Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Thurston's boundary for Teichmüller spaces of infinite surfaces: the length spectrum


Author: Dragomir Šarić
Journal: Proc. Amer. Math. Soc. 146 (2018), 2457-2471
MSC (2010): Primary 30F60, 32G15
DOI: https://doi.org/10.1090/proc/13738
Published electronically: March 9, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X_0$ be an infinite area geodesically complete hyperbolic surface which can be decomposed into geodesic pairs of pants. We introduce Thurston's boundary to the Teichmüller space $ T(X_0)$ of the surface $ X_0$ using the length spectrum analogous to Thurston's construction for finite surfaces. Thurston's boundary using the length spectrum is a ``closure'' of projective bounded measured laminations $ PML_{bdd} (X_0)$, and it coincides with $ PML_{bdd}(X_0)$ when $ X_0$ can be decomposed into a countable union of geodesic pairs of pants whose boundary geodesics $ \{\alpha _n\}_{n\in \mathbb{N}}$ have lengths pinched between two positive constants. When a subsequence of the lengths of the boundary curves of the geodesic pairs of pants $ \{\alpha _n\}_n$ converges to zero, Thurston's boundary using the length spectrum is strictly larger than $ PML_{bdd}(X_0)$.


References [Enhancements On Off] (What's this?)

  • [1] Daniele Alessandrini, Lixin Liu, Athanase Papadopoulos, Weixu Su, and Zongliang Sun, On Fenchel-Nielsen coordinates on Teichmüller spaces of surfaces of infinite type, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 621-659. MR 2865518, https://doi.org/10.5186/aasfm.2011.3637
  • [2] D. Alessandrini, L. Liu, A. Papadopoulos, and W. Su, On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space, Monatsh. Math. 179 (2016), no. 2, 165-189. MR 3449399, https://doi.org/10.1007/s00605-015-0813-9
  • [3] Daniele Alessandrini, Lixin Liu, Athanase Papadopoulos, Weixu Su, and Zongliang Sun, On Fenchel-Nielsen coordinates on Teichmüller spaces of surfaces of infinite type, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 621-659. MR 2865518, https://doi.org/10.5186/aasfm.2011.3637
  • [4] Venancio Álvarez and José M. Rodríguez, Structure theorems for Riemann and topological surfaces, J. London Math. Soc. (2) 69 (2004), no. 1, 153-168. MR 2025333, https://doi.org/10.1112/S0024610703004836
  • [5] Ara Basmajian, Hyperbolic structures for surfaces of infinite type, Trans. Amer. Math. Soc. 336 (1993), no. 1, 421-444. MR 1087051, https://doi.org/10.2307/2154353
  • [6] Ara Basmajian and Youngju Kim, Geometrically infinite surfaces with discrete length spectra, Geom. Dedicata 137 (2008), 219-240. MR 2449153, https://doi.org/10.1007/s10711-008-9294-5
  • [7] A. Basmajian and D. Šarić, Geodesically complete hyperbolic structures, Mathematical Proceedings of the Cambridge Philosophical Society, 1-24, DOI:10.1017/S0305004117000792.
  • [8] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
  • [9] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139-162. MR 931208, https://doi.org/10.1007/BF01393996
  • [10] F. Bonahon and D. Šarić, Thurston's boundary for Teichmüller spaces of infinite surfaces: geodesic currents, preprint, available at arXiv.org.
  • [11] Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition. MR 2742784
  • [12] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113-253. MR 903852
  • [13] D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305-336. MR 2052356, https://doi.org/10.4007/annals.2004.159.305
  • [14] Albert Fathi, François Laudenbach, and Valentin Poénaru, Thurston's work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012. Translated from the 1979 French original by Djun M. Kim and Dan Margalit. MR 3053012
  • [15] Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906
  • [16] F. P. Gardiner, J. Hu, and N. Lakic, Earthquake curves, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 141-195. MR 1940169, https://doi.org/10.1090/conm/311/05452
  • [17] Erina Kinjo, On Teichmüller metric and the length spectrums of topologically infinite Riemann surfaces, Kodai Math. J. 34 (2011), no. 2, 179-190. MR 2811639, https://doi.org/10.2996/kmj/1309829545
  • [18] Katsuhiko Matsuzaki, A classification of the modular transformations of infinite dimensional Teichmüller spaces, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 167-177. MR 2342814, https://doi.org/10.1090/conm/432/08307
  • [19] Hideki Miyachi and Dragomir Šarić, Uniform weak$ ^*$ topology and earthquakes in the hyperbolic plane, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1123-1148. MR 3004100, https://doi.org/10.1112/plms/pds026
  • [20] Jean-Pierre Otal, About the embedding of Teichmüller space in the space of geodesic Hölder distributions, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 223-248. MR 2349671, https://doi.org/10.4171/029-1/5
  • [21] Dragomir Šarić, Real and complex earthquakes, Trans. Amer. Math. Soc. 358 (2006), no. 1, 233-249. MR 2171231, https://doi.org/10.1090/S0002-9947-05-03651-2
  • [22] Dragomir Šarić, Bounded earthquakes, Proc. Amer. Math. Soc. 136 (2008), no. 3, 889-897. MR 2361861, https://doi.org/10.1090/S0002-9939-07-09146-0
  • [23] Dragomir Šarić, Fenchel-Nielsen coordinates on upper bounded pants decompositions, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 3, 385-397. MR 3335417, https://doi.org/10.1017/S0305004114000656
  • [24] Dragomir Šarić, Geodesic currents and Teichmüller space, Topology 44 (2005), no. 1, 99-130. MR 2104004, https://doi.org/10.1016/j.top.2004.05.001
  • [25] Dragomir Šarić, Earthquakes in the length-spectrum Teichmüller spaces, Proc. Amer. Math. Soc. 143 (2015), no. 4, 1531-1543. MR 3314067, https://doi.org/10.1090/S0002-9939-2014-12242-8
  • [26] Hiroshige Shiga, On a distance defined by the length spectrum of Teichmüller space, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 315-326. MR 1996441
  • [27] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. MR 956596, https://doi.org/10.1090/S0273-0979-1988-15685-6
  • [28] William P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91-112. MR 903860
  • [29] Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501-528. MR 657237, https://doi.org/10.2307/2007011

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30F60, 32G15

Retrieve articles in all journals with MSC (2010): 30F60, 32G15


Additional Information

Dragomir Šarić
Affiliation: Department of Mathematics, Queens College of CUNY, 65-30 Kissena Boulevard, Flushing, New York 11367 — and — Mathematics PhD Program, The CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016-4309
Email: Dragomir.Saric@qc.cuny.edu

DOI: https://doi.org/10.1090/proc/13738
Received by editor(s): May 25, 2015
Received by editor(s) in revised form: January 22, 2017
Published electronically: March 9, 2018
Additional Notes: This research was partially supported by National Science Foundation grant DMS 1102440.
Communicated by: Michael Wolf
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society