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ONE DIMENSIONAL ESTIMATES

FOR THE BERGMAN KERNEL
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ZBIGNIEW B�LOCKI AND W�LODZIMIERZ ZWONEK

(Communicated by Filippo Bracci)

Abstract. Carleson showed that the Bergman space for a domain on the
plane is trivial if and only if its complement is polar. Here we give a quanti-
tative version of this result. One is the Suita conjecture, established by the
first-named author in 2012, and the other is an upper bound for the Bergman
kernel in terms of logarithmic capacity. We give some other estimates for
those quantities as well. We also show that the volume of sublevel sets for the

Green function is not convex for all regular non-simply connected domains,
generalizing a recent example of Fornæss.

1. Introduction

For w ∈ Ω, where Ω is a domain in C, Carleson [7] (see also [8]) showed the
Bergman space A2(Ω) of square integrable holomorphic functions in Ω is trivial if
and only if the complement C \ Ω is polar. The estimate conjectured by Suita [12]
and proved in [4]

(1) cΩ(w)
2 ≤ πKΩ(w), w ∈ Ω,

gives a quantitative version of one of the implications. Here

(2) cΩ(w) = exp
(
lim
z→w

(
GΩ(z, w)− log |z − w|

))
is the logarithmic capacity of C \ Ω with respect to w,

GΩ(z, w) = sup{u(z) : u ∈ SH(Ω), u < 0, lim sup
ζ→w

(u(ζ)− log |ζ − w|) < ∞}

is the (negative) Green function,

KΩ(w) = sup{|f(w)|2 : f ∈ A2(Ω), ||f || ≤ 1}

is the Bergman kernel on the diagonal, and ||f || = ||f ||L2(Ω).
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Our first result is the following upper bound for the Bergman kernel:

Theorem 1. Let Ω be a domain in C and w ∈ Ω. Assume that 0 < r ≤ δΩ(w) :=
dist (w, ∂Ω). Then

KΩ(w) ≤
1

−2πr2 max
z∈Δ(w,r)

GΩ(z, w)
.

As a consequence we will obtain the following quantitative version of the other
implication in the Carleson characterization:

Theorem 2. There exists a uniform constant C > 0 such that for w ∈ Ω, where
Ω is a domain in C, we have

KΩ(w) ≤
C

δΩ(w)2 log (1/(δΩ(w)cΩ(w)))
.

We will also consider the following counterparts of the Bergman kernel for higher
derivatives for j = 0, 1, . . .:

K
(j)
Ω (w) := sup{|f (j)(w)|2 : f ∈ A2(Ω), ||f || ≤ 1,

f(0) = f ′(0) = · · · = f (j−1)(0) = 0}.

We will prove the following generalization of (1):

Theorem 3. For w ∈ Ω ⊂ C and j = 0, 1, 2, . . . we have

K
(j)
Ω (w) ≥ j!(j + 1)!

π
(cΩ(w))

2j+2.

The inequality is optimal; one can easily check that the equality holds for Ω = Δ,
the unit disc, and w = 0.

It is clear that the dimension of A2(Ω) is infinite if and only if, for a given w,

there exists infinitely many j’s such that K
(j)
Ω (w) > 0. Therefore, Theorem 3 gives

a quantitative version of a result of Wiegerinck [13] who showed that if C \Ω is not
polar, then A2(Ω) is infinitely dimensional.

Since the proof of Theorem 2 also easily gives the upper bound

K
(j)
Ω (w) ≤ Cj

δΩ(w)2+j log (1/(δΩ(w)cΩ(w)))
, w ∈ Ω,

and by Proposition 6 below we have the following characterization of domains in
dimension one:

Theorem 4. For w ∈ Ω ⊂ C and j = 0, 1, 2, . . . the following are equivalent:
i) C \ Ω is not polar;

ii) K
(j)
Ω (w) > 0;

iii) logK
(j)
Ω is smooth and strongly subharmonic;

iv) A2(Ω) �= {0};
v) dimA2(Ω) = ∞.

A different proof of the Suita conjecture (1) was given in [5]. It follows from the
lower bound

(3) KΩ(w) ≥
1

e−2tλ({GΩ(·, w) < t})
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for t < 0. This inequality was proved in [5] using the tensor power trick which
requires a corresponding inequality for pseudoconvex domains in Cn for arbitrary
n. As noticed by Lempert (see also [3]), (3) can also be proved using the variational
formula for the Bergman kernel in C2 of Maitani-Yamaguchi [11] (generalized by
Berndtsson [2] to higher dimensions). Both proofs therefore make crucial use of
several complex variables. It would be interesting to find a purely one dimensional
proof of (3).

It was shown in [6] that the right-hand side of (3) is non-increasing in t (it is an
open problem in higher dimensions). Also, a more general conjecture was given,
namely that the function

(4) (−∞, 0) � t 	−→ log λ({GΩ(·, w) < t})
is convex. A counterexample was found by Fornæss [10]. It was also shown numeri-
cally in [1] that the conjecture does not hold in an annulus. Here we will generalize
and simplify both results proving the following:

Theorem 5. Assume that w ∈ Ω, where Ω is a domain in C, are such that
∇G(z0) = 0 for some z0 ∈ Ω \ {w}, where G = GΩ(·, w). Then the function
(4) is not convex near t0 = G(z0).

