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Lp ESTIMATES FOR THE BERGMAN PROJECTION

ON SOME REINHARDT DOMAINS

ZHENGHUI HUO

(Communicated by Harold P. Boas)

Abstract. We obtain Lp regularity for the Bergman projection on some Rein-
hardt domains. We start with a bounded initial domain Ω with some symmetry
properties and generate successor domains in higher dimensions. We prove:
If the Bergman kernel on Ω satisfies appropriate estimates, then the Bergman
projection on the successor is Lp bounded. For example, the Bergman projec-
tion on successors of strictly pseudoconvex initial domains is bounded on Lp

for 1 < p < ∞. The successor domains need not have smooth boundary nor
be strictly pseudoconvex.

1. Introduction

The purpose of this paper is to establish Lp regularity for the Bergman pro-
jection on certain domains. In [Huo17], the author began with an initial domain
with certain symmetry properties. From this initial domain the author constructed
various successor domains and computed (explicitly) the Bergman kernel on them
in terms of the Bergman kernel on the initial domain.

Let Ω be an initial domain in Cn. We consider two kinds of estimates on the
Bergman kernel KΩ. A first estimate implies Lp regularity of the Bergman projec-
tion on Ω. If, also, a second estimate holds, then we obtain Lp regularity of the
Bergman projection on the successor domain. See Theorem 1.2. We use a vari-
ant of Schur’s lemma to establish Lp regularity. We state the crucial estimates in
Theorem 3.3 and give the proof in Section 4.

Let Ω ⊆ C
n be a bounded domain. The Bergman projection is the orthogonal

projection from L2(Ω) onto the closed subspace of square-integrable holomorphic
functions, and thus is bounded on L2. It is natural to ask when this operator is
bounded on Lp for p �= 2. Using known estimates for the Bergman kernel, various
authors have obtained Lp regularity results for 1 < p < ∞ in the following settings:

(1) Ω is bounded, smooth, and strongly pseudoconvex. See [Fef74,PS77].
(2) Ω ⊆ C

2 is a domain of finite type. See [McN89,McN94a,NRSW88].
(3) Ω ⊆ Cn is a convex domain of finite type. See [McN94a,McN94b,MS94].
(4) Ω ⊆ Cn is a domain of finite type with locally diagonalizable Levi form.

See [CD06].
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Progress has also been made on some domains with weaker assumptions on bound-
ary regularity. In some cases, the Bergman projection is Lp bounded for 1 < p < ∞.
See [EL08,LS12]. For other domains, the projection has only a finite range of map-
ping regularity. See [Zey13, CZ16, EM16, EM17, Che17]. There are also smooth
bounded domains where the projection has limited Lp range. See [BŞ12].

We start with a bounded complete Reinhardt domain Ω in Cn with a defining
function ρ and analyze the Lp regularity of the Bergman projection on the successor
domains Uα(Ω) defined by

(1.1) Uα(Ω) =

{
(z, w) ∈ C

n × B
k :

(
z1

(1− ‖w‖2)
α1
2

, . . . ,
zn

(1− ‖w‖2)αn
2

)
∈ Ω

}
.

Here Bk is the unit ball in Ck and α = (α1, · · · , αn) with each αj greater than 0.
We will often use Uα to denote Uα(Ω).

For each multi-index β, letDβ
z denote the differential operator ( ∂

∂z1
)β1 · · · ( ∂

∂zn
)βn .

Given functions of several variables f and g, we use f � g to denote that f ≤ Cg
for a constant C. If f � g and g � f , then we say f is comparable to g and write
f � g.

Next we introduce the estimates needed for the derivatives of the Bergman kernel
on Ω.

Definition 1.1. Let Ω be a domain in Cn. Let h be a positive function on Ω.
A kernel K on Ω × Ω is h-regular of type l if there exists a > 0 such that for all
ε ∈ (0, a), we have

(1.2)

∫
Ω

|K(z; ζ)|h−ε(ζ)dV (ζ) � h−ε−l(z).

Now we are ready to state our main theorem:

Theorem 1.2. Let ρ be a defining function for Ω ⊆ Cn and let Uα⊆Cn+k be as in
(1.1). Suppose the Bergman kernel KΩ satisfies the following two properties:

(1) KΩ is (−ρ)-regular of type 0.
(2) Dβ

zKΩ(z; ζ̄) is (−ρ)-regular of type |β| whenever |β| ≤ k.

Then the Bergman projection is bounded on Lp(Uα) for p ∈ (1,∞).

