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Abstract. We show that if an asymptotically flat manifold with horizon
boundary admits a global static potential, then the static potential must be
zero on the boundary. We also show that if an asymptotically flat manifold
with horizon boundary admits an unbounded static potential in the exterior
region, then the manifold must contain a complete non-compact area mini-
mizing hypersurface. Some results related to the Riemannian positive mass
theorem, and Bartnik’s quasi-local mass are obtained.

The purpose of this paper is to study the interplay between static potentials and
minimal hypersurfaces of an asymptotically flat manifold.

We state the main results. See Appendix A and Appendix B for precise state-
ments of terms used below.

Theorem 1. Let n ≥ 3. Let (M, g) be an n-dimensional asymptotically flat man-
ifold with horizon boundary. Suppose (M, g) admits a static potential V . Then V
is zero on ∂M .

As a direct consequence, if V is bounded, then V is either positive or negative
everywhere in the interior of M.

The motivation for the above theorem comes from the rigidity of the Riemannian
positive mass theorem. In fact, combining with the work of J. Corvino on scalar
curvature deformation [12], the work of G. Galloway and P. Miao on static poten-
tials [16, Theorem 4.1], and the rigidity result of O. Chodosh and M. Eichmair
[10, Theorem 1.6], the theorem gives another proof to the rigidity of the Riemann-
ian positive mass theorem for asymptotically flat manifolds with horizon boundary
in three dimensions. We include the proof in Section 3.1.

We also obtain the following generalization of the result of Galloway and Miao [16,
Theorem 4.1]. Here, we only assume that the static potential is defined in an exte-
rior region.

Theorem 2. Let 3 ≤ n ≤ 7. Let (M, g) be an n-dimensional asymptotically
flat manifold. Suppose the boundary of M is either empty or a disjoint union of
smooth minimal hypersurfaces. If one of the asymptotically flat ends admits an
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unbounded static potential, then there is a complete, non-compact, area minimizing
hypersurface in M .

In the above theorem, we do not assume the scalar curvature of g to be every-
where non-negative. In the proof, the complete area minimizing hypersurface is
obtained as a limit of a sequence of Plateau solutions, and it is a well-known fact
that the limiting hypersurface is smooth in dimensions 3 ≤ n ≤ 7.

If n = 3 and the scalar curvature of g is non-negative in M , by the result of
Chodosh and Eichmair [10, Theorem 1.6], an immediate consequence of Theorem 2
gives the following statement.

Corollary 3. Let (M, g) be a three-dimensional asymptotically flat manifold with
horizon boundary. Suppose (M, g) has non-negative scalar curvature. If the exterior
region of (M, g) admits an unbounded static potential, then (M, g) is isometric to
Euclidean space.

We include other results related to Bartnik’s quasi-local mass in Sections 3.2
and 3.3.

1. Proof of Theorem 1

To establish the relation between locally area minimizing hypersurfaces and a
static potential, we need the following lemma. Recall that in Appendix B, we define
the static potential V as a non-trivial solution to the following static equation:

−(ΔV )g +∇2V − V Ric = 0.

Lemma 4 ([22, equations (9)-(14)]). Let (Ω, g) be an n-dimensional Riemannian
manifold. Suppose that Ω admits a static potential V . Let Σ be a closed, connected,
stable minimal hypersurface in Ω. Then we have the following:

(1) Either V > 0 or V < 0 on Σ, unless V is identically zero on Σ.
(2) Σ is totally geodesic.

Proof. By the stability inequality, for any φ ∈ C1(Σ),∫
Σ

|∇Σφ|2 dσ ≥
∫
Σ

(
|A|2 +Ric(ν, ν)

)
φ2 dσ ≥

∫
Σ

Ric(ν, ν)φ2 dσ,

where ν is a unit normal vector field to Σ and dσ is the (n − 1)-volume measure
of hypersurfaces. It implies that the first eigenvalue of the operator ΔΣ +Ric(ν, ν)
is non-positive, where ΔΣ is the induced Laplacian. On the other hand, since Σ
is minimal, the restriction of the static potential V on Σ satisfies ΔV = ΔΣV +
∇2V (ν, ν). By the static equation of V ,

0 = ΔΣV +∇2V (ν, ν)−ΔV = ΔΣV +Ric(ν, ν)V.(1.1)

This implies either V is identically zero or V is the first eigenfunction with the
zero eigenvalue. If V is zero on Σ, then Σ lies in the zero set of V which is totally
geodesic. If V is the first eigenfunction, then V does not vanish on Σ. Substituting
V in the stability inequality, we obtain

∫
Σ
|A|2V 2 ≤ 0. Thus |A| ≡ 0 and Σ is also

totally geodesic. �
If, furthermore, Σ is locally area minimizing, a splitting result is obtained by

adapting the argument of Galloway in three dimensions [15, Lemma 3]. We note
that the argument of Galloway is also extended in [1, Proposition 14 and Appendix
B], which covers some of the following results in three dimensions.
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Proposition 5. Let (Ω, g) be an n-dimensional Riemannian manifold with the
scalar curvature Rg = 0. Suppose that Ω admits a static potential V . Let Σ
be a locally area minimizing, closed, connected hypersurface in Ω. Suppose V is
not identically zero on Σ. Then there is a subset U of Ω and a diffeomorphism
Φ : Σ× [0, ε) → U so that the following hold:

(1) The (n− 1)-volume of hypersurfaces Σt := Φ(Σ× {t}) is constant in t.
(2) The induced scalar curvature RΣ of Σt is zero and V is constant on Σt for

each t.
(3) The Ricci curvature of g is zero on U .

