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GHOST CLASSES IN THE COHOMOLOGY

OF THE SHIMURA VARIETY ASSOCIATED TO GSp4

MATIAS VICTOR MOYA GIUSTI

(Communicated by Romyar T. Sharifi)

Abstract. In this paper we study the existence of ghost classes in the cohomo-
logy of the Shimura variety associated to the group of symplectic similitudes
GSp4. The existence of ghost classes for the trivial coefficient system is known.
We show that ghost classes only exist for the trivial coefficient system and they
lie in the cohomology group in degree 2. Moreover we prove that the weight
of the mixed Hodge structure associated to the space of ghost classes is the
middle weight.

1. Notation

In this paper we work with Shimura varieties and we use the notation and defi-
nitions in [13]. We study the cohomology spaces with respect to some local systems
underlying certain (complex) variations of Hodge structure (see [16] for this notion).

If G is an algebraic group, π0(G(R)) denotes the group of connected components
of the Lie group G(R). We use Kostant’s theorem (see [12]) and, in this context, we
denote by WP the set of Weyl representatives for a standard Q-parabolic subgroup
P of G (this set depends on the choice of a maximal torus and a system of positive
roots).

We denote by A the topological ring of adeles associated to Q, and Af denotes
the topological subring of finite adeles.

2. Introduction

In this paper we study the existence of ghost classes in the cohomology of the
Shimura variety associated to GSp4. Ghost classes were first considered by A.
Borel (see [1]) and have been treated by many mathematicians such as G. Harder,
J. Schwermer, J. Franke, and C. Moeglin. One question that could arise from [6]
is whether the only possible weight in the mixed Hodge structure in the space of
ghost classes is the middle weight (we call this property the middle weight property).
This paper presents a method to study the existence of ghost classes in Shimura
varieties of Q-rank 2 and provides an example in which the middle weight property
is satisfied.
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In this introduction we present the definition of ghost classes for GSp4 and the
main results of this paper.

If (G,X) is a Shimura pair and (ρ, V ) is an irreducible representation of G, then

for every open compact subgroup Kf ⊂ G(Af ), V induces a local system Ṽ on the

corresponding level variety SK = ShK(G,X). Moreover Ṽ is a variation of Hodge
structure on SK whose weight, denoted by wt(V ), depends on V .

We fix a maximal torus T ⊂ G and a maximal Q-split torus T̃ ⊂ G such that
T̃ ⊂ T . We choose a system of positive roots in the root systems Φ(G, T ) and

Φ(G, T̃ ) associated to T and T̃ respectively, so that they are compatible. Let
PQ(G) be the corresponding set of proper standard Q-parabolic subgroups.

Let SK be the Borel-Serre compactification of SK (see [2]) and let ∂SK be its
boundary. Then the inclusion SK ↪→ SK is a homotopy equivalence. In particular
we can extend Ṽ to a local system on SK (also denoted by Ṽ ) and we have an

isomorphism H∗(SK , Ṽ )=̃H∗(SK , Ṽ ). From all of these facts we obtain a long
exact sequence in cohomology

. . . → Hq
c (SK , Ṽ ) → Hq(SK , Ṽ ) → Hq(∂SK , Ṽ ) → . . . .

We assume, from now on, that G has semisimple Q-rank 2. PQ(G) consists
of three elements: two maximal Q-parabolic subgroups P1, P2 and one minimal
Q-parabolic subgroup P0. There is a covering ∂SK =

⋃
P∈PQ(G) ∂P,K indexed by

PQ(G), and this covering defines a long exact sequence in cohomology

. . . → Hq(∂SK , Ṽ ) → Hq(∂P1,K , Ṽ )⊕Hq(∂P2,K , Ṽ ) → Hq(∂P0,K , Ṽ ) → . . . .

If we have open compact subgroups K ′
f ⊂ Kf , then there is a canonical covering

SK′ → SK and a corresponding morphism H∗(SK , Ṽ ) → H∗(SK′ , Ṽ ). We can take
direct limit to obtain the space

H∗(S, Ṽ ) = lim
−→
K

H∗(SK , Ṽ ).