We note that assumption (1) implies that the Bergman projection on Ω is
bounded in Lp for 1 < p < ∞. See Schur’s lemma in Section 3. Using estimates for
derivatives of the Bergman kernel from [McN94b,McN89,NRSW88, PS77, CD06],
one can show that Dβ

zKΩ is (−ρ)-regular of type |β| for all β ∈ N
n in classes

of domains previously mentioned. In Theorem 1.2, we only require Dβ
zKΩ to be

(−ρ)-regular of type |β| for all β such that |β| ≤ k.
In Section 2, we recall the technique in [Huo17] relating the Bergman kernels of

initial domains to those of their successors. In Section 3, we discuss several lemmas
and state Theorem 3.3. This result is used to prove Theorem 1.2 via Schur’s lemma.
We prove Theorem 3.3 in Section 4.

2. A formula for computing the Bergman kernel

In this section we recall a construction from [Huo17] that produces the Bergman
kernel of various higher dimensional successors of an initial domain. We start with
an initial domain Ω and construct a class of domains Uα(Ω) by introducing new
parameters α to Ω.



Lp ESTIMATES FOR THE BERGMAN PROJECTION 2543

The technique in [Huo17] consists of the following 4 steps:

(1) Start with the kernel function KΩ on the initial domain.
(2) Construct a function on Uα(Ω) × Uα(Ω) by evaluating KΩ at a point off

the diagonal.
(3) Define a specific differential operator (depending on α).
(4) Apply the operator in step (3) to the function in step (2), obtaining KUα(Ω).

The points at which we evaluate in step (2) and define the operator in step (3) are
independent of the initial domain Ω, but they depend on the parameters α.

We recall in the definition below the notion of “complete Reinhardt” for the
symmetry property the initial domain must satisfy.

Definition 2.1. A domain Ω ⊆ Cn is called complete Reinhardt in (z1, . . . , zn) if
the containment (z1, . . . , zn) ∈ Ω implies the containment

{(λ1z1, . . . , λnzn) : |λj | ≤ 1 for 1 ≤ j ≤ n} ⊆ Ω.

Let Ω ⊆ Cn be a complete Reinhardt domain in (z1, . . . , zn). For α ∈ Rn
+ and

w ∈ Bk, set

(2.1) fα (z, w) =

(
z1

(1− ‖w‖2)
α1
2

, . . . ,
zn

(1− ‖w‖2)αn
2

)
.

The successor Uα(Ω) is defined by

(2.2) Uα(Ω) = {(z, w) ∈ C
n × B

k : fα(z, w) ∈ Ω, ‖w‖ < 1}.

For fixed w ∈ Bk, let Uα
w(Ω) denote the slice domain {z ∈ Cn : (z, w) ∈ Uα} of Uα.

We will often write Uα
w to denote Uα

w(Ω). Since the mapping fα(·, w) : z 	→ fα(z, w)
is a biholomorphism from Uα

w(Ω) onto Ω, the kernel on Uα
w(Ω) can be obtained from

KΩ.
The main result in [Huo17] relates the Bergman kernel on Uα

w(Ω) to KUα . To
state this result, we need a few more notational definitions. Let I denote the
identity operator. We define DUα to be the differential operator:

(2.3) DUα =
(1− ‖η‖2)|α|

πk(1− 〈w, η〉)1+k+|α|

k∏
l=1

⎛
⎝lI +

n∑
j=1

αj

(
I + zj

∂

∂zj

)⎞⎠ .

Let h(z, w, η) denote the following:

(2.4) h (z, w, η) =

(
z1

(
1− ‖η‖2
1− 〈w, η〉

)α1

, . . . , zn

(
1− ‖η‖2
1− 〈w, η〉

)αn
)
.

The formula for KUα in [Huo17] can be expressed as follows:

Theorem 2.2. For (z, w; ζ, η) ∈ Uα × Uα, let DUα and h(z, w, η) be as in (2.3)
and (2.4). Then

(2.5) KUα

(
z, w; ζ̄ , η̄

)
= DUαKUα

η

(
h(z, w, η); ζ̄

)
.

3. Lemmas and Theorem 3.3

The proof of Theorem 1.2 uses the following variant of Schur’s lemma. See
[EM16] for its proof.
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Lemma 3.1 (Schur’s lemma). Let Ω be a domain in Cn and let K be a non-
negative measurable function on Ω× Ω. Let K be the integral operator with kernel
K. Suppose there exists a positive auxiliary function h on Ω and a number a > 0
such that for all ε ∈ (0, a), the following two inequalities hold:

(1) K(h−ε)(z) =
∫
Ω
K(z, ζ)h(ζ)−εdV (ζ) � h−ε(z),

(2) K(h−ε)(ζ) =
∫
Ω
K(z, ζ)h(z)−εdV (z) � h−ε(ζ).

Then K is a bounded operator on Lp(Ω), for all p ∈ (1,∞).

