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Abstract. We construct a unital pre-C*-algebra A0 which is stably finite, in
the sense that every left invertible square matrix over A0 is right invertible,
while the C*-completion of A0 contains a nonunitary isometry, and so it is
infinite.

1. Introduction

Let A be a unital algebra. We say that A is finite (also called directly finite or
Dedekind finite) if every left invertible element of A is right invertible, and we say
that A is infinite otherwise. This notion originates in the seminal studies of pro-
jections in von Neumann algebras carried out by Murray and von Neumann in the
1930s. At the 22nd International Conference on Banach Algebras and Applications,
held at the Fields Institute in Toronto in 2015, Yemon Choi raised the following
questions:

(1) Let A be a unital, finite normed algebra. Must its completion be finite?
(2) Let A be a unital, finite pre-C*-algebra. Must its completion be finite?

Choi also stated Question (1) in [7, Section 6].
A unital algebra A is said to be stably finite if the matrix algebra Mn(A) is finite

for each n ∈ N. This stronger form of finiteness is particularly useful in the context
of K-theory, and so it has become a household item in the Elliott classification
programme for C*-algebras. The notions of finiteness and stable finiteness differ
even for C*-algebras, as was shown independently by Clarke [8] and Blackadar [4] (or
see [5, Exercise 6.10.1]). A much deeper result is due to Rørdam [9, Corollary 7.2],
who constructed a unital, simple C*-algebra which is finite (and separable and
nuclear), but not stably finite.

We shall answer question (2), and hence question (1), in the negative by proving
the following result.

Theorem 1.1. There exists a unital, infinite C*-algebra which contains a dense,
unital, stably finite *-subalgebra.

Let A be a unital *-algebra. Then there is a natural variant of finiteness in this
setting, namely we say that A is *-finite if whenever we have u ∈ A satisfying
u∗u = 1, then uu∗ = 1. However, it is known (see, e.g., [10, Lemma 5.1.2]) that a
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C*-algebra is finite if and only if it is *-finite, so in this article we shall not need to
refer to *-finiteness again.

2. Preliminaries

Our approach is based on semigroup algebras. Let S be a monoid, that is, a
semigroup with an identity, which we shall usually denote by e. By an involution
on S we mean a map from S to S, always denoted by s �→ s∗, satisfying (st)∗ = t∗s∗

and s∗∗ = s (s, t ∈ S). By a *-monoid we shall mean a pair (S, ∗), where S is a
monoid and ∗ is an involution on S. Given a *-monoid S, the semigroup algebra
CS becomes a unital *-algebra simply by defining δ∗s = δs∗ (s ∈ S) and extending
conjugate-linearly.

Next we shall recall some basic facts about free products of *-monoids, unital
*-algebras, and their C*-representations.

Let S and T be monoids, and let A and B be unital algebras. Then we denote
the free product (i.e., the coproduct) of S and T in the category of monoids by
S ∗ T , and similarly we denote the free product of the unital algebras A and B by
A ∗ B. It follows from the universal property satisfied by free products that, for
monoids S and T , we have C(S ∗ T ) ∼= (CS) ∗ (CT ).

Given *-monoids S and T , we can define an involution on S ∗ T by

(s1t1 · · · sntn)∗ = t∗ns
∗
n · · · t∗1s∗1

for n ∈ N, s1 ∈ S, s2, . . . , sn ∈ S \ {e}, t1, . . . , tn−1 ∈ T \ {e}, and tn ∈ T. The
resulting *-monoid, which we continue to denote by S ∗T , is the free product in the
category of *-monoids. We can analogously define an involution on the free product
of two unital *-algebras, and again the result is the free product in the category of
unital *-algebras. We then find that C(S ∗ T ) ∼= (CS) ∗ (CT ) as unital *-algebras.

Let A be a *-algebra. If there exists an injective *-homomorphism from A into
some C*-algebra, then we say that A admits a faithful C*-representation. In this
case, A admits a norm such that the completion of A in this norm is a C*-algebra,
and we say that A admits a C*-completion. Our construction will be based on
C*-completions of *-algebras of the form CS, for S a *-monoid.

We shall denote by S∞ the free *-monoid on countably many generators; that is,
as a monoid S∞ is free on some countably-infinite generating set {tn, sn : n ∈ N},
and the involution is determined by t∗n = sn (n ∈ N). For the rest of the text we
shall simply write t∗n in place of sn. We define BC to be the bicyclic monoid
〈p, q : pq = e〉. This becomes a *-monoid when an involution is defined by p∗ = q,
and the corresponding ∗-algebra CBC is infinite because δpδq = δe, but δqδp =
δqp 	= δe.