We consider the spaces H∗(∂S, Ṽ ), H∗
c (S, Ṽ ), H∗(∂Pi

, Ṽ ) defined by the corres-
ponding direct limits and we have the long exact sequences in cohomology

(2.1) . . . → Hq
c (S, Ṽ ) → Hq(S, Ṽ ) → Hq(∂S, Ṽ ) → . . .

and

(2.2) . . . → Hq(∂S, Ṽ ) → Hq(∂P1
, Ṽ )⊕Hq(∂P2

, Ṽ ) → Hq(∂P0
, Ṽ ) → . . . .

We denote by r∗ : H∗(S, Ṽ ) → H∗(∂S, Ṽ ) and r∗i : H∗(∂S, Ṽ ) → H∗(∂Pi
, Ṽ )

(for i ∈ {0, 1, 2}) the canonical maps (defined by the corresponding inclusions).

The space of ghost classes Gh∗(V ) is the subspace of H∗(∂S, Ṽ ) given by the
intersection of the image of r∗ with the kernel of each morphism r∗i for i ∈ {0, 1, 2}.
In this case, the space Gh∗(V ) can be described as the intersection of the image of
the map r∗ with the kernels of r∗1 and r∗2 .

By Saito’s theory of mixed Hodge modules and by the results in [9], each term
in (2.1) and (2.2) is endowed with a mixed Hodge structure. Moreover, (2.1) and
(2.2) are long exact sequences of mixed Hodge structure. Thus the space of ghost
classes has an induced mixed Hodge structure. By using information on the coho-
mology spaces appearing in the aforementioned long exact sequences we can obtain
information on the possible weights in the mixed Hodge structure on the spaces of
ghost classes.
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In this paper, the possible weights in Ghq(V ) are calculated by studying the

morphisms rq : Hq(S, Ṽ ) → Hq(∂S, Ṽ ), rq−1
1,0 : Hq−1(∂P1

, Ṽ ) → Hq−1(∂P0
, Ṽ ) and

rq−1
2,0 : Hq−1(∂P2

, Ṽ ) → Hq−1(∂P0
, Ṽ ). By using considerations on the weights, we

obtain information about rq and rq−1
1,0 . On the other hand, these arguments do

not give much information about rq−1
2,0 , and we use the results in [5] to study this

morphism.
One knows that the weights in the mixed Hodge structure associated toHq(S, Ṽ )

are greater than or equal to q + wt(V ), where wt(V ) is the weight of the variation

of (complex) Hodge structure defined by Ṽ , while the weights in Hq+1
c (S, Ṽ ) are

less than or equal to (q+1)+wt(V ). We call q+wt(V ) the middle weight and we
say that V satisfies the middle weight property if the only possible weight in the
space of ghost classes is the middle weight.

We have a decomposition of the cohomology space of each face of the boundary
of the Borel-Serre compactification of the form

(2.3) Hq(∂P , Ṽ ) =
⊕

w∈WP

Ind
G(Af )×π0(G(R))

P (Af )×π0(P (R))H
q−�(w)(SMP , W̃w∗(λ))

(compare [5] or [15]) and is obtained by using, among other things, Kostant’s theo-
rem [12]. In this decomposition �(w) denotes the length of the element w, λ denotes
the highest weight of the irreducible representation V , Ww∗(λ) is the irreducible rep-
resentation of the Levi subgroup MP of P with highest weight w∗(λ) = w(λ+δ)−δ
(where δ is, as usual, half the sum of the positive roots). This decomposition is
very useful for a better understanding of the mixed Hodge structures attached to
the cohomology spaces Hq(∂P , Ṽ ), as we can see in (5.5.6) of [9].