Note that for example any regular domain Ω which is not simply connected
satisfies the assumption of Theorem 5 for any w: it is enough to take maximal t0
such that {G < t0} is simply connected. Then there exists z0 such that∇G(z0) = 0.

2. Upper bounds for the Bergman kernel

In this section we will prove Theorems 1 and 2.

Proof of Theorem 1. We may assume that Ω is bounded and smooth, w = 0, and
r < δΩ(0). Take f ∈ A2(Ω). Without loss of generality we may take such an f
which is defined in a neighborhood of Ω. Let u ∈ C∞(Ω\Δr), where Δr := Δ(0, r),
be harmonic in Ω \Δr and such that u = 1 on ∂Ω and u = 0 on ∂Δr. Then

f(0) =
1

2πi

∫
∂Ω

f(z)

z
dz =

1

2πi

∫
∂(Ω\Δr)

fu

z
dz =

1

π

∫
Ω\Δr

fuz̄

z
dλ.

Therefore,

|f(0)|2 ≤ ||f ||2
π2r2

∫
Ω\Δr

|uz̄|2dλ =
||f ||2
4π2r2

∫
∂Ω

un dσ,

where un denotes the outer normal derivative of u at ∂Ω. Denoting G = GΩ(·, 0),
we have

G

−max
Δr

G
+ 1 ≤ u,

and therefore on ∂Ω

un ≤ Gn

−max
Δr

G
.

The required estimate now follows from the fact that∫
∂Ω

Gndσ = 2π.

�
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Proof of Theorem 2. Denote G = GΩ(·, w), R = δΩ(w) and assume that 0 < r < R.
Then by the Poisson formula

max
Δ(w,r)

G ≤ R− r

2π(R+ r)

∫ 2π

0

G(w +Reit)dt =
R− r

R+ r
log(RcΩ(w)).

By Theorem 1

KΩ(w) ≤
R + r

2π(R− r)r2 log(1/(RcΩ(w)))
.

We can now take for example r = R/2 and the estimate follows. �

The smallest constant the above proof gives will be obtained for r = (
√
5−1)R/2;

then

C =
11 + 5

√
5

4π
.

3. Proof of the lower bound for K
(j)
Ω

In this section we prove Theorem 3. We follow the method from [4]. We could
have also used another method from [5] but this would require us to go to several
complex variables and we prefer to have a purely one dimensional argument.

Proof of Theorem 3. We assume that w = 0, Ω is bounded and smooth, and denote
G = GΩ(·, 0). Set

α :=
∂

∂z̄

(
zjχ(|z|)

)
=

zj+1χ′(|z|)
2|z|

and

ϕ := (2j + 2)G+ η ◦G, ψ := γ ◦G,

where χ ∈ C0,1((0,∞)), η ∈ C1,1((−∞, 0)), γ ∈ C0,1((−∞, 0)) will be defined
later. We assume that η is convex and non-decreasing (so that ϕ is subharmonic),
(γ′)2 < η′′, and that (γ′ ◦ G)2 ≤ δη′′ ◦ G on the support of α for some constant
δ with 0 < δ < 1. Then by Theorem 2 in [4] one can find u ∈ L2

loc(Ω) such that
F := zjχ(|z|)− u is holomorphic and

(5)

∫
Ω

|u|2 Γ ◦Gdλ ≤ 1 +
√
δ

1−
√
δ

∫
Ω

|α|2
η′′ ◦G |Gz|2

e2ψ−ϕ dλ,

where

Γ :=

(
1− (γ′)2

η′′

)
e2γ−η−(2j+2)t.

Take ε > 0 and assume that χ(|z|) ⊂ {|z| ≤ ε}. We choose T = T (ε) < 0 such that
{|z| ≤ ε} ⊂ {G ≤ T}. Since |G− log |z|| ≤ C0 near 0, we may take T := log ε+C0.

Similarly as in [4] for s < 0 we define

η0(s) := − log(−s+ es − 1),

γ0(s) := − log(−s+ es − 1) + log(1− es),

so that (
1− (γ′

0)
2

η′′0

)
e2γ0−η0−s = 1

and

(6) lim
s→−∞

(2γ0(s)− η0(s)− log η′0(s)) = 0.
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We now set

η(t) :=

{
η0

(
(2j + 2)t

)
, t ≥ T,

−δ log(T − t+ a) + b, t < T,

and

γ(t) :=

{
γ0

(
(2j + 2)t

)
, t ≥ T,

−δ log(T − t+ a) + b̃, t < T,

where δ = δ(ε) > 0 will be determined later and a, b, b̃ are uniquely determined by
the conditions η ∈ C1,1, γ ∈ C0,1:

a = a(ε) =
δ

(2j + 2)η′0
(
(2j + 2)T

) ,
b = b(ε) = η0

(
(2j + 2)T

)
+ δ log a,

b̃ = b̃(ε) = γ0
(
(2j + 2)T

)
+ δ log a.