We will take the function K(z, ζ) from Lemma 3.1 to be the absolute Bergman
kernel |KΩ(z; ζ̄)|. Inequalities (1) and (2) in the lemma are equivalent sinceKΩ(z; ζ̄)

= KΩ(ζ, z̄). The L
p boundedness of the corresponding operator K then implies the

Lp boundedness of the Bergman projection. To show that the Bergman projection
on Ω is Lp bounded for p ∈ (1,∞), it suffices to find an auxiliary function h as in
Lemma 3.1 and show that KΩ is h-regular of type 0. In many cases, one can choose
h to be the distance function to the boundary.

From now on we let Ω be a smooth bounded complete Reinhardt domain in Cn.
On such a domain Ω, a defining function with several useful symmetry properties
can be chosen.

Lemma 3.2. Let Ω ⊆ Cn be a smooth complete Reinhardt domain. Then there
exists a defining function ρ of Ω satisfying the following properties:

(a) ρ is smooth in a neighborhood of the boundary bΩ.
(b) If |zj | = |ζj | for 1 ≤ j ≤ n, then ρ(z) = ρ(ζ).
(c) If |zj | ≤ |ζj | for 1 ≤ j ≤ n, then ρ(z) ≤ ρ(ζ).
(d) For 1 ≤ j ≤ n, zjρzj (z) ≥ 0.
(e) If z ∈ bΩ, then

∑n
j=1 zjρzj (z) > 0.

Proof. Set ρ to be the function defined by the distance between z and bΩ:

ρ(z) =

{
-dist(z,bΩ) z ∈ Ω,

dist(z,bΩ) z /∈ Ω.

Then property (a) is true for any domain Ω with smooth boundary. Properties
(b) and (c) also hold since Ω is complete Reinhardt. Consider polar coordinates
zj = tje

iθj for 1 ≤ j ≤ n. Since ρ is invariant under the rotation in each coordinate,
we have

0 =
∂

∂θj
ρ
(
t1e

iθ1 , . . . , tne
iθn

)
(3.1)

= i
(
zjρzj (t1e

iθ1 , . . . , tne
iθn)− z̄jρz̄j (t1e

iθ1 , . . . , tne
iθn)

)
.

The monotonicity of ρ in |zj | implies that

0 ≤ tj
∂

∂tj
ρ
(
t1e

iθ1 , . . . , tne
iθn

)
=zjρzj (t1e

iθ1 , . . . , tne
iθn) + z̄jρz̄j (t1e

iθ1 , . . . , tne
iθn).

(3.2)

Combining these two formulas yields property (d).
To prove property (e), it suffices to show that

∑n
j=1 zjρzj (z) �= 0 on bΩ. Suppose

not. Then there exists some z ∈ bΩ such that zjρzj (z) = 0 for all j. Let A denote
the set of indices j such that zj = 0 and let B denote the complement of A in
{1, . . . , n}. Then ρzj (z) equals 0 for all j ∈ A. Since the gradient of ρ does not
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vanish on bΩ, there exists an index j0 ∈ B such that ρzj0 (z) �= 0. Thus zj0 equals

0. The fact that zj0 = 0 and property (c) then imply that z is a local min for ρ(z)
in the zj0 direction. This contradicts ρzj0 (z) �= 0. Therefore the sum

∑n
j=1 zjρzj (z)

does not vanish on the boundary. �

The crucial estimates for Theorem 1.2 arise from the following theorem:

Theorem 3.3. Let Ω ⊆ C
n be a smooth complete Reinhardt domain with a defining

function ρ. For α ∈ Rn
+, let fα and Uα be as in (2.1) and (2.2). If Dβ

zKΩ is (−ρ)-

regular whenever |β| ≤ k, then KUα is
(
(1− ‖w‖2)(−ρ ◦ fα)

)
-regular of type 0.

We give a proof for Theorem 3.3 in Section 4. Theorem 3.3 implies Theorem 1.2.
Indeed, the kernel KUα being

(
(1− ‖w‖2)(−ρ ◦ fα)

)
-regular of type 0 implies that

the Bergman projection on Uα is bounded in Lp for p ∈ (1,∞).
We end this section by referencing several estimates needed in the proof of The-

orem 3.3. See for example [Zhu05].

Lemma 3.4. Let σ denote Lebesgue measure on the unit sphere Sk ⊂ Ck. For
ε < 1 and w ∈ Bk, let

(3.3) aε,δ(w) =

∫
Bk

(1− ‖η‖2)−ε

|1− 〈w, η〉|1+k−ε−δ
dV (η),

and let

(3.4) bδ(w) =

∫
Sk

1

|1− 〈w, η〉|k−δ
dσ(η).

Then

(1) For δ > 0, both aε,δ and bδ are bounded on Bk.
(2) For δ = 0, both aε,δ(w) and bδ(w) are comparable to the function

− log(1− ‖w‖2).
(3) For δ < 0, both aε,δ(w) and bδ(w) are comparable to the function (1 −

‖w‖2)δ.

