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WEAK AND STRONG Ap-A∞ ESTIMATES FOR SQUARE

FUNCTIONS AND RELATED OPERATORS

TUOMAS P. HYTÖNEN AND KANGWEI LI

(Communicated by Ken Ono)

Abstract. We prove sharp weak and strong type weighted estimates for a
class of dyadic operators that includes majorants of both standard singular

integrals and square functions. Our main new result is the optimal bound

[w]
1/p
Ap

[w]
1/2−1/p
A∞

� [w]
1/2
Ap

for the weak type norm of square functions on

Lp(w) for p > 2; previously, such a bound was only known with a logarithmic
correction. By the same approach, we also recover several related results in a
streamlined manner.

1. Introduction

We study weighted inequalities for the (in general nonlinear) operator

Ar
S(f) =

( ∑
Q∈S

〈f〉rQ1Q

) 1
r

, 〈f〉Q :=
1

|Q|

∫
Q

f,

where r > 0 and S is a sparse collection of dyadic cubes, i.e., there are pair-
wise disjoint subsets E(S) ⊂ S such that |E(S)| ≥ 1

2 |S|. For r = 1 and r = 2,
these operators dominate large classes of Calderón–Zygmund singular integrals and
Littlewood–Paley square functions, respectively (see [12, 13] and [7] for details).
Thus the various norm inequalities that we prove for Ar

S immediately translate to
corresponding estimates for these classes of classical operators, recovering results
like the A2 theorem of the first author [3], and its several variants and elaborations.

More precisely, we are concerned with quantifying the dependence of various
weighted operator norms on a mixture of the two-weight Ap characteristic

[w, σ]Ap
:= sup

Q
〈w〉Q〈σ〉p−1

Q

and the individual A∞ characteristics

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(1Qw)

and [σ]A∞ . The study of such mixed bounds was initiated in [6]. All our estimates
will be stated in a dual-weight formulation, in which the classical one-weight case
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corresponds to the choice σ = w1−p′
. Note that [w, σ]Ap

becomes the usual one-

weight Ap characteristic [w]Ap
:= [w,w1−p′

]Ap
with this choice.

Since we are dealing with dyadic operators, we also consider the dyadic versions
of the weight characteristics, where the supremums above are over dyadic cubes
only and M denotes the dyadic maximal operator. This is a standing convention
throughout this paper without further notice. Note, however, that the domination
of classical operators typically involves a sum of boundedly many Ar

S ’s with respect
to different dyadic systems, and for this reason the nondyadic weight characteristics
appear in such results.

The following strong type bound has been proved by Lacey and the second author
in [8], but we shall give a new proof here.

Theorem 1.1. Let 1 < p < ∞ and let r > 0. Let w, σ be a pair of weights. Then

‖Ar
S(·σ)‖Lp(σ)→Lp(w) ≤ C[w, σ]

1
p

Ap
([w]

( 1
r−

1
p )+

A∞
+ [σ]

1
p

A∞
).

Here and below, we simplify case analysis by interpreting [w]0A∞
= 1, whether or

not [w]A∞ is finite. The novelties of our approach are two-fold: we make black-box
use of certain two-weight theorems, rather than adapting their proofs, and we avoid
the “slicing” argument, namely, the separate consideration of families of cubes with
the Ap characteristic “frozen” to a certain value 〈w〉Q〈σ〉p−1

Q � 2k ≤ [w, σ]Ap
.

For r = 1, Theorem 1.1 (in combination with the domination of singular integrals
by A1

S) is the Ap-A∞ elaboration, by the first author and Lacey [5], of the A2

theorem of [3]. In this case, a “slicing-free” argument was provided in [4], but we
feel that the present approach is even simpler.

The benefits of this approach are best seen in the weak type estimate, for which
we obtain the following new result.

Theorem 1.2. Let 1 < p < ∞ with p 	= r. Let w, σ be a pair of weights. Then

‖Ar
S(·σ)‖Lp(σ)→Lp,∞(w) ≤ C[w, σ]

1
p

Ap
[w]

( 1
r−

1
p )+

A∞
.