Proof. By Lemma 4, we may without loss of generality assume V > 0 on Σ. Con-
sider the deformation Φ : Σ× [0, ε) → Ω given by the normal exponential map with
respect to the conformally modified metric V −2g in a collar neighborhood of Σ
where V > 0. Let Σt = Φ(Σ×{t}) and note that Σ0 = Σ. Let H(·, t), A(·, t) be the
mean curvature and second fundamental form of Σt in the metric g, respectively.
Lemma B.6 implies that H(·, t) ≥ 0 for t ∈ (0, ε). From the first variation of area,
we have

|Σt| − |Σ0| =
∫ t

0

(
−
∫
Σs

V H(·, s) dσ
)
ds.

For ε sufficiently small, Σ is locally area minimizing. Therefore, the above identity
implies that the mean curvature of Σt cannot be strictly positive for t < ε. Hence
H(·, t) ≡ 0, and the (n − 1)-volume of Σt is a constant. By Lemma B.6 again,
A(·, t) ≡ 0, and Σt is totally geodesic for t ∈ [0, ε) with respect to the metric g.

Furthermore, using the first variation of the second fundamental form (see, for
example, [10, p. 993] and the references therein), we obtain, for vectors X,Y tan-
gential to Σt,

∇2
ΣV (X,Y ) +Rm(ν,X, Y, ν)V = 0,

where ∇Σ denotes the connection of Σt, ν is a unit normal vector to Σt (both
with respect to the metric g), and Rm is the Riemann curvature tensor of (Ω, g)
(with the sign convention that the Ricci tensor is the trace on the first and fourth
components of Rm). Because Σt is totally geodesic, ∇2

ΣV (X,Y ) = ∇2V (X,Y ) for
tangential vectors X,Y . Then by the static equation (B.1), the assumption that
Rg = 0, and V > 0, we obtain Ric(X,Y ) = −Rm(ν,X, Y, ν). For an orthonormal
frame {Ei} on Σt,

Ric(X,Y ) = Rm(ν,X, Y, ν) +
∑
i

Rm(Ei, X, Y,Ei)

= −Ric(X,Y ) +RicΣ(X,Y ),

where we also use the Gauss equation in the second equality and denote by RicΣ
the Ricci tensor of Σt induced from g. It gives that, for all tangential vector fields
X,Y to Σt,

Ric(X,Y ) =
1

2
RicΣ(X,Y ),(1.2)

and hence combining the previous formulas gives

∇2
ΣV =

1

2
V RicΣ,(1.3)

ΔΣV =
1

2
V RΣ,(1.4)
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where RΣ denotes the scalar curvature of Σt. Take the divergence of (1.3) on Σt

and note that divΣ
(
∇2

ΣV
)
= d(ΔΣV )+RicΣ ·∇ΣV , where the dot in the last term

denotes tensor contraction. Hence, we derive that, on each Σt,

0 = d(ΔΣV ) +RicΣ · ∇ΣV − 1

2

(
1

2
V dRΣ +RicΣ · ∇ΣV

)

=
1

2
d(RΣV ) +

1

2
RicΣ · ∇ΣV − 1

4
V dRΣ

=
1

4
V dRΣ +

1

2
RΣdV + V −1∇2

ΣV · ∇ΣV

=
1

4
V −1d(RΣV

2 + 2|∇ΣV |2).

This implies that RΣV
2 + 2|∇ΣV |2 is constant on each Σt and in fact, by (1.4),

that

RΣV
2 + 2|∇ΣV |2 = 0.

It gives RΣ ≤ 0. On the other hand, by (1.4),∫
Σt

RΣ dσ = 2

∫
Σt

V −2|∇ΣV |2 dσ ≥ 0.

Hence RΣ = 0 and V is constant on Σt for each t ∈ [0, ε). By (1.3), RicΣ = 0,
and by (1.2), Ric(X,Y ) = 0 for vectors tangential to Σt. By the Codazzi equation,
Ric(X, ν) is zero, and by the Gauss equation, Ric(ν, ν) is zero. Thus, the Ricci
tensor is zero in U . �

Proof of Theorem 1. Note that the scalar curvature of g is constant onM and hence
must be zero, by asymptotic flatness. If V is not zero on ∂M , by Proposition 5, a
collar neighborhood of ∂M in M splits as a foliation of minimal hypersurfaces. It
contradicts that M contains no closed minimal hypersurfaces other than ∂M . We
also note that since V is not identically zero, each component of the zero set of V is
a regular hypersurface, and hence ∂M is itself a connected component of the zero
set.

