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THE DEPTH OF A FINITE SIMPLE GROUP

TIMOTHY C. BURNESS, MARTIN W. LIEBECK, AND ANER SHALEV

(Communicated by Pham Huu Tiep)

Abstract. We introduce the notion of the depth of a finite group G, defined
as the minimal length of an unrefinable chain of subgroups from G to the
trivial subgroup. In this paper we investigate the depth of (non-abelian) finite
simple groups. We determine the simple groups of minimal depth, and show,
somewhat surprisingly, that alternating groups have bounded depth. We also
establish general upper bounds on the depth of simple groups of Lie type,
and study the relation between the depth and the much studied notion of the
length of simple groups. The proofs of our main theorems depend (among other
tools) on a deep number-theoretic result, namely, Helfgott’s recent solution of
the ternary Goldbach conjecture.

1. Introduction

An unrefinable chain of length t of a finite group G is a chain of subgroups

(1) G = G0 > G1 > · · · > Gt−1 > Gt = 1,

where each Gi is a maximal subgroup of Gi−1. We define the depth of G, denoted
by λ(G), to be the minimal length of an unrefinable chain. For example, if G is a
cyclic group of order n � 2, then λ(G) = Ω(n), the number of prime divisors of n
(counting multiplicities). In particular, λ(G) = 1 if and only if G has prime order.

In this paper we are interested in the depth of finite simple groups (by which
we mean non-abelian finite simple groups). For such a group G, it is easy to show
that λ(G) � 3 (see Corollary 2.3). In fact, this lower bound is best possible, and
our first theorem determines the simple groups of minimal depth.

Theorem 1. Let G be a finite simple group. Then λ(G) = 3 if and only if G is
one of the groups recorded in Table 1.

In particular, there are infinitely many simple groups with depth 3.
Next we turn our attention to upper bounds. First, using Helfgott’s solution of

the ternary Goldbach conjecture (see [17], as well as Vinogradov’s classical result
[32] for sufficiently large numbers), we show that alternating groups have bounded
depth.

Theorem 2. We have λ(An) � 23 for all n.

This is in stark contrast to the situation for groups of Lie type (see Proposition
3.5 for the exact depth of L2(p

k) for a prime p and odd integer k).

Received by the editors August 2, 2017, and, in revised form, August 21, 2017.
2010 Mathematics Subject Classification. Primary 20E32, 20E15; Secondary 20E28.
The first and third authors acknowledge the hospitality and support of Imperial College, Lon-

don, while part of this work was carried out. The third author acknowledges the support of ISF
grant 1117/13 and the Vinik chair of mathematics which he holds.

c©2018 American Mathematical Society

2343

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13937


2344 TIMOTHY C. BURNESS, MARTIN W. LIEBECK, AND ANER SHALEV

Table 1. The simple groups G with λ(G) = 3

G Conditions
Ap p and (p− 1)/2 prime, p �∈ {7, 11, 23}

L2(q)

⎧⎨
⎩

(q + 1)/(2, q − 1) or (q − 1)/(2, q − 1) prime, q �= 9; or
q prime and q ≡ ±3,±13 (mod 40); or
q = 3k with k � 3 prime

Lε
n(q) n and qn−ε

(q−ε) (n,q−ε) both prime, n � 3 and

(n, q, ε) �= (3, 4,+), (3, 3,−), (3, 5,−), (5, 2,−)
2B2(q) q − 1 prime
M23,B

Theorem 3. For any n ∈ N, there exists a prime power q such that λ(L2(q)) > n.

Next, applying Theorem 2 above and other tools, we establish a general upper
bound on the depth of finite simple groups of Lie type.

Theorem 4. Let G = G(q) be a simple group of Lie type, where q = pk for a prime
p. Then either

λ(G) � 3Ω(k) + 36,

or one of the following holds:

(i) G = L2(2
k) or 2B2(2

k) and

λ(G) � Ω(k) + 1 +min{Ω(2r − 1) : r ∈ π(k)},
where π(k) is the set of prime divisors of k.

(ii) G = Un(2
k), n is odd, k is even and

λ(G) � 3Ω(k) + 2Ω(22
a

+ 1) + 35,

where k = 2ab with b odd.

Note that Proposition 3.7 determines the precise depth of the groups in case
(i) in Theorem 4. Also Proposition 3.5 gives the depth of L2(p

k) for k odd. A
detailed investigation of the depth of simple groups of Lie type will be presented in
a forthcoming paper.