The case p < r of Theorem 1.2 was essentially known and due to Lacey and
Scurry [10], and we merely repeat their one-weight proof in the two-weight case.
Note that we do not say anything about the critical exponent p = r, as our argu-
ments do not shed any new light into this case. For p > r, however, our bound

[w, σ]
1
p

Ap
[w]

1
r−

1
p

A∞
� [w]

1
p

Ap
[w]

1
r−

1
p

Ap
= [w]

1
r

Ap

is new even in the one-weight case σ = w1−p′
. Indeed, for r = 2, the previous

bounds in the literature had an additional logarithmic factor, taking the form 1 +

log[w]Ap
in [10], and subsequently improved to (1+log[w]A∞)

1
2 by Domingo-Salazar,

Lacey, and Rey [2]. By analogy to the failure of the A1 conjecture (see [14]), a
logarithmic correction is probably necessary in the critical case p = r. We are able
to avoid it for p > r by using a proof strategy specific to this range of exponents,
whereas [2, 10] treat all p ≥ r as one case.

Theorem 1.2 with r = 2 completes the picture of sharp weighted inequalities
for square functions, aside from the remaining critical case of p = 2. Namely,

[w]
max( 1

p ,
1
2 )

Ap
is the optimal bound among all possible bounds of the form Φ([w]Ap

)

with an increasing function Φ. This was shown by Lacey and Scurry [10] in the
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category of power type function Φ(t) = tα; a variant of their argument proves the
general claim, as we show in the last section.

To prove the above results, we need the following characterization, which is
essentially due to Lai [11]; we supply the necessary details to cover the cases that
were not explicitly treated in that paper.

Theorem 1.3. Let 1 < p < ∞ and let r > 0. Let w, σ be a pair of weights. Then

‖Ar
S(·σ)‖rLp(σ)→Lp(w) 


{
T + T ∗, p > r,

T , 1 < p ≤ r,

‖Ar
S(·σ)‖rLp(σ)→Lp,∞(w) 
 T ∗, p > r,

where

T = sup
R∈S

σ(R)−
r
p

∥∥∥ ∑
Q∈S
Q⊂R

〈σ〉rQ1Q

∥∥∥
L

p
r (w)

,

T ∗ = sup
R∈S

w(R)
− 1

(
p
r
)′
∥∥∥ ∑

Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q1Q

∥∥∥
L(

p
r
)′ (σ)

.

The case p > r of Theorems 1.1 and 1.2 is a consequence of Theorem 1.3 and
the following, which contains the technical core of this paper.

Proposition 1.4. Let r > 0 and let 1 < p < ∞. For T and T ∗ as in Theorem 1.3,
we have

T � [w, σ]
r
p

Ap
[σ]

r
p

A∞

and

T ∗ � [w, σ]
r
p

Ap
[w]

1− r
p

A∞
, p > r.

The plan of the paper is as follows: We start with the proof of Theorem 1.3 and
proceed to the estimation of the testing constant T and T ∗ as in Proposition 1.4.
This completes the proof of Theorems 1.1 and 1.2 in the case of p > r. The
remaining case of Theorem 1.2 for p < r is then handled in Section 4. In the
final section, we discuss the sharpness of our weak type estimates by modifying the
example given by Lacey and Scurry [10].

2. Proof of Theorem 1.3

As mentioned, Theorem 1.3 is essentially due to Lai [11]. Here we make a slight
change to extend the range of r from [1,∞) to (0,∞). At the same time, we feel
that our argument might be slightly easier, in that it makes no reference to the
Rubio de Francia algorithm.

2.1. The case p > r. In this case, we first give the following lemma.

Lemma 2.1. Let w, σ be a pair of weights and let p > r > 0. Then

‖Ar
S(·σ)‖rLp(σ)→Lp(w) 
 sup

‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ〈fr〉σQ1Q

∥∥∥
L

p
r (w)

,

‖Ar
S(·σ)‖rLp(σ)→Lp,∞(w) 
 sup

‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ〈fr〉σQ1Q

∥∥∥
Lp/r,∞(w)
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Proof. For convenience, denote by Y p(w) the target space Lp(w) or Lp,∞(w). We
have

‖Ar
S(·σ)‖rLp(σ)→Y p(w) = sup

‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈fσ〉rQ1Q

∥∥∥
Y

p
r (w)

= sup
‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ(〈f〉σQ)r1Q

∥∥∥
Y

p
r (w)

≤ sup
‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ〈(Mσ(f))
r〉σQ1Q

∥∥∥
Y

p
r (w)

= sup
‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ
〈( Mσ(f)

‖Mσ(f)‖Lp(σ)

)r〉σ

Q
1Q

∥∥∥
Y

p
r (w)

‖Mσ(f)‖rLp(σ)

� sup
‖g‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ〈gr〉σQ1Q

∥∥∥
Y

p
r (w)