For the rest of the proof, we assume V is bounded. By Proposition B.4, V has
the following expansion on each end Nk, for a non-zero constant Ak:

V (x) = Ak + O(|x|2−n).

We may assume that A1 > 0 (otherwise, consider −V ). It implies that Ak > 0
for all other k; otherwise, the zero set of M is non-empty in the interior M , which
would imply that M has a closed minimal hypersurface other than ∂M . Therefore,
by the strong maximum principle for harmonic functions, V > 0 in M . �

We remark that in the preceding proof, we can further apply the Hopf boundary
point lemma to conclude that, for V > 0 in M , the normal derivative ∇νV > 0 on
∂M with respect to the normal vector ν to ∂M pointing into M .

2. Proof of Theorem 2

The following observation is due to Galloway and Miao in [16]. We recall that
Br denotes the large coordinate ball of radius r with respect to the chart at infinity,
as defined in Appendix A.
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(N+, V −2g)
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V −1(0)
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Figure 1. An illustration for the contradictory argument in the
proofs of Theorem 2 and Lemma 6. If the Plateau solution Σr

was disjoint from Br0 , it would have separated Br0 from infinity
in N+. Then a minimizing geodesic β in the interior with respect
to the modified metric V −2g from Σr to a large coordinate sphere
Sr1 exists, which leads to a contradiction.

Lemma 6 (Essentially [16, Theorem 3.1]). Let n ≥ 3 and let (M, g) be an n-
dimensional asymptotically flat manifold. Let N be one of the ends. Suppose
N \ Br0 admits a static potential V for some r0 > 0. Let N+ be an unbounded
component of the complement of V −1(0) in N \Br0 . Let Σ be a compact two-sided
minimal hypersurface in N+ with boundary either on V −1(0) or empty. Then Σ
cannot separate Br0 from infinity in N+; that is, every unbounded component of
the complement of Σ in N+ ∪Br0 contains Br0 .

Proof. Suppose on the contrary that there is an unbounded component Ω of the
complement of Σ in N+ ∪ Br0 that does not contain Br0 . Note that V is globally
defined and non-zero on Ω, and ∂Ω consists of Σ and a subset of V −1(0). We may
assume V > 0 in Ω; otherwise consider −V . We shall consider geodesics in the
modified metric ḡ = V −2g emitting from Σ into Ω. It is shown in [16, Lemma 3.1]
that those geodesics cannot reach the zero set of V in the finite ḡ length, and any
two disjoint points in the zero set have infinite ḡ distance. The rest of the argument
follows from [16, Theorem 3.1], which we briefly summarize below. Consider a large
coordinate sphere Sr that intersects Ω and is disjoint from Σ ∩ Ω. There exists a
minimizing geodesic in the modified metric ḡ emitting from the interior of Σ in
Ω that reaches Sr ∩ Ω. In a tubular neighborhood of the geodesic, we consider
the level set of the distance function with respect to the ḡ metric from Σ. By
the monotonicity formula Lemma B.6, those hypersurfaces have non-positive mean
curvature in the metric g (with respect to −ν, where ν in as in Lemma B.6). It
ultimately leads to a contradiction to the convexity of large coordinate spheres and
the maximum principle. �
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Proof of Theorem 2. Let V be an unbounded static potential on one of the ends,
say N . By Proposition B.4, V is asymptotic to a linear combination of coordinate
functions on the end N . By rotating the asymptotically flat coordinate chart of
N and rescaling V if necessary, we assume that V (x) is asymptotic to xn. By
Lemma B.5, there is r0 sufficiently large so that each component of V −1(0) is a
graph xn = f(x1, . . . , xn−1) that intersects with Sr in a nearly equatorial (n − 2)
sphere for r > r0. We may assume r0 sufficiently large so that Sr0 does not intersect
any closed minimal hypersurfaces.

For r > r0, consider the orientable Plateau solution Σr whose boundary spans
the intersection of Sr and a component of V −1(0). We claim that Σr must intersect
Br0 for all r > r0. Suppose on the contrary that Σr is disjoint from Br0 . Since Σr

separates Br, there is a component B+
r of the complement of Σr in Br that does not

contain Br0 . We may without loss of generality assume that B+
r contains the top

portion of Sr (otherwise, consider −V ). Then we consider the top component N+

of the complement of V −1(0) in N \Br0 , i.e., the component containing all points
with sufficiently large xn-coordinate values. Notice that Σr ∩ N+ separates Br0

from infinity in N+, as the complement of Σr in N+∪Br0 has only one unbounded
component Ω, and Ω cannot intersect the components of Br \ Σr other than B+

r ,
by connectedness of Ω. It gives a contradiction to Lemma 6.

Since Σr intersects Sr0 for all r > r0 and {Σr} has a uniformly local area bound,
by standard geometric measure theory, a subsequence of Σr converges to a non-
empty complete area minimizing hypersurface Σ intersecting Sr0 as r → ∞. Since
Sr0 does not intersect any closed minimal hypersurface, Σ is unbounded. �

3. Applications

3.1. Rigidity of the Riemannian positive mass theorem. The Riemannian
positive mass theorem is due to R. Schoen and S. T. Yau [28–30]. Other proofs for
the three-dimensional case can be found in [18] and [20].