4. Proof of Theorem 3.3

Proof of Theorem 3.3. Recall that for each multi-index β, Dβ
z is the differential

operator ( ∂
∂z1

)β1 · · · ( ∂
∂zn

)βn . Then DUα in the previous section can be regarded as

a sum of Dβ
z :

(4.1) DUα =
(1− ‖η‖2)|α|

πk(1− 〈w, η〉)1+k+|α|

⎛
⎝ ∑

|β|≤k

cβz
βDβ

z

⎞
⎠ ,

where cβ are fixed constants.
The main goal in this proof is to show the following inequality:∫

Uα

∣∣KUα(z, w; ζ̄ , η̄)
∣∣ (−ρ (fα(ζ, η)) (1− ‖η‖2)

)−ε
dV(4.2)

�
(
−ρ (fα(z, w)) (1− ‖w‖2)

)−ε
.

To estimate the integral

(4.3)

∫
Uα

∣∣KUα(z, w; ζ̄ , η̄)
∣∣ (−ρ (fα(ζ, η)) (1− ‖η‖2)

)−ε
dV,
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we use the formula in Theorem 2.2. Substituting (2.5) into the integral in (4.3)
yields ∫

Uα

∣∣KUα(z, w; ζ̄ , η̄)
∣∣ (−ρ (fα(ζ, η)) (1− ‖η‖2)

)−ε
dV

=

∫
Uα

∣∣∣DUαKUα
η

(
h(z, w, η); ζ̄

)∣∣∣ (−ρ (fα(ζ, η)) (1− ‖η‖2)
)−ε

dV.(4.4)

We set

Iβ =
cβ(1− ‖η‖2)|α|

(1− 〈w, η〉)1+k+|α| z
βDβ

z

and

Jβ =

∫
Uα

∣∣∣IβKUα
η

(
h(z, w, η); ζ̄

)∣∣∣ (−ρ (fα(ζ, η)) (1− ‖η‖2)
)−ε

dV.(4.5)

By the triangle inequality, we have∫
Uα

∣∣∣DUαKUα
η

(
h(z, w, η); ζ̄

)∣∣∣ (−ρ (fα(ζ, η)) (1− ‖η‖2)
)−ε

dV ≤
∑
|β|≤k

Jβ .(4.6)

Therefore it suffices to prove that Jβ �
(
−ρ (fα(z, w)) (1− ‖w‖2)

)−ε
for each β.

The integral Jβ equals

cβ

∫
Uα

∣∣∣∣ (1− ‖η‖2)|α|
(1− 〈w, η〉)1+k+|α| z

βDβ
zKUα

η

(
h(z, w, η); ζ̄

)∣∣∣∣(−ρ (fα(ζ, η)) (1− ‖η‖2)
)−ε

dV.

(4.7)

In order to use (−ρ)-regularity assumptions of DβKΩ for estimating (4.7), we need
to write Dβ

zKUα
η
in (4.7) in terms of Dβ

zKΩ and transform (4.7) into an integral on

B
k × Ω.
Recall the mapping fα(·, η) from (2.1) defined by

(4.8) fα(·, η) : z 	→
(

z1
(1− ‖η‖2)α1/2

, . . . ,
zn

(1− ‖η‖2)αn/2

)
.

It is a biholomorphism from Uα
η onto Ω. Hence we can write the kernel function

KUα
η
in terms of KΩ using the biholomorphic transformation formula

(4.9) KUα
η
(z; ζ̄) = (1− ‖η‖2)−|α|KΩ(fα(z, η), fα(ζ, η)).

Applying (4.9) to (4.7) yields

Jβ = cβ

∫
Uα

∣∣∣∣∣∣
zβDβ

zKΩ

(
h′(z, w, η); fα(ζ, η)

)
|1− 〈w, η〉|1+k+|α|

∣∣∣∣∣∣
(
−ρ (fα(ζ, η)) (1− ‖η‖2)

)−ε
dV,

(4.10)

where h′(z, w, η) =
(

z1(1−‖η‖2)α1/2

(1−〈w,η〉)α1
, . . . , zn(1−‖η‖2)αn/2

(1−〈w,η〉)αn

)
.