,

where in the last step, we used the boundedness of Mσ on Lp(σ), and the bound is
independent of σ. For the other direction, notice that

〈fr〉σQ ≤ inf
x∈Q

Mσ(f
r)(x) = ( inf

x∈Q
Mσ,r(f)(x))

r ≤ (〈Mσ,r(f)〉σQ)r,

where Mσ,r(f) := (Mσ(f
r))1/r. With this observation, we have

sup
‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ〈fr〉σQ1Q

∥∥∥
Y

p
r (w)

≤ sup
‖f‖Lp(σ)=1

∥∥∥ ∑
Q∈S

〈σ〉rQ(〈Mσ,rf〉σQ)r1Q

∥∥∥
Y

p
r (w)

≤ sup
‖f‖Lp(σ)=1

‖Ar
S(·σ)‖rLp(σ)→Y p(w)‖Mσ,rf‖rLp(σ)

� ‖Ar
S(·σ)‖rLp(σ)→Y p(w),

where in the last step, we use the boundedness of Mσ,r on Lp(σ) since p > r, and
the bound is independent of σ. This completes the proof of Lemma 2.1. �

Now suppose that C1 is the best constant such that∥∥∥ ∑
Q∈S

〈σ〉rQ〈fr〉σQ1Q

∥∥∥
Y

p
r (w)

≤ C1‖f‖rLp(σ),

i.e.,

(2.2)
∥∥∥ ∑

Q∈S
〈σ〉rQ〈f〉σQ1Q

∥∥∥
Y

p
r (w)

≤ C1‖f‖L p
r (σ)

.

Then

‖Ar
S(·σ)‖Lp(σ)→Y p(w) 
 C

1
r
1 .

Hence, we have reduced the problem to study (2.2). We need the following result
given by Lacey, Sawyer and Uriarte-Tuero [9].

Proposition 2.3. Let τ = {τQ : Q ∈ Q} be nonnegative constants, let w, σ be
weights and let T be the linear operator defined by

Tτ (f) :=
∑
Q∈Q

τQ〈f〉Q1Q.
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Then for 1 < p < ∞, there holds

‖Tτ (·σ)‖Lp(σ)→Lp,∞(w) 
 sup
R∈Q

w(R)
− 1

p′
∥∥∥ ∑

Q∈Q
Q⊂R

τQ〈w〉Q1Q

∥∥∥
Lp′ (σ)

‖Tτ (·σ)‖Lp(σ)→Lp(w) 
 sup
R∈Q

w(R)
− 1

p′
∥∥∥ ∑

Q∈Q
Q⊂R

τQ〈w〉Q1Q

∥∥∥
Lp′ (σ)

+ sup
R∈Q

σ(R)−
1
p

∥∥∥ ∑
Q∈Q
Q⊂R

τQ〈σ〉Q1Q

∥∥∥
Lp(w)

.

Observing that

LHS(2.2) = ‖Tτ (fσ)‖Y p
r (w)

with τQ = 〈σ〉r−1
Q , Theorem 1.3 follows immediately from Proposition 2.3.

2.2. The case 1 < p ≤ r. In this case, making use of the usual construction
principal cubes F of (f, σ), we have

‖Ar
S(fσ)‖Lp(σ)→Lp(w) =

∥∥∥( ∑
Q∈S

〈fσ〉rQ1Q

) 1
r
∥∥∥
Lp(w)

�
∥∥∥( ∑

F∈F
(〈f〉σF )r

∑
Q∈S

π(Q)=F

〈σ〉rQ1Q

) 1
r
∥∥∥
Lp(w)

≤
( ∑

F∈F
(〈f〉σF )p

∥∥∥( ∑
Q∈S

π(Q)=F

〈σ〉rQ1Q

) 1
r
∥∥∥p
Lp(w)

) 1
p

≤
( ∑

F∈F
(〈f〉σF )pT

p
r σ(F )

) 1
p � T 1

r ‖f‖Lp(σ).

On the other hand, it is obvious that

T 1
r ≤ ‖Ar

S(·σ)‖Lp(σ)→Lp(w).

Therefore, ‖Ar
S(·σ)‖Lp(σ)→Lp(w) 
 T 1

r .

3. Proof of Proposition 1.4

We recall the following proposition.

Proposition 3.1 ([1, Proposition 2.2]). Let 1 < s < ∞, let σ be a positive Borel
measure and let

φ =
∑
Q∈D

αQ1Q, φQ =
∑

Q′⊂Q

αQ′1Q′ .