For each maximal standard Q-parabolic subgroup P we have a decomposition
of its Levi subgroup MP into its hermitian part Gh,P and its linear part Gl,P , and
Gh,P forms part of a Shimura datum (Gh,P , hP ). Then the mixed Hodge struc-

ture on each direct summand Hq−�(w)(SMP , W̃w∗(λ)) is determined by the Shimura
datum (Gh,P , hP ) and the irreducible representation Ww∗(λ) of MP . For a non-
maximal standard Q-parabolic subgroup Q we have an associated maximal stan-
dard Q-parabolic subgroup P (see for example [9]), and the mixed Hodge structure

on Hq−�(w)(SMQ , W̃w∗(λ)) is determined by (Gh,P , hP ) and the irreducible repre-
sentation Ww∗(λ) of MQ.

To determine the Shimura datum (Gh,P , hP ) we are using the definitions and
results in the first pages in [8].

We now give a short summary of the contents and main results of this paper.
We work on the Shimura variety associated to the group of symplectic similitudes

GSp4. This case has been partially studied in some papers (see [11], [17], [7]). We
are giving a complete treatment of this case and we calculate the weight in the
space of ghost classes, proving that the middle weight property is satisfied.

In section 3, the irreducible algebraic representations of GSp4 are parametrized
by the highest weights which are given by expressions of the form λ = m1λ

′
1 +

m2λ
′
2 + cκ, with c an integer and m1,m2 non-negative integers. In this setting we

prove (see Theorem 3.1) that unless m1 = m2 = 0 there are no ghost classes. The
existence of ghost classes in the case m1 = m2 = 0, in the degree 2 cohomology,
is proved in [11] (and can also be deduced from [4]). In this paper we supplement
this result by proving that the only ghost classes belong to degree 2 cohomology.
Moreover, we show that the weight in the corresponding mixed Hodge structure
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is the middle weight (in particular we prove that in the cases m1 = m2 = 0 the
corresponding local system satisfies the middle weight property).

It should be noted that when the highest weight of the irreducible representation
is regular, the non-existence of ghost classes can be obtained using Theorem 4.11
in [14] and Theorem 19 in [3].

3. Ghost classes: The case GSp4

3.1. The Shimura variety involved. In this section we consider the Shimura
datum given by the pair (GSp4, X), where GSp4 is the group of symplectic simili-
tudes. In other words,

GSp4(A) =
{
g ∈ GL4(A) | gtJ2g = ν(g)J2, ν(g) ∈ A×} for every Q-algebra A

where

J2 =

[
0 S
−S 0

]
with S =

[
0 1
1 0

]
,

and X is the GSp4(R)-conjugacy class of homomorphisms containing the element
h : S(R) → GSp4(R) given by

h(x+ iy) =

[
xI2 yS
−yS xI2

]
∀(x+ iy) ∈ S(R)

where I2 denotes the 2×2 identity matrix. Thus, the weight morphism ωX : Gm →
GSp4 is given by ωX(t) = tI4 where I4 denotes the 4× 4 identity.

Let Kf ⊂ GSp4(Af ) be an open compact subgroup. Then we denote by SK its
corresponding level variety and we denote by S = lim←−

K
SK the Shimura variety

defined by this Shimura datum.

3.2. Maximal torus and root system. Let H be the maximal torus on GSp4(C)
given by the group of diagonal matrices

{
diag(hh1, hh2, h

−1
2 , h−1

1 ) | h1, h2, h∈C∗}⊂
GSp4(C). H defines a root system, and, as H is a Q-split torus, this root system
is also a Q-root system for GSp4.

Let h = Lie(H) be the complex Lie algebra corresponding to this maximal torus.
The root system Φ(gsp4,C, h) is of type C2.

Let ε1, ε2, ε ∈ h∗ be defined as ε1(X) = h1, ε2(X) = h2 and ε(X) = h for
X = diag(h+ h1, h+ h2,−h2,−h1) ∈ h.

Then the root system Φ(gsp4,C, h) is given by

{ε+ ε1 + ε2, ε1 − ε2, ε+ 2ε1, ε+ 2ε2,−ε− ε1 − ε2,−ε1 + ε2,−ε− 2ε1,−ε− 2ε2} .