Define a function f1 : N → R by

f1(k) = 3 log2 k + 2k/ log2(2k) + 35.

Applying Theorem 4 with some elementary number theory we obtain the following.

Corollary 5. With the above notation we have

λ(G(pk)) < f1(k).

The depths of the sporadic simple groups are routine to compute, and are given
in Lemma 3.3.

The length l(G) of a finite group G is defined to be the maximal length of a
strictly descending chain of subgroups from G to 1. The length of simple groups has
been the subject of numerous papers since the 1960s (see [1,2,8,14,19,20,27,29,30],
for example).

What are the relations between the depth λ(G) and the length l(G) of a finite
(or a finite simple) group G? Clearly, λ(G) � l(G). By a well-known theorem
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of Iwasawa [18], λ(G) = l(G) (namely, all unrefinable chains in G have the same
length) if and only if G is supersolvable. In particular, λ(G) < l(G) if G is simple.
Note that there are families of finite simple groups G for which λ(G) is bounded
while l(G) is unbounded. For example, l(An) is of the order of 3

2n by [8], whereas
λ(An) � 23 by Theorem 2. We show below that a similar phenomenon occurs even
for simple groups of minimal depth.

Theorem 6. For any n ∈ N, there exists a finite simple group G of minimal depth
λ(G) = 3 such that l(G) > n. In fact, we may take G = L2(p) for a suitable prime
p.

Next, we show that λ(G) is always asymptotically much smaller than l(G). We
need some notation. For integers l � 36 define h(l) = max{a(l), b(l)}, where

a(l) = log2(l−2)+
l − 2

log2(l − 2)
+1, b(l) = 3 log2((l−4)/3)+

2(l − 4)

3 log2(2(l − 4)/3)
+35.

Define a function f2 : N → R by f2(l) = l for l < 36 and

f2(l) = min{l, h(l)}
for l � 36.

Theorem 7. Let G be a finite simple group. Then

λ(G) � f2(l(G)).

In particular, λ(G) � (1 + o(1)) l(G)
log2 l(G) .

We also obtain better upper bounds on λ(G) – see Theorem 3.8.
As for lower bounds, we show the following.

Proposition 8. There exist infinitely many finite simple groups Gj (j � 1) satis-
fying l(Gj) → ∞ and λ(Gj) > log3 l(Gj) + 1.

It would be nice to close the gap between the upper bound in Theorem 7 and the
lower bound in Proposition 8. However, this depends on formidable open problems
in Number Theory. See the discussion at the end of Section 3.

In [4], the expression l(G) − λ(G) is called the chain difference of G, denoted
by cd(G). It follows from Iwasawa’s theorem mentioned above that cd(G) � 1 for
all finite simple groups G. Using the classification theorem, the simple groups G
with cd(G) = 1 were determined by Brewster et al. [4] – the only examples are A6

and L2(p) for certain primes p (it is not known whether there are infinitely many
examples). In [16], Hartenstein and Solomon present a more elementary proof of
the same result, by means of a reduction to groups with dihedral or semi-dihedral
Sylow 2-subgroups. In particular, the proof in [16] does not require the classification
of finite simple groups.

The finite simple groups of minimal length 4 have depth 3 and chain difference
1, and so can be read off from Theorem 1 above, together with [4]. These groups
were originally determined by Janko [20] (also see [26, Theorem 3.2]). On the other
hand, our results imply that the chain difference of a finite simple group is usually
large.

In fact, using Theorem 7 it follows immediately that the length l(G) of a finite
simple group G is bounded above in terms of its chain difference cd(G) = l(G) −
λ(G), and even in terms of its chain ratio, defined by cr(G) = l(G)/λ(G).
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Corollary 9. We have

l(G) � (1 + o(1))cd(G)

and

l(G) � 2(1+o(1))cr(G),

for all finite simple groups G, where o(1) is ocd(G)(1) and ocr(G)(1) respectively.
In particular, the following statements are equivalent for any collection S of finite

simple groups:

(i) The set {cr(G) : G ∈ S} is bounded.
(ii) The set {cd(G) : G ∈ S} is bounded.
(iii) The set {l(G) : G ∈ S} is bounded.

Indeed, the first two assertions of Corollary 9 (which imply the third one) fol-
low from the last statement of Theorem 7. We note that condition (iii) above is
equivalent (for any collection S of finite groups G) to a purely number theoretic
condition. Indeed, it is trivial that l(G) � Ω(|G|), and by [1, Proposition 2.2] we
have Ω(|G|) � l(G)2. Thus the set {l(G) : G ∈ S} is bounded if and only if the set
{Ω(|G|) : G ∈ S} is bounded. Furthermore, it is known that there are infinitely
many finite simple groups of bounded length; indeed [1, Corollary D] implies that
there are infinitely many primes p with l(L2(p)) � 20.