Then

‖φ‖Ls(σ) �

( ∑
Q∈D

αQ(〈φQ〉σQ)s−1σ(Q)
)1/s

.

We also need the following result, whose proof is based on the Kolmogorov’s
inequality.
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Proposition 3.2 ([4, Lemma 5.2]). Let γ ∈ [0, 1). Then∑
Q∈S
Q⊂R

〈w〉γQ|Q| � 〈w〉γR|R|.

Now we can estimate the two testing constants.

3.1. Estimate of T . Let us first note that the case p ≥ r + 1 implies the general
case. Indeed, suppose the mentioned case is already proven, and consider p < r+1.
Let Tr denote the testing constant related to a given value of r. Now in particular
r > p− 1, and hence

T 1/r
r = sup

R∈S
σ(R)−

1
p

∥∥∥( ∑
Q∈S
Q⊂R

〈σ〉rQ1Q
) 1

r
∥∥∥
Lp(w)

≤ sup
R∈S

σ(R)−
1
p

∥∥∥( ∑
Q∈S
Q⊂R

〈σ〉p−1
Q 1Q

) 1
p−1

∥∥∥
Lp(w)

= (Tp−1)
1

p−1 .

Since p ≥ (p−1)+1, we know by assumption that (Tp−1)
1

p−1 ≤ [w, σ]
1
p

Ap
[σ]

1
p

A∞
, and

this gives the required bound for Tr.
So we concentrate on p ≥ r + 1. By Proposition 3.1, we have∥∥∥ ∑

Q∈S
Q⊂R

〈σ〉rQ1Q

∥∥∥
L

p
r (w)

�

( ∑
Q∈S
Q⊂R

〈σ〉rQw(Q)
( 1

w(Q)

∑
Q′∈S
Q′⊂Q

〈σ〉rQ′w(Q′)
) p

r−1) r
p

=
( ∑

Q∈S
Q⊂R

〈σ〉rQw(Q)
( 1

w(Q)

∑
Q′∈S
Q′⊂Q

〈σ〉rQ′〈w〉
r

p−1

Q′ 〈w〉1−
r

p−1

Q′ |Q′|
) p

r−1) r
p

≤ [w, σ]
r

p−1 (1−
r
p )

Ap

( ∑
Q∈S
Q⊂R

〈σ〉rQw(Q)
( 1

w(Q)

∑
Q′∈S
Q′⊂Q

〈w〉1−
r

p−1

Q′ |Q′|
) p

r−1) r
p

� [w, σ]
r

p−1 (1−
r
p )

Ap

( ∑
Q∈S
Q⊂R

〈σ〉rQw(Q)
( 1

w(Q)
〈w〉1−

r
p−1

Q |Q|
) p

r−1) r
p

= [w, σ]
r

p−1 (1−
r
p )

Ap

( ∑
Q∈S
Q⊂R

〈σ〉rQ〈w〉
r−1
p−1

Q |Q|
) r

p

≤ [w, σ]
r

p−1 (1−
r
p )+

r−1
p−1 ·

r
p

Ap

( ∑
Q∈S
Q⊂R

〈σ〉Q|Q|
) r

p � [w, σ]
r
p

Ap
[σ]

r
p

A∞
σ(R)

r
p .

Therefore,

(3.3) T � [w, σ]
r
p

Ap
[σ]

r
p

A∞
.
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3.2. Estimate of T ∗. Recall that we only consider p > r in this case. For sim-
plicity, we denote s = ( pr )

′. By Proposition 3.1 again, we have∥∥∥ ∑
Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q1Q

∥∥∥
L(

p
r
)′ (σ)

�

( ∑
Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)

∑
Q′∈S
Q′⊂Q

〈σ〉r−1
Q′ 〈w〉Q′σ(Q′)

)s−1

σ(Q)
)1/s

.
(3.4)

We consider r < p < r + 1 and p > r + 1 separately. If r < p < r + 1, then

RHS(3.4)

=
( ∑

Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)

∑
Q′∈S
Q′⊂Q

〈σ〉p−1
Q′ 〈w〉Q′〈σ〉r+1−p

Q′ |Q′|
)s−1

σ(Q)
)1/s

≤ [w, σ]
s−1
s

Ap

( ∑
Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)

∑
Q′∈S
Q′⊂Q

〈σ〉r+1−p
Q′ |Q′|

)s−1

σ(Q)
)1/s

� [w, σ]
s−1
s

Ap

( ∑
Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)
〈σ〉r+1−p

Q |Q|
)s−1

σ(Q)
)1/s

= [w, σ]
r
p

Ap

( ∑
Q∈S
Q⊂R

〈w〉Q|Q|
)1/s

� [w, σ]
r
p

Ap
[w]

1− r
p

A∞
w(R)1/(

p
r )

′
.