We can take as positive roots {ε+ ε1 + ε2, ε1 − ε2, ε+ 2ε1, ε+ 2ε2}, and then the
system of simple roots is Δ = {α1 = ε1 − ε2, α2 = ε+ 2ε2}.

3.3. Standard Q-parabolic subgroups. The next step is to describe the stan-
dard Q-parabolic subgroups of GSp4 with respect to the given Q-root system and
system of positive roots.

As Δ has just two elements, we have three proper standard Q-parabolic sub-
groups, one minimal and two maximal ones. The minimal parabolic is given by

P0 = T4 ∩GSp4(C)

where T4 denotes the subgroup of upper triangular matrices in GL(4,C).
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On the other hand, for the maximal ones we have

P1 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

⎤
⎥⎥⎦ ∈ GL(4,C)

⎫⎪⎪⎬
⎪⎪⎭ ∩GSp4(C)

and

P2 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎤
⎥⎥⎦ ∈ GL(4,C)

⎫⎪⎪⎬
⎪⎪⎭ ∩GSp4(C).

We denote by SK the Borel-Serre compactification of SK and by ∂SK its bound-
ary. One knows that ∂SK is the union of faces, one for each standard Q-parabolic
subgroup; then we denote each one of these faces by ∂K,0, ∂K,1 and ∂K,2 respec-

tively. We use the notation S, ∂S, ∂0, ∂1 and ∂2 for the analogous objects at the
infinite level.

3.4. The irreducible representation. In order to determine a notation for the
finite dimensional irreducible representations of GSp4,C, we will consider the irre-
ducible representations for Sp4,C.

H ′ = H ∩ Sp4(C) is a Cartan subgroup of Sp4(C) and can be described as

H ′ =
{
diag(x1, x2, x

−1
2 , x−1

1 ) | x1, x2 ∈ C×} ⊂ Sp4(C).

H ′ has Lie algebra

h′ = {diag(h1, h2,−h2,−h1) | h1, h2 ∈ C} ⊂ sp4(C).

We define the linear functionals ε1, ε2 : h′ → C by

ε1(diag(h1, h2,−h2,−h1)) = h1 and ε2(diag(h1, h2,−h2,−h1)) = h2.

The associated root system Φ(sp4,C, h
′) (with the usual system of positive roots)

has fundamental weights λ1, λ2 : h′ → C given by λ1 = ε1 and λ2 = ε1 + ε2. Thus
the irreducible finite dimensional representations of Sp4,C are determined by their
highest weights, which in this case are the linear functionals of the formm1λ1+m2λ2

with m1,m2 non-negative integers.
The Lie algebra h of H can be described as the direct sum h = z ⊕ h′. We

extend ε1, ε2, λ1 and λ2 by zero in the previous decomposition, obtaining linear
functionals on h denoted by ε′1, ε

′
2, λ

′
1 and λ′

2 respectively. We denote by κ the linear
functional on h given by the projection to the first component in the aforementioned
decomposition.

One can see that an irreducible finite dimensional representation of GSp4,C is
determined by a linear functional of the form m1λ

′
1 +m2λ

′
2 + cκ where m1,m2 are

non-negative integers and c is an integer congruent to (m1 + 2m2) module 2.
We fix an irreducible algebraic representation (ρ, Vλ) of GSp4 with highest weight

λ = m1λ
′
1 +m2λ

′
2 + cκ.

3.5. The decomposition for each Hq(∂i, Ṽλ). Our first task is to understand
the weights of the mixed Hodge structure in

Hq−1(∂0, Ṽλ)/i(H
q−1(∂1, Ṽλ)⊕Hq−1(∂2, Ṽλ))

where i : Hq−1(∂1, Ṽλ)⊕Hq−1(∂2, Ṽλ) → Hq−1(∂0, Ṽλ) is the morphism in the long
exact sequence (2.2).
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In order to apply the decompositions (2.3) we need to understand the Weyl
group W . Let wα1

, wα2
∈ W be the simple reflections associated to α1 and α2

respectively. Table 1 gives a description of each element of W .