By substituting tj =
ζj

(1−‖η‖2)αj/2
for 1 ≤ j ≤ n in (4.10), we transform Jβ into

an integral on Bk × Ω:

(4.11) Jβ = cβ

∫
Bk

∫
Ω

∣∣∣∣ zβDβ
zKΩ (h′(z, w, η); t̄)

(1− ‖η‖2)ε−|α||1− 〈w, η〉|1+k+|α|

∣∣∣∣ (−ρ (t))−ε dV (t)dV (η).
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For 1 ≤ j ≤ n, let Dj denote the partial derivative ∂
∂zj

. Since

DjKΩ (h′(z, w, η); t̄) =
∂h′

j

∂zj

∂

∂h′
j

KΩ (h′(z, w, η); t̄)

=
(1− ‖η‖2)αj/2

(1− 〈w, η〉)αj

∂

∂h′
j

KΩ (h′(z, w, η); t̄) ,(4.12)

applying the (−ρ)-regularity of Dβ
zKΩ to the inner integral in (4.11) yields

(4.13) Jβ �
∫
Bk

∣∣∣∣∣ zβ (−ρ (h′(z, w, η)))−ε−|β|

(1− ‖η‖2)ε−|α|−α·β/2|1− 〈w, η〉|1+k+α·(1+β)

∣∣∣∣∣ dV (η).

Here we use the notation α · β to denote
∑n

j=1 αjβj and use the notation 1 to

denote the multi-index (1, . . . , 1) ∈ Nn. When β = 0, we have

(4.14) J0 �
∫
Bk

∣∣∣∣∣ (−ρ (h′(z, w, η)))
−ε

(1− ‖η‖2)ε−|α||1− 〈w, η〉|1+k+|α|

∣∣∣∣∣ dV (η).

Since w, η ∈ Bk, the triangle inequality and Cauchy-Schwarz inequality imply that∣∣∣∣zj(1− ‖η‖2)αj/2

(1− 〈w, η〉)αj

∣∣∣∣ ≤
∣∣∣∣ zj(1− ‖η‖2)αj/2

(1− ‖w‖2)αj/2(1− ‖η‖2)αj/2

∣∣∣∣ =
∣∣∣∣ zj
(1− ‖w‖2)αj/2

∣∣∣∣ .
Therefore, property (c) in Lemma 3.2 implies that

J0 �
∫
Bk

∣∣∣∣∣ (−ρ (h′(z, w, η)))
−ε

(1− ‖η‖2)ε−|α||1− 〈w, η〉|1+k+|α|

∣∣∣∣∣ dV (η)

≤ (−ρ(fα(z, w)))
−ε

∫
Bk

(1− ‖η‖2)−ε+|α|

|1− 〈w, η〉|1+k+|α| dV (η).(4.15)

For w, η ∈ Bk, we have

(4.16)
1− ‖η‖2

|1− 〈w, η〉| ≤
1− ‖η‖2

1− |〈w, η〉| <
1− ‖η‖2
1− ‖η‖ < 2.

Applying this inequality and Lemma 3.4 to (4.15) yields the inequality we need for
J0:

J0 � (−ρ(fα(z, w)))
−ε

∫
Bk

(1− ‖η‖2)−ε

|1− 〈w, η〉|1+k
dV (η)

� (−ρ(fα(z, w)))
−ε

(1− ‖w‖2)−ε.(4.17)

For the case β �= 0, we recall the integral we need to estimate:

(4.18)

∫
Bk

∣∣∣∣∣ zβ (−ρ (h′(z, w, η)))
−ε−|β|

(1− ‖η‖2)ε−|α|−α·β/2|1− 〈w, η〉|1+k+α·(1+β)

∣∣∣∣∣ dV (η).

After rewriting the integral in spherical coordinates η = rt with r ∈ [0, 1] and

t ∈ Sk, we would like to write (−ρ (h′(z, w, η)))−ε−|β| in terms of the |β|-th order

derivative of (−ρ (h′(z, w, rt)))−ε in r. These derivatives vanish at the point η = w
and hence are relatively small when compared with (−ρ)−ε−|β| . To deal with this
problem, we need to move the vanishing point η = w to the origin.
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When w = 0, we keep (4.18) the same. When w ∈ Bk − {0}, we set

ϕw(z) =
w − Pw(z)− swQw(z)

1− 〈z, w〉 ,

where sw =
√
1− ‖w‖2, Pw(z) =

〈z,w〉
‖w‖2 w, and Qw(z) = z− 〈z,w〉

‖w‖2 w. Then ϕw is the

automorphism of Bk that sends 0 to w and satisfies ϕw ◦ ϕw = id. We use this ϕw

to send the point η = w to the origin. Setting τ = ϕw(η), we then have

η = ϕw(τ ),(4.19)

1− 〈η, w〉 = 1− ‖w‖2
1− 〈τ, w〉 ,(4.20)

1− ‖η‖2 =
(1− ‖w‖2)(1− ‖τ‖2)

|1− 〈τ, w〉|2 ,(4.21)

dV (η) =

(
1− ‖w‖2

|1− 〈τ, w〉|2

)k+1

dV (τ ).(4.22)

Substituting (4.19), (4.20), (4.21), and (4.22) into the integral (4.18) yields

∫
Bk

∣∣∣∣∣ zβ (−ρ (h′(z, w, η)))
−ε−|β|

(1− ‖η‖2)ε−|α|−α·β/2|1− 〈w, η〉|1+k+α·(1+β)

∣∣∣∣∣ dV (η)

(4.23)

=

∫
Bk

|zβ |( (1−‖w‖2)(1−‖τ‖2)
|1−〈τ,w〉|2 )α·β/2−ε+|α|∣∣∣ 1−‖w‖2

1−〈τ,w〉

∣∣∣1+k+α·(1+β)
(1−‖w‖2)−k−1

|1−〈τ,w〉|−2(k+1)

(−ρ (h′(z, w, ϕw(τ ))))
−ε−|β|dV (τ ).