In [28], Shareshian and Woodroofe study the length of various chains of sub-
groups of finite groups G in the context of lattice theory. In particular, they prove
that λ(G) is equal to the length of a chief series of G if and only if G is solvable
(for non-solvable groups, it is shown that the depth is at least two greater than the
length of a chief series). Our study of the depth of finite simple groups is partly
motivated by our recent work on the minimal and random generation of so-called
t-maximal subgroups of finite simple groups, where t = 1, 2, 3 (see [6, 7]).

The proofs of results 1–8 are given in Section 3 and we record some relevant
preliminary results in Section 2. In this paper we adopt the notation from [21] for
simple groups of Lie type. In particular we write PSLn(q) = Ln(q) = L+

n (q) and
PSUn(q) = Un(q) = L−

n (q), etc. We are grateful to Roger Heath-Brown for helpful
correspondence.

2. Preliminaries

We begin with elementary observations.

Lemma 2.1. Let G be a finite group and let M be the set of maximal subgroups
of G.

(i) λ(G) = 1 +min{λ(M) : M ∈ M}.
(ii) If N is a normal subgroup of G, then

λ(G/N) � λ(G) � λ(G/N) + λ(N).

Lemma 2.2. Suppose λ(G) = 2 and let M be a maximal subgroup of G of prime
order. Then either M � G, or G is a Frobenius group of the form NM , where
N �G and M acts fixed point freely on N .

Proof. IfM is not normal in G, then the action of G on the cosets ofM is Frobenius.
�

Corollary 2.3. If G is a finite simple group, then λ(G) � 3.
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Lemma 2.4. Suppose G is a finite simple group, and M is a nilpotent maximal
subgroup of G. Then M is a non-abelian Sylow 2-subgroup of G.

Proof. Suppose first that M has a non-trivial Sylow p-subgroup P for some odd
prime p. ThenM = NG(P ) sinceM is maximal, and hence alsoM = NG(Z(J(P ))),
where J(P ) is the Thompson subgroup of P . Hence G has a normal p-complement
by the Glauberman-Thompson normal p-complement theorem (see [12, Section 8.3],
for example). This is a contradiction.

Hence M is a 2-group. Also M ∈ Syl2(G) since M = NG(M). Finally, if M is
abelian, then M = Z(M) = Z(NG(M)), and so G has a normal 2-complement by
Burnside’s normal p-complement theorem. Hence M is non-abelian. �
Remark 2.5. There are genuine examples in Lemma 2.4. For instance, D16 is a
maximal subgroup of L2(17).

Our final result in this section concerns the existence of alternating (or symmet-
ric) maximal subgroups of certain simple classical groups. For the proof, we need
to recall a standard construction.

Let p be a prime, let d � 5 be an integer and consider the permutation module
F
d
p for the symmetric group Sd. Define subspaces

(2) U = {(a1, . . . , ad) :
∑
i

ai = 0}, W = {(a, . . . , a) : a ∈ Fp}

of Fd
p, and observe that U and W are the only non-zero proper Ad-invariant sub-

modules of Fd
p. Then V = U/(U ∩W ) is the fully deleted permutation module for

Ad, which is an absolutely irreducible Ad-module over Fp. Set n = dimV and note
that n = d− 2 if p divides d, otherwise n = d− 1.

If p is odd, then the corresponding representation embeds Ad into an orthogonal
group Ωε

n(p). If p = 2, then n is even and either d ≡ 2 (mod 4) and Ad embeds in
Spn(2), or d �≡ 2 (mod 4) and we obtain an embedding Ad � Ωε

n(2) (see [21, p. 187]
for further details).

Lemma 2.6. Let G = Ωε
n(p), where n � 5, p is a prime and one of the following

holds:

(i) np is odd, n �= 7 and (n+ 1, p) = 1;
(ii) (p, ε) = (2,+) and n ≡ 0, 6 (mod 8);
(iii) (p, ε) = (2,−) and n ≡ 2, 4 (mod 8).

Then G has a maximal alternating or symmetric subgroup. The same conclusion
holds if G = Spn(2), n � 8 and n ≡ 0 (mod 4).