We see that if we choose δ =
√
−T , then δ(ε) → 0 and a(ε) → ∞ as ε → 0.

On (−∞, T ) we have (γ′)2 = δη′′ and

Γ = (1− δ)e2
˜b−b e−(2j+2)t

(T − t+ a)δ
,

so that |z|2jΓ ◦ G is not locally integrable near 0. By (5) it implies that F (0) =
F ′(0) = · · · = F (j−1)(0) = 0 and F (j)(0) = j!χ(0). One can also check that Γ ≥ 1
on (−∞, T ).

Since |2Gz − 1/z| ≤ C1 near 0, we have 2|z||Gz| ≥ 1− C1ε on {|z| ≤ ε}. There
we also have

e2ψ−ϕ

η′′ ◦G =
e2

˜b−b

δ
(T −G+ a)2−δe−(2j+2)G

≤ e2
˜b−b

δ
(log ε− log |z|+ 2C0 + a)2−δe−(2j+2)G.

Therefore, the right-hand side of (5) can be bounded from above by

(7)
(1 +

√
δ)e2

˜b−bA(ε)

δ(1−
√
δ)(cΩ(0))2j+2

∫
{|z|≤ε}

(χ′(|z|))2(log ε− log |z|+ 2C0 + a)2−δdλ,

where A(ε) → 1 as ε → 0. The optimal choice for χ is

χ(r) = (2C0 + a)δ−1 − (log ε− log r + 2C0 + a)δ−1;

then (7) takes the form

2π(1 +
√
δ)2e2

˜b−b(2C0 + a)δ−1A(ε)

δ(cΩ(0))2j+2
.

Note that

e2
˜b−b(2C0 + a)1−δ

δ
=

(
2C0 + a

a

)1−δ
e2γ0(S)−η0(S)−log η′

0(S)

2j + 2
,

where S = (2j+2)T . Combining this with (6) and the fact that χ(0) = (2C0+a)δ−1
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we will obtain

lim inf
ε→0

|F (j)(0)|2
||F ||2 =

j!(j + 1)!

π
(cΩ(w))

2j+2.

�

Using standard methods we will also prove the following formula for the Lapla-

cian of logK
(j)
Ω . It is of course well known for j = 0 and the proof is essentially the

same in general.

Proposition 6. For a domain Ω in C such that C\Ω is not polar and j = 0, 1, . . .
we have

∂2

∂z∂z̄
(logKΩ) =

K
(j+1)
Ω

K
(j)
Ω

.

Proof. Denote H0 = A2(Ω) and for a fixed w ∈ Ω and k = 1, 2, . . . set

Hk := {f ∈ A2(Ω): f(w) = f ′(w) = · · · = f (k−1)(w) = 0}.
Since Hk is of codimension at most 1 in Hk−1, we can find an orthonormal system

ϕ0, ϕ1, . . . in A2(Ω) such that ϕk ∈ Hk for all k. This means that ϕ
(j)
l (w) = 0 for

l > j. For f ∈ Hj we have

f =
∑
l≥j

〈f, ϕl〉ϕl.

Therefore,

K
(j)
Ω (z) =

∑
l≥j

|ϕ(j)
l (z)|2

and

K
(j)
Ω (w) = |ϕ(j)

j (w)|2.
Since

(logK)zz̄ =
KKzz̄ − |Kz|2

K2

and

(K
(j)
Ω )zz̄(w) = |ϕ(j+1)

j (w)|2 + |ϕ(j+1)
j+1 (w)|2,

(K
(j)
Ω )z(w) = ϕ

(j+1)
j (w)ϕ

(j)
j (w),

we will obtain

(logK
(j)
Ω )zz̄(w) =

|ϕ(j+1)
j+1 (w)|2

|ϕ(j)
j (w)|2

and the proposition follows. �

4. Proof of Theorem 5

Let tj → t0 be a sequence of regular values for G. It will be enough to show that
γ′(tj) → ∞, where γ(t) = λ({GΩ(·, w) < t}). By the co-area formula we have

γ(t) =

∫ t

−∞

∫
{G=s}

dσ

|∇G| ds,

and, therefore,

γ′(tj) =

∫
{G=tj}

dσ

|∇G| .
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It is convenient to assume that z0 = 0. Since G is harmonic in Ω \ {w}, it follows
that there exists a holomorphic h near 0 such that h(0) �= 0 and for some n ≥ 2 we
have

G(z) = t0 +Re (znh(z)) .

It follows that near 0 we have

|∇G(z)| ≤ C1|z|n−1.

We can also find a biholomorphic F near 0 such that G(F (ζ)) = t0 + Re (ζn). We
then have

|∇G(F (ζ))| ≤ C2|ζ|n−1

and for some r > 0∫
{G=tj}

dσ

|∇G| ≥
1

C3

∫
{ζ∈Δ(0,r) : Re (ζn)=tj−t0}

dσ

|ζ|n−1
−→ ∞

as j → ∞. �
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