Here we use static potentials to give another proof of the rigidity of the Rie-
mannian positive mass theorem in three dimensions. The argument for complete
manifolds without boundary may have already been known to the experts. Here
we use Theorem 1 and extend the argument to asymptotically flat manifolds with
horizon boundary.

Theorem 7. Let (M, g) be a three-dimensional asymptotically flat manifold with

horizon boundary and non-negative scalar curvature. Assume g ∈ C4,α
loc . If one of

the ends has zero ADM mass, then (M, g) is isometric to Euclidean space.

Proof. We first apply the argument similar to [12, Theorem 8] to show that every
precompact open subset Ω in M admits a static potential V ∈ C4,α(Ω) ∩ C2,α(Ω).
The only difference is that in order to keep the minimal boundary condition, we
consider the conformal Laplacian with the Neumann boundary condition as follows.
Suppose to the contrary there is a precompact open subset Ω which does not admit a
static potential. By [12, Theorem 1] (see, also, Theorem B.2), there is a C2,α

loc metric
ḡ with positive scalar curvature in Ω such that ḡ coincides with g outside Ω. Then
[28, Lemma 3.3] implies there exists a unique positive solution u to Δḡu− 1

8Rḡu = 0

in M with ∂u
∂ν = 0 on ∂M and u(x) → 1 as |x| → ∞ so that u4ḡ has negative mass.

This gives a contradiction to the positive mass inequality.
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Next we show that there is a global vacuum static potential V ∈ C4,α
loc (M). Let

Bk be an exhaustion sequence of coordinate balls of M . As shown in the previous
paragraph, each Bk admits a static potential Vk ∈ C4,α(Bk) ∩ C2,α(Bk). For a
fixed r0 > 1, we may normalize Vk so that maxSr0

∪∂M (|Vk| + |∇Vk|) = 1 for all

k > r0. Then by the maximum principle (for Vk in Br0) and by Proposition B.4
(for Vk in the annulus Br \ Br0), we have supBr

|Vk| ≤ Cr uniformly for all k > r.
Thus, ‖Vk‖C2,α(Br) is bounded uniformly in k by the Schauder estimate. By the

Arzela-Ascoli theorem and taking the diagonal sequence, we obtain a C
2,α2
loc limiting

function V inM with supSr0
∪∂M (|V |+|∇V |) = 1. Hence, V is a non-trivial solution

to the static equation, and V ∈ C4,α
loc (M) by elliptic regularity.

If V is unbounded in M , then M has a complete, non-compact, area minimizing
surface by the result of Galloway and Miao [16, Theorem 4.1] (or Theorem 2). The
rigidity follows from the work of Chodosh and Eichmair [10, Theorem 1.6].

We now discuss the case that V is bounded. Note that since any two ends must
be separated by a minimal surface and M does not contain any minimal surfaces
in its interior, M has only one end with zero ADM mass. If V is bounded, by
Proposition B.4, V goes to a constant A at infinity. More specifically,

V = A+ o(|x|2−n).

Integrating VΔV = 0 yields

0 =

∫
M

VΔV dμ = −
∫
M

|∇V |2 dμ+ lim
r→∞

∫
Sr

V
∂V

∂r
dσ +

∫
∂M

V
∂V

∂r
dσ

= −
∫
M

|∇V |2 dμ,

where we use that if ∂M is non-empty, then V is zero on ∂M by Theorem 1. We
obtain |∇V | = 0 in M . Hence V is constant on M , and then g is Ricci flat by
the static equation (B.1). For three-dimensional manifolds, it implies g has zero
sectional curvature and hence (M, g) must be isometric to Euclidean space. �

We remark that Theorem 7 and Theorem 1 are closely related to the uniqueness
of static black holes, which says that an asymptotically flat manifold admitting a
global static potential V ≥ 0 must be isometric to a Schwarzschild metric. However,
we emphasize that our proofs to Theorem 7 and Theorem 1 are independent of the
uniqueness of static black holes. The proof of Bunting and Masood-ul-Alam [9]
and the later extensions in [11, 22] use Theorem 7. Although some results are
obtained independently of Theorem 7 in [19, 25, 27], more stringent conditions,
such as positivity of V in the interior of M , V = 0 on ∂M , and connectedness of
∂M , are assumed.

3.2. The mass minimizer of Bartnik’s quasi-local mass. We recall the def-
inition of Bartnik’s quasi-local mass proposed by R. Bartnik [4] and revised by
H. Bray [6] (see also [7]) as follows.

Definition 8 ([6,7]). Let (N, h) be a complete, asymptotically flat three-manifold
with non-negative scalar curvature. Let Ω ⊂ N be a bounded subset such that
∂Ω is outer-minimizing in (N, h). Let PM be the set of complete, asymptotically
flat three-manifolds (M, g) with non-negative scalar curvature so that (Ω, h) iso-
metrically embeds in (M, g) and ∂Ω is outer-minimizing in (M, g). The Bartnik
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quasi-local mass is defined as

mB (Ω, h) = inf {m(M, g) : (M, g) ∈ PM} ,

where we recall that m(M, g) is the ADM mass of (M, g).