If p ≥ r + 1, then

RHS(3.4)

=
( ∑

Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)

∑
Q′∈S
Q′⊂Q

〈σ〉rQ′〈w〉
r

p−1

Q′ 〈w〉1−
r

p−1

Q′ |Q′|
)s−1

σ(Q)
)1/s

≤ [w, σ]
r2

(p−1)p

Ap

( ∑
Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)

∑
Q′∈S
Q′⊂Q

〈w〉1−
r

p−1

Q′ |Q′|
)s−1

σ(Q)
)1/s

≤ [w, σ]
r2

(p−1)p

Ap

( ∑
Q∈S
Q⊂R

〈σ〉r−1
Q 〈w〉Q

( 1

σ(Q)
〈w〉1−

r
p−1

Q |Q|
)s−1

σ(Q)
)1/s

= [w, σ]
r2

(p−1)p

Ap

( ∑
Q∈S
Q⊂R

〈w〉
1+ (p−1−r)r

(p−1)(p−r)

Q 〈σ〉
(p−1−r)r

p−r

Q |Q|
)1/s

≤ [w, σ]
r2

(p−1)p
+ (p−1−r)r

p(p−1)

Ap

( ∑
Q∈S
Q⊂R

〈w〉Q|Q|
)1/s

� [w, σ]
r
p

Ap
[w]

1− r
p

A∞
w(R)1/(

p
r )

′
.

Therefore, in both cases,

(3.5) T ∗ � [w, σ]
r
p

Ap
[w]

1− r
p

A∞
.
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Combining (3.3) and (3.5), we have completed the proof of Proposition 1.4.
Together with Theorem 1.3, this yields Theorem 1.1 as well as Theorem 1.2 in the
case that p > r.

4. Proof of the weak type bound for 1 < p < r

We are left to prove Theorem 1.2 in the case that 1 < p < r. Actually, Lacey
and Scurry [10] have investigated the one-weight case. Following their method, it is
easy to give the two-weight estimate as well. For completeness, we give the details.
We want to bound the following inequality:

sup
t>0

tw({x ∈ R
n : Ar

S(fσ) > t}) 1
p ≤ C‖f‖Lp(σ).

By scaling it suffices to give a uniform estimate for

t0w({x ∈ R
n : Ar

S(fσ) > t0})
1
p ,

where t0 is some constant to be determined later. It is also free to further sparsify
S such that ∣∣∣ ⋃

Q′�Q
Q′,Q∈S

Q′
∣∣∣ ≤ 1

4
|Q|.

Now set

Sl := {Q ∈ S : 2−l−1 < 〈fσ〉Q ≤ 2−l}, l ≥ 0

and

S−1 := {Q ∈ S : 〈fσ〉Q > 1}.
Then for Q ∈ Sl, l ≥ 0, denote by chSl

(Q) the maximal subcubes of Q in Sl and
EQ = Q \ (

⋃
Q′∈chSl

(Q) Q
′). We have

〈fσ1EQ
〉Q =

1

|Q|

∫
Q

fσdx− 1

|Q|
∑

Q′∈chSl
(Q)

∫
Q′

fσdx

=
1

|Q|

∫
Q

fσdx−
∑

Q′∈chSl
(Q)

|Q′|
|Q|

1

|Q′|

∫
Q′

fσdx

≥ 1

|Q|

∫
Q

fσdx− 1

4
2−l ≥ 1

2
〈fσ〉Q.

Since

w({x ∈ R
n : Ar

S(fσ) > t0})

= w({x ∈ R
n :

∑
Q∈S

〈fσ〉rQ1Q > tr0})

≤ w({x ∈ R
n :

∑
l≥0

∑
Q∈Sl

〈fσ〉rQ1Q >
tr0
2
})

+ w({x ∈ R
n :

∑
Q∈S−1

〈fσ〉rQ1Q >
tr0
2
}) =: I1 + I2,
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it is easy to see that

I2 ≤ w

⎛
⎝ ⋃

S∈S−1

S

⎞
⎠ ≤ w({M(fσ) > 1}) � [w, σ]Ap

‖f‖pLp(σ).