Canceling terms in the integral gives

∫
Bk

|zβ |(1− ‖τ‖2)α·β/2−ε+|α|

|1− 〈τ, w〉|1+k−2ε+|α|(1− ‖w‖2)α·β/2+ε
(−ρ (h′(z, w, ϕw(τ ))))

−ε−|β|
dV (τ ),

(4.24)

which is consistent with (4.18) when w = 0. Applying inequality (4.16) to (4.24)

and using the fact that |zβ |
(1−‖w‖2)α·β/2 is bounded on Ω, we obtain the following

inequality:

∫
Bk

|zβ |(1− ‖τ‖2)α·β/2−ε+|α|

|1− 〈τ, w〉|1+k−2ε+|α|(1− ‖w‖2)α·β/2+ε
(−ρ (h′(z, w, ϕw(τ ))))

−ε−|β|
dV (τ )

(4.25)

�
∫
Bk

(1− ‖τ‖2)α·β/2−ε+|α|

|1− 〈τ, w〉|1+k−2ε+|α|(1− ‖w‖2)ε (−ρ (h′(z, w, ϕw(τ ))))
−ε−|β|

dV (τ )

�
∫
Bk

(−ρ (h′(z, w, ϕw(τ ))))
−ε−|β|

|1− 〈τ, w〉|1+k−ε(1− ‖w‖2)ε dV (τ ).

We set l(z, w, τ ) = (l1(z, w, τ ), . . . , ln(z, w, τ )) where

lj(z, w, τ ) =
∣∣h′

j (z, w, ϕw(τ ))
∣∣ =

∣∣∣∣∣∣∣
zj

(
(1−‖w‖2)(1−‖τ‖2)

|1−〈τ,w〉|2
)αj/2

(
1−‖w‖2

1−〈τ,w〉

)αj

∣∣∣∣∣∣∣ =
|zj |(1− ‖τ‖2)αj/2

(1− ‖w‖2)αj/2
.
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Then Lemma 3.2 implies that ρ(h′(z, w, ϕw(τ ))) = ρ(l(z, w, τ )), and the integral in
the last line of (4.25) becomes

(4.26)

∫
Bk

(−ρ (l(z, w, τ )))−ε−|β|

|1− 〈τ, w〉|1+k−ε(1− ‖w‖2)ε dV (τ ).

Rewriting (4.26) using spherical coordinates τ = rt with r ∈ [0, 1) and t ∈ Sk yields

ck

∫ 1

0

r2k−1

∫
Sk

(−ρ (l(z, w, rt)))−ε−|β|

|1− 〈rt, w〉|1+k−ε(1− ‖w‖2)ε dσ(t)dr,(4.27)

where ck is a constant depending on the dimension k.
By property (e) in Lemma 3.2, there exists an open neighborhood U of bΩ such

that for any z ∈ U ,

(4.28)

n∑
j=1

zjρzj (z) > c,

for some positive c. For δ > 0, let Ω̄δ denote the set

(4.29) {z ∈ C
n : ρ((1 + δ)α1/2z1, . . . , (1 + δ)αn/2zn) ≤ 0}.

Then there exists a constant δ0 > 0 such that Ω− U ⊆ Ω̄δ0 . Since Ω̄δ0 is compact
in Ω, we have (−ρ(z))−1 < C in Ω̄δ0 for some constant C. Let U0 denote the set
Ω̄δ0 , and let U1 denote the set Ω − U0. Then on U1, inequality (4.28) still holds.
For t ∈ Sk and j = 0, 1, set

Uj = {r ∈ [0, 1] : l(z, w, rt) ∈ Uj}.

Here the Uj ’s are well-defined for any t ∈ Sk: for fixed z and w, the value of
l(z, w, rt) only depends on r and ‖t‖. For each Uj , we set

Iβ
j =

∫
Uj

r2k−1

∫
Sk

(−ρ (l(z, w, rt)))−ε−|β|

|1− 〈rt, w〉|1+k−ε(1− ‖w‖2)ε dσ(t)dr.(4.30)

We claim that Iβ
j �

(
(−ρ)(l(z, w, t))(1− |w|2)

)−ε
for each j. Then by having

(4.31) Jβ � Iβ
0 + Iβ

1 �
(
(−ρ)(l(z, w, t))(1− |w|2)

)−ε
,

we complete the proof.