Proof. For n � 12, we refer the reader to the relevant tables in [3]. Now assume
n > 12. Let V be the natural module for G.

Suppose (i) holds and define δ ∈ {1, 2} to be 2 if p divides n+2, and 1 otherwise.
Consider the embedding of An+δ in G = Ωn(p) = Ω(V ) afforded by the fully deleted
permutation module for An+δ over Fp. Set H = NG(An+δ) = An+δ or Sn+δ.

We claim that H is a maximal subgroup of G. To see this, suppose there is a
subgroup K of G such that H < K < G. Since K is irreducible and the (−1)-
eigenspace of (1, 2)(3, 4) ∈ H on V is 2-dimensional, the possibilities for K are
given in [13, Theorem 7.1]. However, by inspection we see that no examples arise
with n > 12, whence H is maximal. (Note that H is clearly primitive and tensor-
indecomposable on V , so [13] applies.)
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Table 2. The depth of sporadic simple groups

n Sporadic groups of depth n
3 M23,B
4 M11,M12,M22,M24, J1, J2, J4, Suz,Ly,Co2,Co3,Fi23,Fi

′
24,Th,M

5 J3,HS,McL,Ru,O′N,Co1,Fi22,HN
6 He

A very similar argument applies in cases (ii) and (iii). For example, consider (iii).
HereG = Ω−

n (2) and n ≡ 2, 4 (mod 8). SetH = An+δ, where δ = 2 if n ≡ 2 (mod 8)
and δ = 1 if n ≡ 4 (mod 8). As before, the fully deleted permutation module
V = Vn(2) embeds H in G (note that transpositions in Sn+δ act as transvections
on V , so Sn+δ �� G). As before, we can establish the maximality of H by applying
[13, Theorem 7.1], noting that (1, 2)(3, 4) ∈ H has Jordan form [J2

2 , J
n−4
1 ] on V . An

entirely similar argument shows that G = Spn(2) (with n � 8 and n ≡ 0 (mod 4))
has a maximal subgroup Sn+2. �

3. Proofs

Let G be a finite group. Define a t-chain of G to be an unrefinable chain of
subgroups of length t as in (1).

Lemma 3.1. If p is prime, then λ(L2(p)) � 4.

Proof. The result is clear for p � 3. And for p � 5, L2(p) has a maximal subgroup
isomorphic to A4, S4 or A5 (see [11]), and it is easy to check that all of these groups
have depth at most 3. �

Corollary 3.2. If p is prime, then λ(Ap+1) � 5.

Proof. Again, the claim is clear if p � 3, so assume p � 5. If p �∈ {7, 11, 23},
then L2(p) is a maximal subgroup of Ap+1 (see [22]), so in these cases the result
follows immediately from Lemma 3.1. For p ∈ {7, 11, 23} it is easy to check that
λ(Ap+1) = 5. For example,

A24 > M24 > M23 > 23:11 > 11 > 1

is a 5-chain. �

Lemma 3.3. The depth of each sporadic simple group G is given in Table 2. In
particular, λ(G) � 6, with equality if and only if G = He.

Proof. This is easily checked by inspecting the list of maximal subgroups in [10]. �

We are now in a position to prove our main theorems.

3.1. Proof of Theorem 1. Let G = G0 > G1 > G2 > G3 = 1 be a 3-chain, so
each Gi is maximal in Gi−1. Then G2 has prime order r, say, and by Lemma 2.2,
either G1 is Frobenius or G2 �G1.

If G1 has odd order, then it is given by [23, Theorem 1] and the relevant cases
are recorded in Table 1. Now assume |G1| is even.
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Table 3. The simple groups G with a maximal subgroup G1 of
the form 2k.r or D2r, with r prime

G G1 Conditions
L2(2

k) 2k.(2k − 1) 2k − 1 prime
D2(2k±1) 2k ± 1 prime

L2(q) Dq±1 (q ± 1)/2 prime, q �= 9

A4

{
q prime and either q = 5 or q ≡ ±3,±13 (mod 40); or
q = 3a with a � 3 prime

2B2(q) D2(q−1) q − 1 prime

Suppose G1 = NG2 = N.r is Frobenius. As G2 is maximal in G1, N is elemen-
tary abelian and thus one of the following holds:

(a) N = 2k and G2 = r acts fixed point freely on N ;
(b) |N | = s is prime, r = 2 and G1 is dihedral.