Table 1. The Weyl group of GSp4

w w−1(α1) w−1(α2) �(w) w∗(λ) = w(λ+ δ)− δ

w0 = 1 ε′1 − ε′2 2ε′2 0 (m1 +m2,m2)
w1 = wα1

−ε′1 + ε′2 2ε′1 1 (m2 − 1,m1 +m2 + 1)
w2 = wα2

ε′1 + ε′2 −2ε′2 1 (m1 +m2,−m2 − 2)
w3 = wα1

◦ wα2
−ε′1 − ε′2 2ε′1 2 (−m2 − 3,m1 +m2 + 1)

w4 = wα2
◦ wα1

ε′1 + ε′2 −2ε′1 2 (m2 − 1,−m1 −m2 − 3)
w5 = wα1

◦ wα2
◦ wα1

−ε′1 − ε′2 2ε′2 3 (−m1 −m2 − 4,m2)
w6 = wα2

◦ wα1
◦ wα2

ε′1 − ε′2 −2ε′1 3 (−m2 − 3,−m1 −m2 − 3)
w7 = wα1

◦ wα2
◦ wα1

◦ wα2
−ε′1 + ε′2 −2ε′2 4 (−m1 −m2 − 4,−m2 − 2)

In the last column, each pair (a, b) denotes the elements aε′1 + bε′2 + cκ and
δ = 2ε′1 + ε′2.

ClearlyWP0 = W , and, by using Table 1, one can see thatWP1 ={w0, w1, w3, w5}
and WP2 = {w0, w2, w4, w6}.

For each Kf ⊂ GSp4(Af ) open compact subgroup, Hk(S
MP0

K , W̃w∗(λ)) = 0 for
k > 0, thus

Hq−1(∂0, Ṽλ) =
⊕

w∈WP0

�(w)=q−1

Ind
GSp4(A

f )×π0(GSp4(R))

P0(Af )×π0(P0(R))
H0(SMP0 , W̃w∗(λ)).

3.6. Weights. In this subsection we determine, for each maximal standard Q-
parabolic subgroup P of GSp4, the homomorphism hP : S → GP,h where GP,h is
the hermitian part of the Levi subgroup MP of P and (GP,h, hP ) defines a Shimura
datum. These calculations will give some information about the mixed Hodge
structure on the cohomology spaces on the faces of the boundary of the Borel-Serre
compactification.

For the case P1 we follow the first pages of [8], in the order: first we calculate the
subgroup AP1

of the Levi subgroup MP1
, then we calculate the admissible Cayley

morphism w1 : Gm → AP1
and finally we compute the morphism hP1

: S → GP1,h.
One can see that AP1

, which is defined to be the maximal Q-split torus in the
center of MP1

times the center of GSp4,C, is given by

AP1
=

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

h1h2

h1

h1

h1(h2)
−1

⎤
⎥⎥⎦ | h1, h2 ∈ C∗

⎫⎪⎪⎬
⎪⎪⎭ .

By the properties of the admissible Cayley morphism described in [8] we can
determine w1 : Gm → AP1

. Indeed, let W1 be the unipotent radical of P1 and U1

its center, and let w1 and u1 be their corresponding Lie algebras. Then denoting
by gi the subspace of g in which the action (by conjugation) of w1(t) is given by
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multiplication by ti, we have that g−2 = u1 and g−1 ⊕ g−2 = w1 (see [8]). Thus
one can see that

w1(t) =

⎡
⎢⎢⎣

tk−2

tk−1

tk−1

tk

⎤
⎥⎥⎦ with k ∈ Z.