Lemma 2.1. The following unital *-algebras admit faithful C*-representations:

(i) C(BC),
(ii) C(S∞).

Proof.
(i) Since BC is an inverse semigroup, this follows from [2, Theorem 2.3].
(ii) By [3, Theorem 3.4] CS2 admits a faithful C*-representation, where S2 de-

notes the free monoid on two generators S2 = 〈a, b〉, endowed with the involu-
tion determined by a∗ = b. There is a *-monomorphism S∞ ↪→ S2 defined by
tn �→ a(a∗)na (n ∈ N), and this induces a *-monomorphism CS∞ ↪→ CS2. The
result follows. �
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By a state on a unital *-algebra A we mean a linear functional μ : A → C

satisfying 〈a∗a, μ〉 ≥ 0 (a ∈ A) and 〈1, μ〉 = 1. We say that a state μ is faithful if
〈a∗a, μ〉 > 0 (a ∈ A\{0}). A unital *-algebra with a faithful state admits a faithful
C*-representation via the GNS representation associated with the state.

The following theorem appears to be folklore in the theory of free products of
C*-algebras; it can be traced back at least to the seminal work of Avitzour [1,
Proposition 2.3] (see also [6, Section 4] for a more general result).

Theorem 2.2. Let A and B be unital ∗-algebras which admit faithful states. Then
their free product A ∗ B also admits a faithful state, and hence it has a faithful
C*-representation.

We make use of this result in our next lemma.

Lemma 2.3. The unital *-algebra C(BC∗S∞) admits a faithful C*-representation.

Proof. We first remark that a separable C*-algebra A always admits a faithful state.
To see this, note that the unit ball of A∗ with the weak*-topology is a compact
metric space, and hence also separable. It follows that the set of states S(A) is
weak*-separable. Taking {ρn : n ∈ N} to be a dense subset of S(A), we then define
ρ =

∑∞
n=1 2

−nρn, which is easily seen to be a faithful state on A.
By Lemma 2.1, both C(BC) and C(S∞) admit C*-completions. Since both of

these algebras have countable dimension, their C*-completions are separable and,
as such, each admits a faithful state, which we may then restrict to obtain faithful
states on CBC and CS∞. By Theorem 2.2, (CBC)∗ (CS∞) ∼= C(BC ∗ S∞) admits
a faithful C*-representation. �

3. Proof of Theorem 1.1

The main idea of the proof is to embed CS∞, which is finite, as a dense *-
subalgebra of some C*-completion of C(BC ∗S∞), which will necessarily be infinite.
In fact we have the following.

Lemma 3.1. The *-algebra CS∞ is stably finite.

Proof. As we remarked in the proof of Lemma 2.1, CS∞ embeds into CS2. It is also
clear that, as an algebra, CS2 embeds into CF2, where F2 denotes the free group on
two generators. Hence CS∞ embeds into vN(F2), the group von Neumann algebra
of F2, which is stably finite since it is a C*-algebra with a faithful tracial state. It
follows that CS∞ is stably finite as well. �

We shall next define a notion of length for elements of BC ∗ S∞. Indeed, each
u ∈ (BC ∗ S∞) \ {e} has a unique expression of the form w1w2 · · ·wn, for some
n ∈ N and some w1, . . . , wn ∈ (BC \ {e}) ∪ {tj , t∗j : j ∈ N}, satisfying wi+1 ∈
{tj , t∗j : j ∈ N} whenever wi ∈ BC \ {e} (i = 1, . . . , n − 1). We then define
len u = n for this value of n, and set len e = 0. This also gives a definition of
length for elements of S∞ by considering S∞ as a submonoid of BC ∗ S∞ in the
natural way. For m ∈ N0 we set

Lm(BC ∗ S∞) = {u ∈ BC ∗ S∞ : len u ≤ m}, Lm(S∞) = {u ∈ S∞ : len u ≤ m}.
We now describe our embedding of CS∞ into C(BC ∗ S∞). By Lemma 2.3,
C(BC ∗ S∞) has a C*-completion (A, ‖ · ‖). Let γn = (n‖δtn‖)−1 (n ∈ N) and
define elements an in C(BC ∗ S∞) by an = δp + γnδtn (n ∈ N), so that an → δp as
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n → ∞. Using the universal property of S∞ we may define a unital homomorphism
ϕ : CS∞ → C(BC ∗ S∞) by setting ϕ(δtn) = an (n ∈ N) and extending to CS∞.
In what follows, given a monoid S and s ∈ S, δ′s will denote the linear functional
on CS defined by 〈δt, δ′s〉 = �s,t (t ∈ S), where �s,t = 1 if s = t and �s,t = 0
otherwise.

