Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hausdorff dimension of limsup sets of random rectangles in products of regular spaces


Authors: Fredrik Ekström, Esa Järvenpää, Maarit Järvenpää and Ville Suomala
Journal: Proc. Amer. Math. Soc. 146 (2018), 2509-2521
MSC (2010): Primary 28A80, 60D05
DOI: https://doi.org/10.1090/proc/13920
Published electronically: February 16, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The almost sure Hausdorff dimension of the limsup set of randomly distributed rectangles in a product of Ahlfors regular metric spaces is computed in terms of the singular value function of the rectangles.


References [Enhancements On Off] (What's this?)

  • [1] Victor Beresnevich and Sanju Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2) 164 (2006), no. 3, 971-992. MR 2259250, https://doi.org/10.4007/annals.2006.164.971
  • [2] A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1935), no. 1, 321-330. MR 1512941, https://doi.org/10.1007/BF01448030
  • [3] Emile Borel, Sur les séries de Taylor, Acta Math. 21 (1897), no. 1, 243-247 (French). Lettre adressée à l'éditeur. MR 1554891, https://doi.org/10.1007/BF02417979
  • [4] Francesco Cantelli, Sulla probabilitá come limite della frequenza, Atti Accad. Naz. Lincei 26 (1917), no. 1, 39-45.
  • [5] Arnaud Durand, On randomly placed arcs on the circle, Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 343-351. MR 2743004, https://doi.org/10.1007/978-0-8176-4888-6_22
  • [6] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31-36. MR 0031026
  • [7] Fredrik Ekström and Tomas Persson, Hausdorff dimension of random limsup sets, arXiv:1612.07110.
  • [8] Ai-Hua Fan, Jörg Schmeling, and Serge Troubetzkoy, A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proc. Lond. Math. Soc. (3) 107 (2013), no. 5, 1173-1219. MR 3126394, https://doi.org/10.1112/plms/pdt005
  • [9] Ai-Hua Fan and Jun Wu, On the covering by small random intervals, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 1, 125-131 (English, with English and French summaries). MR 2037476, https://doi.org/10.1016/S0246-0203(03)00056-6
  • [10] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • [11] De-Jun Feng, Esa Järvenpää, Maarit Järvenpää, and Ville Suomala, Dimensions of random covering sets in Riemann manifolds, To appear in Ann. Probab., available at http://www.imstat.org/aop/future_papers.htm.
  • [12] Vojtěch Jarnik, Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys. 39 (1932), no. 1, 403-438 (German). MR 1550072, https://doi.org/10.1007/BF01699082
  • [13] Esa Järvenpää, Maarit Järvenpää, Henna Koivusalo, Bing Li, and Ville Suomala, Hausdorff dimension of affine random covering sets in torus, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 4, 1371-1384. MR 3269998, https://doi.org/10.1214/13-AIHP556
  • [14] Esa Järvenpää, Maarit Järvenpää, Henna Koivusalo, Bing Li, Ville Suomala, and Yimin Xiao, Hitting probabilities of random covering sets in tori and metric spaces, Electron. J. Probab. 22 (2017), Paper No. 1, 18. MR 3613694, https://doi.org/10.1214/16-EJP4658
  • [15] Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187-204. MR 0030135
  • [16] A. Khintchine, Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24 (1926), no. 1, 706-714 (German). MR 1544787, https://doi.org/10.1007/BF01216806
  • [17] Tomas Persson, A note on random coverings of tori, Bull. Lond. Math. Soc. 47 (2015), no. 1, 7-12. MR 3312958, https://doi.org/10.1112/blms/bdu087
  • [18] C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
  • [19] Stéphane Seuret, Inhomogeneous coverings of topological Markov shifts, To appear in Math. Proc. Cambridge Philos. Soc., available at https://doi.org/10.1017/S0305004117000512.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 28A80, 60D05

Retrieve articles in all journals with MSC (2010): 28A80, 60D05


Additional Information

Fredrik Ekström
Affiliation: Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
Email: fredrik.ekstrom@oulu.fi

Esa Järvenpää
Affiliation: Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
Email: esa.jarvenpaa@oulu.fi

Maarit Järvenpää
Affiliation: Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
Email: maarit.jarvenpaa@oulu.fi

Ville Suomala
Affiliation: Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
Email: ville.suomala@oulu.fi

DOI: https://doi.org/10.1090/proc/13920
Received by editor(s): May 15, 2017
Received by editor(s) in revised form: July 24, 2017, and August 3, 2017
Published electronically: February 16, 2018
Additional Notes: We acknowledge the support of the Centre of Excellence in Analysis and Dynamics, funded by the Academy of Finland. We thank P. Mattila, S. Seuret, P. Shmerkin and J. Tyson for useful discussions, and the program Fractal Geometry and Dynamics, held at Institut Mittag–Leffler.
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society