We apply the description on page 330 of [8] to calculate the morphism hP1
,

taking V = R4 and ρ : GSp4 → GL4 to be the natural inclusion. We consider the
canonical base {e1, e2, e3, e4} of R4. The filtration defined by the admissible Cayley
morphism w1 is given by Wk−2 = Re1,Wk−1 = Re1 ⊕Re2 ⊕Re3 and Wk = R4. We
take h the morphism given in subsection 3.1. Then we know (by another property
of the admissible Cayley morphism; see [8, p. 327]) that the decreasing filtration
defined by ρ ◦ h, together with the increasing filtration W•, defines a mixed Hodge
structure on V . The Hodge filtration defined by ρ ◦ h is given by

F−1
h VC = VC, F 0

hVC = C(e1 − ie4)⊕ C(e2 − ie3) and F 1
hVC = 0.

The only possible value for k to obtain such a mixed Hodge structure is 0. Then

w1(t) =

⎡
⎢⎢⎣

t−2

t−1

t−1

1

⎤
⎥⎥⎦ ,

and the mixed Hodge structure on V has types (−1,−1), (−1, 0), (0,−1) and (0, 0);
moreover the morphism hP1

is given by

hP1
(z) =

⎡
⎢⎢⎣

|z|2
Re(z) Im(z)
−Im(z) Re(z)

1

⎤
⎥⎥⎦ ∀z ∈ S(R).

In particular the weight morphism of this Shimura datum (GP1,h, hP1
) is

wP1
(t) =

⎡
⎢⎢⎣

t2

t
t

1

⎤
⎥⎥⎦ .

Thus, if w∗(λ) = d1ε
′
1+d2ε

′
2+ cκ for w ∈ WP1 , then the weight of the local system

˜(Ww∗(λ))h induced by Ww∗(λ) on the Shimura variety associated to the hermitian
part GP1,h of MP1

is −c− d1.
We make the same calculations for the case P2, obtaining that the weight mor-

phism of the corresponding Shimura datum (GP2,h, hP2
) is

wP2
(t) =

⎡
⎢⎢⎣

t2

t2

1
1

⎤
⎥⎥⎦ .

As the hermitian part of MP0
is that of MP2

, we have that if w∗(λ) = d1ε
′
1 +

d2ε
′
2 + cκ for w ∈ WP0 , then the weight of the local system ˜(Ww∗(λ))h induced by

Ww∗(λ) on the Shimura variety associated to the hermitian part GP2,h of MP0
is

−c− d1 − d2.
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On the other hand we can see that the weight of the local system Ṽλ defined by
Vλ on the Shimura variety associated to GSp4 is −c.

3.7. Ghost classes. We will study the subspace i(Hq−1(∂1, Ṽλ)⊕Hq−1(∂2, Ṽλ)) ⊂
Hq−1(∂0, Ṽλ).

We will abbreviate IndGSp4

P = Ind
GSp4(Af )×π0(GSp4(R))

P (Af )×π0(P (R)) for every P standard

parabolic Q-subgroup of GSp4.
Considering that

H0(∂0, Ṽλ) = IndGSp4

P0
H0(SMP0 , W̃λ),

H1(∂0, Ṽλ) = IndGSp4

P0
(H0(SMP0 , W̃(w1)∗(λ))⊕H0(SMP0 , W̃(w2)∗(λ))),

H2(∂0, Ṽλ) = IndGSp4

P0
(H0(SMP0 , W̃(w3)∗(λ))⊕H0(SMP0 , W̃(w4)∗(λ))),

H3(∂0, Ṽλ) = IndGSp4

P0
(H0(SMP0 , W̃(w5)∗(λ))⊕H0(SMP0 , W̃(w6)∗(λ))),

H4(∂0, Ṽλ) = IndGSp4

P0
H0(SMP0 , W̃(w7)∗(λ)),

we analyze these eight spaces to study in which cases they could contribute to ghost
classes and we arrive at the following result.