Lemma 3.2. Let w ∈ S∞ with len w = m. Then

(i) ϕ(δw) ∈ span {δu : u ∈ Lm(BC ∗ S∞)};
(ii) for each y ∈ Lm(S∞) we have

〈ϕ(δy), δ′w〉 	= 0 ⇔ y = w.

Proof. We proceed by induction on m. When m = 0, w is forced to be e and hence,
as ϕ is unital, ϕ(δe) = δe, so that (i) is satisfied. In (ii), y is also equal to e, so that
(ii) is trivially satisfied as well.

Assume m ≥ 1 and that (i) and (ii) hold for all elements of Lm−1(S∞). We can
write w as w = vx for some v ∈ S∞ with len v = m−1 and some x ∈ {tj , t∗j : j ∈ N}.

First consider (i). By the induction hypothesis, we can write ϕ(δv) =
∑

u∈E αuδu
for some finite set E ⊂ Lm−1(BC ∗S∞) and some scalars αu ∈ C (u ∈ E). Suppose
that x = tj for some j ∈ N. Then

ϕ(δw) = ϕ(δv)ϕ(δtj ) =

(∑
u∈E

αuδu

)
(δp + γjδtj ) =

∑
u∈E

αuδup + αuγjδutj ,

which belongs to span {δu : u ∈ Lm(BC ∗ S∞)} because

len (up) ≤ len (u) + 1 ≤ m and len (utj) = len (u) + 1 ≤ m

for each u ∈ Lm−1(BC ∗ S∞). The case x = t∗j is established analogously.
Next consider (ii). Let y ∈ Lm(S∞). If len y ≤ m − 1, then, by (i), we know

that ϕ(δy) ∈ span {δu : u ∈ Lm−1(BC ∗ S∞)} ⊂ ker δ′w. Hence in this case y 	= w
and 〈ϕ(δy), δ′w〉 = 0.

Now suppose instead that len y = m, and write y = uz for some u ∈ Lm−1(S∞)
and z ∈ {tj , t∗j : j ∈ N}. By (i) we may write ϕ(δu) =

∑
s∈F βsδs for some finite

subset F ⊂ Lm−1(BC ∗S∞) and some scalars βs ∈ C (s ∈ F ), and we may assume
that v ∈ F (possibly with βv = 0). We prove the result in the case that z = tj for
some j ∈ N, with the argument for the case z = t∗j being almost identical. We have
ϕ(δz) = δp + γjδtj , and it follows that

ϕ(δy) = ϕ(δu)ϕ(δz) =
∑
s∈F

βsδsp + βsγjδstj .

Observe that sp 	= w for each s ∈ F . This is because we either have len (sp) <
m = len (w) or else sp ends in p when considered as a word over the alphabet
{p, p∗} ∪ {tj , t∗j : j ∈ N}, whereas w ∈ S∞. Moreover, given s ∈ F , stj = w = vx if
and only if s = v and tj = x. Hence

〈ϕ(δy), δ′w〉 = βvγj�tj ,x = 〈ϕ(δu), δ′v〉γj�tj ,x.

As γj > 0, this implies that 〈ϕ(δy), δ′w〉 	= 0 if and only if 〈ϕ(δu), δ′v〉 	= 0 and tj = x,
which, by the induction hypothesis, occurs if and only if u = v and tj = x. This
final statement is equivalent to y = w. �

Corollary 3.3. The map ϕ is injective.
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Proof. Assume towards a contradiction that
∑

u∈F αuδu ∈ kerϕ for some non-
empty finite set F ⊂ S∞ and αu ∈ C\{0} (u ∈ F ). Take w ∈ F of maximal length.
Then

0 =

〈
ϕ

(∑
u∈F

αuδu

)
, δ′w

〉
=

∑
u∈F

αu〈ϕ(δu), δ′w〉 = αw〈ϕ(δw), δ′w〉,

where the final equality follows from Lemma 3.2(ii). That lemma also tells us that
〈ϕ(δw), δ′w〉 	= 0, forcing αw = 0, a contradiction. �

We can now prove our main theorem.

Proof of Theorem 1.1. Recall that (A, ‖·‖) denotes a C*-completion of C(BC∗S∞),
which exists by Lemma 2.3, and A is infinite since δp, δq ∈ A. Let A0 ⊂ A be the
image of ϕ. Corollary 3.3 implies that A0

∼= CS∞, which is stably finite by Lemma
3.1. Moreover, ϕ(δtn) = an → δp as n → ∞ so that δp ∈ A0, and we also see that

δtn = 1
γn

(an − δp) ∈ A0 (n ∈ N). The elements δp and δtn (n ∈ N) generate A

as a C*-algebra, and since A0 is a C*-subalgebra containing them, we must have
A = A0, which completes the proof. �
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