In this definition, the outer-minimizing assumption of ∂Ω is imposed so that
the Hawking mass of ∂Ω gives a lower bound of m

B
(Ω, h). This follows from the

inverse mean curvature flow argument of Huisken and Ilmanen in the proof of the
Riemannian positive mass theorem [18].

Example 9. Let (N, h) ∈ PM be rotationally symmetric such that the scalar
curvature of h is identically zero outside a bounded, rotationally symmetric subset
Ω. (Such an (N, h) can be easily constructed by an ODE method.) By uniqueness
of rotationally symmetric solutions of the vacuum Einstein equations (or simply
solving the ODE of the zero scalar curvature equation), (N \ Ω, h) is isometric to
an exterior region of a Schwarzschild manifold. In particular, ∂Ω is strictly outer-
minimizing in (N, h), and m(N, h) equals the Hawking mass of ∂Ω. As a result,
m(N, h) = mB (Ω, h). Using the well-known facts about Schwarzschild manifolds,
we see that this mass minimizer (N, h) admits a static potential V in the exterior
region N \ Ω, and V approaches a constant at infinity. �

Next we show that the above assertion on static potentials holds in general.
Namely, if a suitable mass minimizer exists in PM, then the exterior region of the
mass minimizer admits a static potential that goes to a constant at infinity.

Theorem 10. Let Ω ⊂ (N, h) be a bounded subset where (N, h) ∈ PM. Suppose
there exists (M, g) ∈ PM such that ∂Ω is strictly outer-minimizing in (M, g) and
mB (Ω, h) = m(M, g). Then (M \ Ω, g) admits a static potential that goes to a
constant at infinity.

Remark 11. An analogous result is also obtained by M. Anderson and J. Jauregui
[2, Theorem 1.1] using a different approach. Though, note that their definition of
Bartnik’s quasi-local mass is slightly different from ours because the minimization
in their definition is taken over a larger class of asymptotically flat three-manifolds.
The first named author is very grateful to Jeff Jauregui for kindly explaining their
proof.

Proof. Using the mass minimizing property of (M, g), a recent result of J. Corvino
[13, Corollary 1.2] shows that (M \Ω, g) admits a static potential V . (The strictly
outer-minimizing assumption on ∂Ω guarantees that the competitors produced in
[13, Corollary 1.2] still lie in PM.) By asymptotics of static potentials, either V
goes to a constant or V is unbounded (see [5] and [23] or Proposition B.4 below).
If V goes to a constant, the claim follows.

Now we assume that V is unbounded. Theorem 2 implies that there is a complete,
non-compact, area minimizing surface in (M, g). We then invoke the rigidity result
of Chodosh and Eichmair in [10, Theorem 1.6] to conclude that (M, g) is isometric to
Euclidean space. Then it is obvious that the constant function is a static potential
on Euclidean space. �
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3.3. Geometric properties of a static extension. Given a Riemannian metric
γ and a function H on a 2-sphere, we say that an asymptotically flat three-manifold
(M, g) with boundary Σ = ∂M is a static extension subject to the boundary data
(γ,H) if

(1) Σ is diffeomorphic to the 2-sphere, and the induced metric from g on Σ is
isometric to γ.

(2) The mean curvature of Σ with respect to the unit normal vector on Σ
pointing into (M, g) is given by H.

(3) (M, g) admits a bounded static potential.

Below we give the sufficient conditions on (γ,H) so that the static extension has
no closed minimal surfaces that locally minimize the area.

Theorem 12. Suppose the pair (γ,H) satisfies

H > 0 and Kγ ≥ 1

4
H2,

where Kγ denotes the Gauss curvature of γ. Then any static extension (M, g)
subject to the boundary data (γ,H) does not have closed, locally area minimizing
surfaces.

Proof. Let V be a bounded static potential on (M, g). By Proposition B.4 and
normalizing, we may assume V → 1 at infinity.

We now use the argument in [22, Proposition 3] to show that V > 0 in M . By
the static equation and recalling that Rg = 0, we have the following identity on Σ:

0 = ΔV = ΔΣV +H
∂V

∂ν
+∇2V (ν, ν)

= ΔΣV +H
∂V

∂ν
+Ric(ν, ν)V,

(3.1)

where ν is the unit normal vector on Σ pointing into M . By the Gauss equation,

Ric(ν, ν) =
1

2

(
H2 − |A|2 − 2Kγ

)
,

where A denotes the second fundamental form of Σ. Combining the above identities
gives

(3.2) ΔΣV +H
∂V

∂ν
+

1

2

(
H2 − |A|2 − 2Kγ

)
V = 0.