Theorem 3.1. For the Shimura variety associated to GSp4 and the local system
defined by the irreducible finite dimensional representation with highest weight λ =
m1λ

′
1 +m2λ

′
2 + cκ, we have the following results:

• If m1 > 0 or m2 > 0, then there is no ghost class in the cohomology of the
boundary of the Borel-Serre compactification.
• If m1 = m2 = 0, then there exist ghost classes only in degree 2 cohomology, and
their weight, in the corresponding mixed Hodge structure, is the middle weight.

In particular, the middle weight property is satisfied in all cases.

Proof. For each non-negative integer q, we will denote by rq1,0 : Hq(∂1, Ṽλ) →
Hq(∂0, Ṽλ) and rq2,0 : Hq(∂2, Ṽλ) → Hq(∂0, Ṽλ) the canonical morphisms.

Running over the elements w ∈ WP0 we analyze whether or not the space

H0(SMP0 , W̃w∗(λ)) can possibly contribute to the space of ghost classes.

• Case w = 1: IndGSp4

P0
H0(SMP0 , W̃λ) ⊂ H0(∂0, Ṽλ). Thus in order to contribute

to a ghost class the image of this space under the morphism

H0(∂0, Ṽλ) → H1(∂S, Ṽλ)

should have weight greater than or equal to the middle weight of H1(S, Ṽλ),

which is 1 − c. But we can check that the weight of IndGSp4

P0
H0(SMP0 , W̃λ) is

−c−m1− 2m2, so we conclude that H0(SMP0 , W̃λ) does not contribute to ghost
classes.
• Case w = w1: One can check by the same procedure that the subspace

IndGSp4

P0
H0(SMP0 , W̃(w1)∗(λ)) ⊂ H1(∂0, Ṽλ)

does not contribute to ghost classes.
• Case w = w4: MP1

coincides with its hermitian part. The restriction of the

morphism r21,0 to the subspace IndGSp4

P1
H1(SMP1 , W̃(w1)∗(λ)) ⊂ H2(∂1, Ṽλ) has

image in the subspace IndGSp4

P0
H0(SMP0 , W̃(w4)∗(λ)) ⊂ H2(∂0, Ṽλ), and as the
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parabolic induction is exact we can study the image of this morphism by studying
the morphism

H1(SMP1 , W̃(w1)∗(λ)) → Ind
MP1

P 1
0

H0(SMP0 , W̃(w4)∗(λ))

where P 1
0 denotes the Q-parabolic subgroup P0 ∩MP1

of MP1
. In the long exact

sequence

. . . → H1(SMP1 , W̃(w1)∗(λ)) → Ind
MP1

P 1
0

H0(SMP0 , W̃(w4)∗(λ))

→ H2
c (S

MP1 , W̃(w1)∗(λ)) → . . .

the weights in H2
c (S

MP1 , W̃(w1)∗(λ)) are ≤ 3 − c − m2, while the weight in the

space Ind
MP1

P 1
0

H0(SMP0 , W̃(w4)∗(λ)) is 4 − c +m1, so we conclude that the space

IndGSp4

P0
H0(SMP0 , W̃(w4)∗(λ)) is inside the image of r21,0 and does not contribute

to ghost classes.
• Case w = w6: One can prove, by the same procedure as in the case w = w4,

that the corresponding space IndGSp4

P0
H0(SMP0 , W̃(w6)∗(λ)) ⊂ H3(∂0, Ṽλ) does

not contribute to ghost classes.
• Case w = w3: We analyze the restriction of the morphism r22,0 to the subspace

IndGSp4

P2
H1(SMP2 , W̃(w2)∗(λ)) by using the results in [5] and as in the previous

items we just need to consider the morphism

H1(SMP2 , W̃(w2)∗(λ)) → Ind
MP2

P 2
0

H0(SMP0 , W̃(w3)∗(λ))

where P 2
0 denotes the Q-parabolic subgroup P0 ∩ MP2

of MP2
. In the con-

text of Theorem 2 in [5], we are in the unbalanced case. More precisely, we
are in the case (1) of the aforementioned theorem. As a conclusion, the space