Let
tr0
2 =

∑
l≥0 2

−εl, where ε := (r − p)/2. We have

I1 ≤
∑
l≥0

w({x ∈ R
n :

∑
Q∈Sl

〈fσ〉rQ1Q > 2−εl})

≤
∑
l≥0

w({x ∈ R
n :

∑
Q∈Sl

〈fσ〉pQ1Q > 2(r−p)l2−εl})

≤
∑
l≥0

w({x ∈ R
n :

∑
Q∈Sl

〈fσ1EQ
〉pQ1Q > 2−p2(r−p)l2−εl})

≤
∑
l≥0

2(p+ε−r)l+p

∫
Rn

∑
Q∈Sl

〈fσ1EQ
〉pQ1Qdw

≤
∑
l≥0

2(p+ε−r)l+p
∑
Q∈Sl

w(Q)

|Q|p σ(Q)p−1

∫
EQ

fpdσ

� [w, σ]Ap
‖f‖pLp(σ).

Combining the above, we get

‖Ar
S(fσ)‖Lp,∞(w) � [w, σ]

1
p

Ap
‖f‖Lp(σ).

5. Sharpness of the weak type bounds

In this section, let

Sf :=
(∑

I∈D

1I
|I| |〈hI , f〉|2

)1/2

denote the Haar square function, and σ := w1−p′
will always be the Lp dual-

weight of w for a fixed value of p ∈ (1,∞). We show that the norm bound

‖S‖Lp(w)→Lp,∞(w) � [w]
max( 1

p ,
1
2 )

Ap
is unimprovable. Actually, a lower bound with

the exponent 1
p holds uniformly over all weights, which is the content of the next

(straightforward) proposition. The optimality of the exponent 1
2 is slightly more

tricky and is based on a (standard) example of a specific weight.

Proposition 5.1. For any weight w, we have

‖S‖Lp(w)→Lp,∞(w) ≥ [w]
1
p

Ap
.

Proof. Let N := ‖S‖Lp(w)→Lp,∞(w) and consider f = sgn(hI)|f |. Then Sf ≥
1I |I|−1/2〈|hI |, |f |〉 = 1I〈|f |〉I . Thus

N‖f‖Lp(w) ≥ ‖1I〈|f |〉I‖Lp,∞(w) =
w(I)1/p

|I|

∫
I

|f | = w(I)1/p

|I|

∫
I

|f |w−1w

for all positive functions |f | on I. By the converse to Hölder’s inequality, this shows
that

N ≥ w(I)1/p

|I| ‖w−1‖Lp′ (w) =
w(I)1/pσ(I)1/p

′

|I| ,
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and taking the supremum over all I proves the claim. �

Proposition 5.2. Let Φ be an increasing function such that

‖S‖Lp(w)→Lp,∞(w) ≤ Φ([w]Ap
)

for all w ∈ Ap. Then Φ(t) ≥ ct1/2.

Lacey and Scurry [10] showed this result in the class of power functions, namely,
they proved that there cannot be a bound of the form Φ(t) = t1/2−η for η > 0. The
stronger claim above follows by an elaboration of their argument.

Proof. Following the same arguments as those in [10], the assumption implies∥∥∥(∑
Q

〈aQ · w〉2Q1Q

)1/2∥∥∥
Lp′ (σ)

� Φ([w]Ap
)
∥∥∥(∑

Q

a2Q)
1/2

∥∥∥
Lp′,1(w)

for all sequences of measurable functions aQ. For ε > 0, we consider w(x) = |x|ε−1

and a sequence of functions

a[0,2−k)(x) := ak(x) := ε
1
2

∞∑
j=k+1

2−ε(j−k)1[2−j ,2−j+1)(x), k ∈ N.

Then it is easy to check that [w]Ap

 w([0, 1]) 
 ε−1 and

∑
k ak(x)

2 � 1[0,1] so
that ∥∥∥( ∞∑

k=1

ak(x)
2)1/2

∥∥∥
Lp′,1(w)

� w([0, 1])1/p
′
.

On the other hand,

〈ak · w〉[0,2−k) 
 ε
1
2 2k

∞∑
j=k+1

2−ε(j−k)2−εj 
 ε−
1
2 2k(1−ε).

It follows that∫
[0,1]

( ∞∑
k=1

〈ak · w〉2[0,2−k)1[0,2−k)

)p′/2

dσ 
 ε−p′/2−1 
 ε−p′/2w([0, 1]).

By assumption, this implies ε−1/2 � Φ([w]Ap
) ≤ Φ(cε−1), and hence Φ(t) � t1/2.

�
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