kim, Geometrically infinite surfaces with discrete length spectra, Geom. Dedicata 137 (2008), 219-240, DOI 10.1007/s10711-008-9294-5. MR2449153
[7] A. Basmajian and D. Šarić, Geodesically complete hyperbolic structures, Mathematical Proceedings of the Cambridge Philosophical Society, 1-24, DOI:10.1017/S0305004117000792.
[8] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR698777
[9] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139-162, DOI 10.1007/BF01393996. MR931208
[10] F. Bonahon and D. Šarić, Thurston's boundary for Teichmüller spaces of infinite surfaces: geodesic currents, preprint, available at arXiv.org.
[11] Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition. MR 2742784
[12] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113-253. MR903852
[13] D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305-336, DOI 10.4007/annals.2004.159.305. MR 2052356
[14] Albert Fathi, François Laudenbach, and Valentin Poénaru, Thurston's work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012. Translated from the 1979 French original by Djun M. Kim and Dan Margalit. MR3053012
[15] Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR1730906
[16] F. P. Gardiner, J. Hu, and N. Lakic, Earthquake curves, Complex manifolds and hyperbolic geometry (Guanajuato, 2001), Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 141-195, DOI 10.1090/conm/311/05452. MR 1940169
[17] Erina Kinjo, On Teichmüller metric and the length spectrums of topologically infinite Riemann surfaces, Kodai Math. J. 34 (2011), no. 2, 179-190, DOI 10.2996/kmj/1309829545. MR2811639
[18] Katsuhiko Matsuzaki, A classification of the modular transformations of infinite dimensional Teichmüller spaces, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 167-177, DOI 10.1090/conm/432/08307. MR2342814
[19] Hideki Miyachi and Dragomir Šarić, Uniform weak* topology and earthquakes in the hyperbolic plane, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1123-1148, DOI $10.1112 / \mathrm{plms} / \mathrm{pds} 026$. MR3004100
[20] Jean-Pierre Otal, About the embedding of Teichmüller space in the space of geodesic Hölder distributions, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 223-248, DOI 10.4171/029-1/5. MR2349671
[21] Dragomir Šarić, Real and complex earthquakes, Trans. Amer. Math. Soc. 358 (2006), no. 1, 233-249, DOI 10.1090/S0002-9947-05-03651-2. MR2171231
[22] Dragomir Šarić, Bounded earthquakes, Proc. Amer. Math. Soc. 136 (2008), no. 3, 889-897, DOI 10.1090/S0002-9939-07-09146-0. MR2361861
[23] Dragomir Šarić, Fenchel-Nielsen coordinates on upper bounded pants decompositions, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 3, 385-397, DOI 10.1017/S0305004114000656. MR 3335417
[24] Dragomir Sarić, Geodesic currents and Teichmüller space, Topology 44 (2005), no. 1, 99-130, DOI 10.1016/j.top.2004.05.001. MR2104004
[25] Dragomir Šarić, Earthquakes in the length-spectrum Teichmüller spaces, Proc. Amer. Math. Soc. 143 (2015), no. 4, 1531-1543, DOI 10.1090/S0002-9939-2014-12242-8. MR3314067
[26] Hiroshige Shiga, On a distance defined by the length spectrum of Teichmüller space, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 315-326. MR 1996441
[27] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431, DOI 10.1090/S0273-0979-1988-15685-6. MR 956596
[28] William P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91-112. MR 903860
[29] Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501528, DOI 10.2307/2007011. MR657237

Department of Mathematics, Queens College of CUNY, 65-30 Kissena Boulevard, Flushing, New York 11367 - and - Mathematics PhD Program, The CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016-4309

E-mail address: Dragomir.Saric@qc.cuny.edu

[^0]: Received by the editors May 25, 2015 and, in revised form, January 22, 2017.
 2010 Mathematics Subject Classification. Primary 30F60, 32G15.
 This research was partially supported by National Science Foundation grant DMS 1102440.