We first consider Iβ
0 . Since (−ρ(l(z, w, rt)))−1 < C for r ∈ U0, we have

Iβ
0 �

∫
U0

r2k−1

∫
Sk

1

|1− 〈rt, w〉|1+k−ε(1− ‖w‖2)ε dσ(t)dr.(4.32)

Applying Lemma 3.4 to the inner integral of (4.32) yields

(4.33)

∫
Sk

1

|1− 〈rt, w〉|1+k−ε(1− ‖w‖2)ε dσ(t) � (1− ‖w‖2)−ε(1− r2‖w‖2)ε−1.
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Then inequality (4.33) gives the desired estimate for Iβ
0 :

Iβ
0 �

∫
U0

r2k−1(1− ‖w‖2)−ε(1− r2‖w‖2)ε−1dr

�
∫
U0

r2k−1(1− ‖w‖2)−ε(1− r2)ε−1dr

�(1− ‖w‖2)−ε

�
(
(−ρ)(l(z, w, t))(1− |w|2)

)−ε
.(4.34)

Now we turn to Iβ
1 . When r ∈ U1, we have l(z, w, rt) ∈ U1 and

(4.35)

n∑
j=1

lj(z, w, rt)ρzj (l(z, w, rt)) > c.

For such an r, ∂
∂r

(
(−ρ)−ε−|β|+1(l(z, w, rt))

)
is controlled from below by

(−ρ)−ε−|β|(l(z, w, rt)):

− ∂

∂r
(−ρ(l(z, w, rt)))−ε−|β|+1

(4.36)

=2(ε+ |β| − 1)(−ρ)−ε−|β|(l(z, w, rt))
n∑

j=1

αjr|zj |(1− r2)αj/2−1

(1− ‖w‖2)αj/2
ρzj (l(z, w, rt))

�r(−ρ)−ε−|β|(l(z, w, rt))

(1− r2)

n∑
j=1

lj(z, w, rt)ρzj (l(z, w, rt))

�r(−ρ)−ε−|β|(l(z, w, rt))

(1− r2)
.

Applying (4.36), (4.16), and Lemma 3.4 to (4.30) then yields

Iβ
1 � −

∫
Uj

r2k−2

∫
Sk

(1− r2) ∂
∂r (−ρ (l(z, w, rt)))−ε−|β|+1

|1− 〈rt, w〉|1+k−ε(1− ‖w‖2)ε dσ(t)dr

� −
∫
Uj

r2k−2

∫
Sk

∂
∂r (−ρ (l(z, w, rt)))−ε−|β|+1

|1− 〈rt, w〉|k−ε(1− ‖w‖2)ε dσ(t)dr

� − (1− ‖w‖2)−ε

∫
Uj

r2k−2 ∂

∂r
(−ρ (l(z, w, rt)))−ε−|β|+1dr.(4.37)

Since for fixed z and w, the point l(z, w, 0) is closest to bΩ, we may assume that
U1 = [0, r0] where r0 depends on both z and w.

When k = 1, integrating the last line of (4.37) by parts yields

− (1− ‖w‖2)−ε

∫
U1

r2k−2 ∂

∂r
(−ρ (l(z, w, rt)))

−ε−|β|+1
dr

=− (1− ‖w‖2)−ε

∫ r0

0

∂

∂r
(−ρ (l(z, w, rt)))−ε−|β|+1dr

=−
r2k−2(−ρ (l(z, w, rt)))

−ε−|β|+1
∣∣∣r0
0

(1− ‖w‖2)ε .(4.38)
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Noting that k = 1 also implies that −ε− |β|+ 1 ≥ −ε− k + 1 = −ε, we have

− (1− ‖w‖2)−ε

∫
U1

∂

∂r
(−ρ (l(z, w, rt)))−εdr

≤ (−ρ (l(z, w, 0)))
−ε

+ (−ρ (l(z, w, r0t)))
−ε

(1− ‖w‖2)ε .(4.39)

By its definition, the point l(z, w, r0t) is in U0. Therefore (−ρ (l(z, w, r0t))
−ε−|β|+1

� 1 and the desired estimate follows:

(4.40) Iβ
1 = −

∫
U1

∂
∂r (−ρ (l(z, w, rt)))

−ε

(1− ‖w‖2)ε dr � (−ρ (fα(z, w)))
−ε

(1− ‖w‖2)−ε.