Because V is harmonic in M , by maximum principle and V → 1 at infinity, we
may assume that infM V occurs on Σ and V is not a constant. Otherwise the claim
V > 0 follows easily. Let V (y) = infM V for some y ∈ Σ. Using the Hopf boundary
point lemma and noting that V (y) = minΣ V , we have the following inequalities at
y:

∂

∂ν
V (y) > 0 and ΔΣV (y) ≥ 0.

On the other hand, the assumption on H and Kγ implies that

1

2

(
H2 − |A|2 − 2Kγ

)
≤ 1

4
H2 −Kγ ≤ 0.

Combining the above inequalities and (3.2), we conclude that V (y) > 0 and hence
V > 0 in M .
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Suppose, to give a contradiction, that there is a closed, locally area minimizing
surface in M . By Proposition 5, g must be Ricci flat in an open neighborhood of
the minimal surface. Since V > 0 and g is static, g is analytic on M (cf. [12]).
Hence, (M, g) has vanishing Ricci curvature. In three dimensions, this implies that
(M, g) is isometric to an exterior region in the Euclidean space, which is free of
closed minimal surfaces. This gives a contradiction. �

Appendix A. Asymptotically flat manifolds

Let n ≥ 3. An n-dimensional (connected) manifold (M, g) is said to be asymp-
totically flat if M \K =

⋃
k Nk for some compact subset K ⊂ M and, for q > n−2

2 ,
there is a coordinate chart on each end,

Nk
∼= R

n \B1(0),

so that the components of the metric tensor satisfy

|gij − δij |+ |x||∂kgij |+ |x|2|∂k∂�gij | ≤ C|x|−q.

We also assume the scalar curvature Rg is integrable in M and g ∈ C2,α
loc (M).

For r > 1, we let Br =
⋃

x∈Nk
{|x| ≤ r} ∪K be the closed coordinate ball with

respect to the above charts and let the coordinate sphere Sr =
⋃

x∈Nk
{|x| = r}.

Throughout this note, we follow the convention that stable minimal hypersur-
faces are two-sided. We say that M has a horizon boundary if the boundary ∂M ,
possibly empty, is a disjoint union of smooth closed minimal hypersurfaces and M
contains no other closed minimal hypersurfaces, and we further assume that ∂M is
locally area minimizing if n ≥ 8. (Note that if 3 ≤ n ≤ 7, ∂M is area minimizing,
implied by the other two conditions.)

A complete non-compact hypersurface Σ in M is said to be area minimizing if
Σ∩Br is a Plateau solution with the boundary spanning Σ∩Sr for all r sufficiently
large.

We define the ADM mass of (M, g) by

m =
1

2(n− 1)ωn−1
lim
r→∞

∫
|x|=r

n∑
i,j=1

(gij,i − gii,j)ν
j dσ0,

where dσ0 is the (n − 1)-volume measure induced from the ambient Euclidean
metric. We may write m(M, g) to emphasize the dependence on the asymptotically
flat manifold (M, g).

Appendix B. Static potential

Let (Ω, g) be an n-dimensional Riemannian manifold. Let L∗
g : H2

loc(Ω) →
L2
loc(Ω) be a differential operator defined by

L∗
gV = −(ΔV )g +∇2V − V Ric,

where ∇2 is the Hessian operator and Ric is the Ricci tensor of g. A static potential
V is a scalar valued function on Ω that satisfies L∗

gV = 0 and is not identically zero.
The equation L∗

gV = 0 is equivalent to the following equation:

∇2V =

(
Ric− 1

n− 1
Rgg

)
V.(B.1)
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By elliptic regularity, if g ∈ Ck,α
loc for some k ≥ 2, then a static potential V is

Ck,α
loc (Ω), and V ∈ Ck−2,α(Ω) if Ω is bounded (see, e.g., [14, Proposition 2.1] and

letting X = 0 there). We say that (Ω, g) admits a static potential if there is a static
potential V defined on Ω.

Lemma B.1 ([12, Proposition 2.3 and Proposition 2.6]). Let (Ω, g) be a connected
manifold admitting a static potential V . Then:

(1) The scalar curvature of g is constant on Ω.
(2) The zero set of V is a totally geodesic regular hypersurface in Ω.

A static potential appears to be the only obstruction to promoting scalar curva-
ture locally. The following statement is a special case of [12, Theorem 1]. Also see,
e.g., [26].

Theorem B.2 (See [12, Theorem 1]). Let Ω be a bounded open subset of a Rie-
mannian manifold (M, g) and let g ∈ C4,α(Ω). Suppose ∂Ω is smooth. If Ω does

not admit a static potential, then there is a metric ḡ ∈ C2,α
loc (M) so that ḡ = g

outside Ω and R(ḡ) > R(g) in Ω.

To analyze the asymptotics of a static potential, we need the following ODE
lemma. In this paper, we only apply the case that Z(t) is real-valued, but for other
future applications toward the system of Einstein constraint equations, we include
the following general statement.