The finite simple groups G with a maximal subgroup G1 of the form 2k.r or D2s

can be determined by inspection of [21] (for classical groups), [9] (for exceptional
groups of Lie type), [10] (for sporadic groups), and is elementary for alternating
groups. The examples are listed in Table 3 and they also appear in Table 1.

Finally, let us assume G2 � G1, so G1/G2 has prime order t, say. Then G1 is
non-abelian by Lemma 2.4. Since |G1| is even, it follows that t = 2 and G1 = D2r

is dihedral. This case was dealt with in (b) above. �
By combining Theorem 1 and Lemma 3.1, we obtain the following corollary.

Corollary 3.4. If p is an odd prime, then

λ(L2(p)) =

⎧⎪⎪⎨
⎪⎪⎩

2 p = 3
3 p � 5 and either (p− 1)/2 prime or (p+ 1)/2 prime,

or p ≡ ±3,±13 (mod 40),
4 otherwise.

This can be extended as follows.

Proposition 3.5. Let p be a prime and let k � 1 be an odd integer. Suppose
(p, k) �= (2, 1) and let π(k) be the set of prime divisors of k. Then

λ(L2(p
k)) =

{
Ω(k) + 1 +min{Ω(2r ± 1) : r ∈ π(k)} if p = 2,
Ω(k) + λ(L2(p)) if p � 3.

Proof. First assume that p is odd. The proof goes by induction on k, the case
k = 1 being trivial. Now suppose k > 1 and let G = L2(p

k). By [11], the maximal
subgroups of G are as follows:

(3) pk.((pk − 1)/2), Dpk±1, L2(p
k/s),

where s is a prime divisor of k, and it is easy to see that

λ(pk.((pk − 1)/2)) = λ(Dpk−1) = Ω(pk − 1), λ(Dpk+1) = Ω(pk + 1).

By induction, λ(L2(p
k/s)) = Ω(k)−1+λ(L2(p)). Since Ω(p

k±1) � Ω(p±1)+Ω(k),
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it follows from Corollary 3.4 that among the maximal subgroups in (3), L2(p
k/s)

has minimal depth. Hence

λ(L2(p
k)) = 1 + λ(L2(p

k/s)) = Ω(k) + λ(L2(p)),

and the proof is complete.
Now assume p = 2. This time we induct on Ω(k). For the base case Ω(k) = 1, k

is prime and the maximal subgroups of L2(2
k) are

(4) 2k.(2k − 1), D2(2k±1).

We have λ(2k.(2k − 1)) = λ(D2(2k−1)) = Ω(2k − 1) + 1 and

λ(D2(2k+1)) = Ω(2k + 1) + 1,

and the conclusion follows for k prime. For k non-prime (i.e. Ω(k) > 1), the
maximal subgroups of L2(2

k) are as in (4), together with L2(2
k/s) for s ∈ π(k), and

an induction argument very similar to the one for p odd gives the conclusion. �

Remark 3.6. A similar result can be established for λ(L2(p
k)) when k is even, but

the details are more complicated (see Proposition 3.7 for the case p = 2).

3.2. Proof of Proposition 8. The proof combines Proposition 3.5 above with
[27, Theorem A]. The latter result shows that, for a finite simple Lie type group
Gr(p

k) of rank r with a Borel subgroup B we have l(Gr(p
k)) = r + l(B) provided

k � F (p, r).

For i � 1 let Hi = L2(3
3i) and let Bi < Hi be a Borel subgroup. It follows from

the above mentioned result that, for some constant c > 0 we have

l(Hi) = 1 + l(Bi)

for all i > c. Now, let Pi < Bi be a Sylow 3-subgroup of Hi. Since Bi is solvable
we have

l(Bi) = Ω(|Bi|) = Ω((33
i − 1)/2) + Ω(|Pi|) = Ω((33

i − 1)/2) + 3i.

Note that (33
i − 1)/2 =

∏i−1
j=1(3

2j + 3j + 1) which is not divisible by primes less

than 7. Hence Ω((33
i − 1)/2) � log7((3

3i − 1)/2) < 3i log7 3. This yields

l(Hi) < 1 + 3i(1 + log7 3) = 1 + 3i log7 21 < 3i+1,

for all i > c.
Next, Proposition 3.5 shows that

λ(Hi) = Ω(3i) + λ(L2(3)) = i+ 2.

Hence, for i > c, we have

λ(Hi) = i+ 2 > log3 l(Hi) + 1.