When k > 1, integrating the last line of (4.37) by parts yields

− (1− ‖w‖2)−ε

∫
U1

r2k−2 ∂

∂r
(−ρ (l(z, w, rt)))

−ε−|β|+1
dr(4.41)

=− (1− ‖w‖2)−ε

∫ r0

0

r2k−2 ∂

∂r
(−ρ (l(z, w, rt)))−ε−|β|+1dr

=−
r2k−2(−ρ (l(z, w, rt)))

−ε−|β|+1
∣∣∣r0
0

(1− ‖w‖2)ε

+

∫ r0

0

(2k − 2)r2k−3 (−ρ (l(z, w, rt)))−ε−|β|+1

(1− ‖w‖2)ε dr.

The numerator of the term in the third line equals r2k−2
0 (−ρ(l(z, w, r0t)))

−ε−|β|+1,
which is also controlled by a constant. Thus it remains to show that

(4.42)

∫ r0

0

r2k−3 (−ρ (l(z, w, rt)))
−ε−|β|+1

(1− ‖w‖2)ε dr � (−ρ (fα(z, w)))
−ε (1− ‖w‖2)−ε.

Applying (4.36) to the left hand side of (4.42) gives

∫ r0

0

r2k−3 (−ρ (l(z, w, rt)))−ε−|β|+1

(1− ‖w‖2)ε dr � −
∫ r0

0

r2k−4
∂
∂r (−ρ (l(z, w, rt)))

−ε−|β|+2

(1− ‖w‖2)ε dr.

This together with (4.41) implies that for k > 1,

−
∫ r0

0

r2k−2
∂
∂r (−ρ (l(z, w, rt)))

−ε−|β|+1

(1− ‖w‖2)ε dr

� −
∫ r0

0

r2k−4
∂
∂r (−ρ (l(z, w, rt)))−ε−|β|+2

(1− ‖w‖2)ε dr.(4.43)

Since (4.43) holds whenever |β| ≤ k, we have for 0 < s ≤ k,

−
∫ r0

0

r2k−2
∂
∂r (−ρ (l(z, w, rt)))−ε−s+1

(1− ‖w‖2)ε dr

� −
∫ r0

0

r2k−4
∂
∂r (−ρ (l(z, w, rt)))

−ε−s+2

(1− ‖w‖2)ε dr.(4.44)
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Repeated use of inequality (4.44) then gives

−
∫ r0

0

r2k−2
∂
∂r (−ρ (l(z, w, rt)))

−ε−|β|+1

(1− ‖w‖2)ε dr

� −
∫ r0

0

r2k−4
∂
∂r (−ρ (l(z, w, rt)))−ε−|β|+2

(1− ‖w‖2)ε dr

...

� −
∫ r0

0

r2k−2|β|
∂
∂r (−ρ (l(z, w, rt)))−ε

(1− ‖w‖2)ε dr.(4.45)

Noting that r2k−2|β| is bounded on [0, r0], we have

(4.46) −
∫ r0

0

r2k−2|β|
∂
∂r (−ρ (l(z, w, rt)))

−ε

(1− ‖w‖2)ε dr ≤ −
∫ r0

0

∂
∂r (−ρ (l(z, w, rt)))

−ε

(1− ‖w‖2)ε dr.

Applying inequality (4.40) to (4.46) then yields
(4.47)

Iβ
1 = −

∫ r0

0

r2k−2
∂
∂r (−ρ (l(z, w, rt)))

−ε−|β|+1

(1− ‖w‖2)ε dr � (−ρ (fα(z, w)))
−ε

(1− ‖w‖2)−ε,

which completes the proof. �

Remark. As in the proof of Thereom 3.3, we can obtain an Lp regularity result
for the Bergman projection on more generalized domains which are generated from
Ω by iterating the construction of Uα from (2.2).

Set α = (α(1), . . . , α(l)) ∈ Rn
+ × · · · ×Rn

+ where each α(j) is in Rn
+. Let k1, . . . , kl

be l positive integers. The successor U(Ω) is defined by

(4.48) U(Ω) = {(z, w1, w2, . . . , wl) ∈ C
n×B

k1×· · ·×B
kl : (fα(z, w1, . . . , wl)) ∈ Ω},

where

(4.49) fα (z, w1, . . . , wl) =

⎛
⎜⎝ z1∏l

j=1(1− ‖wj‖2)
α
(j)
1
2

, . . . ,
zn∏l

j=1(1− ‖wj‖2)
α
(j)
n
2

⎞
⎟⎠ .

Suppose Ω ⊆ C
n is a smooth complete Reinhardt domain with defining function

ρ and Dβ
zKΩ(z; ζ̄) is (−ρ)-regular of type |β| for 0 ≤ |β| ≤

∑l
j=1 kj . Then the

Bergman projection on U(Ω) is Lp bounded for all 1 < p < ∞. The proof of this
statement is similar to the proof for the first successor. We omit it here.
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