Lemma B.3. Let n ≥ 1. Let Z : [1,∞) → R
k be a C2 vector-valued function

satisfying the differential equation

Z ′′(t) = A(t)Z ′ +B(t)Z(t),

where A(t), B(t) are continuous k×k matrix functions on [1,∞) satisfying |A(t)|+
t|B(t)| ≤ C1t

−1−q for some constants C1 > 0 and q > 0. Then |Z| + t|Z ′| ≤
C2t, where C2 depends only on C1 and Z(1), Z ′(1). Furthermore, if Z vanishes
to infinite order at infinity, i.e., for each N > 0 there is a constant cN such that
|Z(t)| ≤ cN t−N on [1,∞), then Z is identically zero on [1,∞).

Proof. Define the function h = t2|Z ′|2+ |Z|2 ≥ 0. Applying uniqueness for ODE, if
h(t) = 0 for some value of t, then h is identically zero on [1,∞), so we may assume
that h > 0 everywhere. Compute

h′ = 2t|Z ′|2 + 2t2Z ′ · Z ′′ + 2Z · Z ′.

Using the equation for Z ′′ and the bound on the coefficients, we obtain that |h′| ≤
3(1+C1)

t h. Denote by 2a = 3(1 + C1). Solving the differential inequality yields

h(1)t−2a ≤ h(t) ≤ h(1)t2a.

The lower bound implies that any non-trivial solution Z cannot vanish to infinite
order at infinity.

The differential equation of Z ′′ implies that

|Z ′′(t)| ≤ t−1
√
2h(t)(|A(t)|+ t|B(t)|).

Hence, |Z ′′(t)| ≤ C1

√
2h(1)t−2−q+a. By integration, we have

|Z ′(t)| ≤ |Z ′(1)|+ tmax
[1,t]

|Z ′′| ≤ |Z ′(1)|+ C1

√
2h(1)t−1−q+a,

|Z(t)| ≤ |Z(1)|+ tmax
[1,t]

|Z ′| ≤ |Z(1)|+ t|Z ′(1)|+ C1

√
2h(1)t−q+a,
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and inserting these into the definition of h(t) we find that

h(t) ≤ 3(Z(1))2 + 5t2|Z ′(1)|2 + 7C2
1h(1)t

−2q+2a.

This implies that the growth rate of h can be further improved by a bootstrap
argument until the highest power of t is quadratic. Thus, |Z|+ t|Z ′| ≤ C2t for some
constant C2 depending only on C1, Z(1), Z ′(1).

�

Most of the statement in Proposition B.4 below is known and can be found
in [5, Appendix C] and [23]. We include the statement and the arguments here
because it seems that the estimate (B.2) below used in the proof of Theorem 7 is
not explicitly stated in the literature.

Proposition B.4. Let (M, g) be an n-dimensional asymptotically flat manifold.
Let N be one of the ends. Suppose N ∩ (Br1 \Br0) admits a static potential V for
some 1 < r0 < r1. Then V is at most of linear growth, in the sense that there is a
constant C, depending only on maxSr0

(|V |+ |∇V |) and (M, g), such that for each
r ∈ (r0, r1),

sup
Br\Br0

|V | ≤ Cr.(B.2)

Furthermore, if V is defined on all of N , then one of the following properties holds
on the end N :

(1) V is identically zero.
(2) V =

∑n
i=1 aix

i +O2,α(1+ |x|1−q log |x|) for some constants a1, . . . , an, not
all zero.

(3) V = a0−a0m|x|2−n+O2,α(|x|1−n+|x|2−n−q log |x|), where a0 is a non-zero
constant and m is the ADM mass of the end N .

Proof. We compute with respect to the polar coordinate chart of {x}:

Vr =
∑
i

xi

r

∂V

∂xi
,

Vrr =
∑
i,j

∂2V

∂xi∂xj

xixj

r2
=

∑
i,j

∇2V (∂xi, ∂xj)
xixj

r2
+

∑
i,j,k

Γk
ij

xixj

r2
∂

∂xk
V.

By the static equation, V satisfies a differential equation of the form in Lemma B.3
along each fixed angular direction, and thus |V | + r|Vr| + r2+q|Vrr| ≤ Cr, where
C depends only on the asymptotically flat metric g and the values of V, Vr on Sr0 .
By compactness of Sr0 , the constant C can be chosen uniformly among the angular
directions. Therefore, we have

|V |+ |x||∂V |+ |x|2+q|∂2V | ≤ C|x|,

which, in particular, proves the first assertion.
From now on, we assume that V is defined on N . Since V is harmonic, by the

growth rate bound and harmonic expansions (e.g., [3, Theorem 1.17] and [21]), V
is asymptotic to a harmonic function of homogeneous degree at most one:

V (x) =
∑
i

aix
i +O2,α(1 + |x|1−q log |x|)
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for some constants a1, . . . , an. If the constants are all zero, then again by the
harmonic expansion, there are constants a0, b such that V (x) = a0 + b|x|2−n +
O2,α(|x|1−n + |x|2−n−q log |x|). Compute

(∇2V )ij =
∂2V

∂xi∂xj
−
∑
k

Γk
ij

∂V

∂xk

= − (n− 2)bδij
|x|n +

n(n− 2)bxixj

|x|n+2
+O0,α(|x|−1−n + |x|−n−q log |x|).