IndGSp4

P0
H0(SMP0 , W̃(w3)∗(λ)) is in the image of r22,0 and does not contribute to

ghost classes.
• Case w = w5: We can use the same arguments as in the previous item to prove

that the space IndGSp4

P0
H0(SMP0 , W̃(w5)∗(λ)) is in the image of r32,0 and does not

contribute to ghost classes.
• Case w = w7: If m1 > 0, then by using the same arguments as in the case

w = w3 we conclude that the space IndGSp4

P0
H0(SMP0 , W̃(w7)∗(λ)) is in the image

of r42,0 and does not contribute to ghost classes.
On the other hand, using the same arguments as in the case w = w4 we

conclude that unless m2 = 0, the aforementioned space is in the image of r41,0
and does not contribute to ghost classes.

In conclusion the only case in which the space IndGSp4

P0
H0(SMP0 , W̃(w7)∗(λ))

could contribute to ghost classes is when m1 = m2 = 0. Assume m1 = m2 =
0. First of all this space is mapped to the degree 5 cohomology space of the
boundary of the Shimura variety, so in order to contribute to ghost classes we
need its image in H5(∂S, Ṽλ) to have non-trivial intersection with the image of

H5(S, Ṽλ) → H5(∂S, Ṽλ). Consider the case of a finite level variety, defined by
an open compact subgroup Kf ⊂ GSp4(Af ). We have the long exact sequence
in cohomology

. . . → H5(SK , Ṽλ) → H5(∂SK , Ṽλ) → H6
c (SK , Ṽλ) → . . .
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and by Poincaré duality we have the exact sequence

. . . → H0(SK , Ṽ ∨
λ ) → H0(∂SK , Ṽ ∨

λ ) → H1
c (SK , Ṽ ∨

λ ) → . . .

(where Ṽ ∨
λ will be also one dimensional) and, as H0(SK , Ṽ ∨

λ ) → H0(∂SK , Ṽ ∨
λ )

is an isomorphism (this follows from the fact that the boundary of the Borel-
Serre compactification of each connected component of SK is connected) we con-

clude that H5(∂SK , Ṽλ) → H6
c (SK , Ṽλ) is also an isomorphism. As a conclusion

H5(SK , Ṽλ) → H5(∂SK , Ṽλ) is the zero morphism. This is then true also in
the infinite level and it is then impossible to obtain ghost classes in degree 5

cohomology, so H0(SMP0 , W̃(w7)∗(λ)) does not contribute to ghost classes.
• Case w = w2: If m2 > 0, we can prove by the same arguments as in the case

w = w4 that the space IndGSp4

P0
H0(SMP0 , W̃(w2)∗(λ)) is inside the image of r11,0

and does not contribute to ghost classes.
On the other hand, if m1 > 0 we can prove by the same arguments as in the

case w = 1 that the space IndGSp4

P0
H0(SMP0 , W̃(w2)∗(λ)) does not contribute to

ghost classes.
On the other hand, when m1 = m2 = 0, there is proof of the existence of a

one dimensional space of ghost classes in degree 2 cohomology (which therefore

should come from the contribution of the space H0(SMP0 , W̃(w2)∗(λ))) in section
14.1 of [11] (another proof of this can be deduced from [4]). Moreover, in this
case one can verify that the weight in its corresponding mixed Hodge structure
is equal to the middle weight. �

Acknowledgments

This paper was reorganized during a research grant at the Max Planck Institute
for Mathematics in Bonn. The author wishes to thank Dr. Michael Harris for
his help and support, the University Paris 7 and the Max Planck Institute for
Mathematics in Bonn.

References

[1] A. Borel, Cohomology and spectrum of an arithmetic group, Operator algebras and group
representations, Vol. I (Neptun, 1980), Monogr. Stud. Math., vol. 17, Pitman, Boston, MA,
1984, pp. 28–45. MR731761

[2] A. Borel and J.-P. Serre, Corners and arithmetic groups, avec un appendice: Arrondissement
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