Using the alternative definition of the ADM mass (see, e.g., [24] and also [17,
equation 1.4] for n = 3) and the static equation, we obtain

a0m =
1

(n− 1)(2− n)ωn−1
lim
r→∞

∫
{|x|=r}∩E

V Rijx
i x

j

|x| dσ = −b.

This gives the desired expansion.
If a0, a1, . . . , an are all zero, then V goes to zero at infinity. Applying the static

equation and bootstrapping yields that V vanishes to infinite order at infinity.
Applying Lemma B.3 to the differential equation of V along r implies that V is
identically zero. �
Lemma B.5. Let (M, g) be an n-dimensional asymptotically flat manifold. Let N
be one of the ends and suppose N admits a static potential V with the asymptotics
V (x) = xn + o(|x|) as |x| → ∞. Then there is r0 > 0 large enough such that each
component Σ of V −1(0) in N \ Br0 is given by a graph xn = f(x1, . . . , xn−1) and
Σ intersects Sr transversely in a nearly equatorial (n− 2) sphere for r > r0.

Proof. By the previous proposition, we have ∇∂xnV = 1 + O(|x|γ−1) > 0 for |x|
large, where max{1− q, 0} < γ < 1. Let x′ = (x1, . . . , xn−1). Then by the implicit
function theorem, each component of the zero set is given by a graph xn = f(x′)
with |∇f | ≤ C|x′|γ−1. Then V (x′, f(x′)) = 0 implies that |f(x′)| ≤ C|x′|γ . The
constant C above can be chosen uniform for all components. If r0 is sufficiently
large, each component of V −1(0) intersects Sr transversely near the equator, for all
r > r0. �

We include the following monotonicity formula of Galloway [15], which is a
key geometric ingredient in the proofs of Theorems 1 and 2. Let (Ω, g) be an
n-dimensional Riemannian manifold that admits a static potential. Let Σ be a
two-sided smooth hypersurface in Ω. If V > 0 in Ω, let Φ : Σ × [0, ε) → Ω be the
normal exponential map with respect to the conformally modified metric ḡ = V −2g.
In particular, Φ(x, 0) = x and

∂

∂t
Φ(x, t)

∣∣∣∣
t=0

= V (x)ν(x),

where ν is the unit normal vector in the metric g. Let Σt = Φ(Σ × {t}) and let
H(x, t), A(x, t) be the mean curvature and second fundamental form of x ∈ Σt with
respect to ν in the metric g.

Lemma B.6 (Monotonicity formula [15, Lemma 3]; see also [8, Proposition 3.2]).
The mean curvature and second fundamental form of Σt satisfy the differential
equality

d

dt

(
H

V

)
= |A|2.
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Henri Poincaré 16 (2015), no. 10, 2239–2264, DOI 10.1007/s00023-014-0373-x. MR3385979

[24] Pengzi Miao and Luen-Fai Tam, Evaluation of the ADM mass and center of mass via the
Ricci tensor, Proc. Amer. Math. Soc. 144 (2016), no. 2, 753–761, DOI 10.1090/proc12726.
MR3430851

[25] H. Müller zum Hagen, David C. Robinson, and H. J. Seifert, Black holes in static vacuum
space-times, General Relativity and Gravitation 4 (1973), 53–78. MR0398432

[26] Jie Qing and Wei Yuan, On scalar curvature rigidity of vacuum static spaces, Math. Ann.
365 (2016), no. 3-4, 1257–1277, DOI 10.1007/s00208-015-1302-0. MR3521090

[27] D. C. Robinson, A simple proof of the generalization of Israel’s theorem, Gen. Relativity
Gravitation 8 (1977), no. 8, 695–698.

[28] Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general
relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76. MR526976

[29] Richard Schoen and Shing Tung Yau, The energy and the linear momentum of space-times
in general relativity, Comm. Math. Phys. 79 (1981), no. 1, 47–51. MR609227

[30] Richard Schoen and Shing Tung Yau, Positive scalar curvature and minimal hypersurface
singularities, arXiv:1704.05490 (2017).

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269

Email address: lan-hsuan.huang@uconn.edu

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269

Email address: daniel.martin@uconn.edu

Department of Mathematics, University of Miami, Coral Gables, Florida 33146

Email address: pengzim@math.miami.edu

http://www.ams.org/mathscinet-getitem?mr=2145225
http://www.ams.org/mathscinet-getitem?mr=3385979
http://www.ams.org/mathscinet-getitem?mr=3430851
http://www.ams.org/mathscinet-getitem?mr=0398432
http://www.ams.org/mathscinet-getitem?mr=3521090
http://www.ams.org/mathscinet-getitem?mr=526976
http://www.ams.org/mathscinet-getitem?mr=609227

	1. Proof of Theorem 1
	2. Proof of Theorem 2
	3. Applications
	3.1. Rigidity of the Riemannian positive mass theorem
	3.2. The mass minimizer of Bartnik’s quasi-local mass
	3.3. Geometric properties of a static extension

	Appendix A. Asymptotically flat manifolds
	Appendix B. Static potential
	Acknowledgments
	References