Setting Gj = Hj+c for j � 1, we complete the proof. �
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3.3. Proof of Theorem 2. Let G = An. If n � 10, then it is easy to check that
λ(G) � 5, so let us assume n � 11. By Vinogradov’s theorem [32], every sufficiently
large odd integer n is the sum of three primes, and this has recently been extended
to all odd n � 7 by Helfgott [17]. Set δ = 1 or 0 according to whether n is odd or
even, and choose primes p1, p2, p3 such that

n− 3− δ = p1 + p2 + p3,

so
A := Ap1+1 ×Ap2+1 ×Ap3+1 < Ap1+p2+p3+3 = An−δ � G.

We claim that there is an unrefinable chain of length at most 8 from G to A. To
see this, first observe that the stabilizer in Ad of a k-element subset of {1, . . . , d}
(with 2 � k � d/2) is a subgroup of the form (Ak ×Ad−k).2. Moreover, if k �= d/2,
then this is a maximal subgroup by [22], so there is an unrefinable chain of length
2 from Ad to Ak ×Ad−k. If k = d/2, then there is one of length 3, namely

Ad > (Ad/2 ×Ad/2).2
2 > (Ad/2 ×Ad/2).2 > Ad/2 ×Ad/2.

Now, if n− δ �= 2(p1 + 1) and p2 �= p3, then

An−δ > (Ap1+1 × An−δ−p1−1).2 > Ap1+1 ×An−δ−p1−1

> Ap1+1 × (Ap2+1 ×Ap3+1).2 > A

is an unrefinable chain of length 4. Since An > Sn−1 > An−1 is unrefinable, it
follows that there is an unrefinable chain of length at most 6 from G to A. Similarly,
if either n − δ = 2(p1 + 1) or p2 = p3, then we can find a chain of length at most
8. This justifies the claim.

Finally, since λ(Api+1) � 5 by Corollary 3.2, we conclude that

λ(G) � 8 + 3 · 5 = 23

and the proof of Theorem 2 is complete. �
3.4. Proof of Theorem 3. Let n be a positive integer and let p1, . . . , pn be distinct
odd primes. Set k = p1 · · · pn. Then Proposition 3.5 gives λ(L2(2

k)) � Ω(k) + 2 =
n+ 2 and the result follows. �
3.5. Proof of Theorem 4. Let G = G(q) be a finite simple group of Lie type over
Fq, where q = pk for a prime p. To begin with, let us assume that G is not one of
the following:

(a) L2(2
k) with k � 2;

(b) 2B2(2
k) with k � 3 odd;

(c) Un(2
k) with n odd and k even.

We will handle these special cases at the end of the proof.
In the following, unless stated otherwise, the assertions concerning the unrefin-

ability of chains follow from the maximality results in [3, 21] for classical groups
and [24] for exceptional groups. Our goal is to verify the bound

(5) λ(G) � 3Ω(k) + 36.

Case 1 (Untwisted groups). First assume G = G(q) is of untwisted type (excluding
(a) above). For any prime divisor r of k, G(q) has a maximal subfield subgroup
of the form G(qk/r).[δ], where δ ∈ {1, r, 2r} (see [5, Theorem 1]). We deduce that
there is an unrefinable chain of length at most 3Ω(k) from G to G(p), and hence

(6) λ(G) � 3Ω(k) + λ(G(p)).
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We now consider the possibilities for G(p). First assume G(p) = Ωn(p), with np
odd and n � 7. If n �= 7 and (n+ 1, p) = 1, then Lemma 2.6 implies that G(p) has
a maximal alternating or symmetric subgroup, in which case λ(G) � 3Ω(k)+25 by
Theorem 2. Now assume p divides n+ 1. Then

Ωn(p) > Ω+
n−1(p).2 > Ω+

n−1(p) > Ωn−2(p).2 > Ωn−2(p)

is an unrefinable chain of length 4. Moreover, (n − 1, p) = 1 so Ωn−2(p) has a
maximal alternating or symmetric subgroup. This gives λ(G) � 3Ω(k) + 4 + 25 as
required. Finally, for n = 7 there is an unrefinable chain Ω7(p) > Sp6(2) > S8, and
the conclusion follows easily.

Next assume G(p) = PΩ+
2n(p), where n � 4 and p is odd. Then G(p) has a

maximal subgroup of the form Ωn−1(p).r with r ∈ {1, 2}, so by applying the bound
in the previous paragraph we get λ(G) � 3Ω(k) + 29 + 2.

Now suppose G(p) = Sp2n(2)
′. It is easy to check that the groups Sp4(2)

′ ∼= A6

and Sp6(2) have depth 4 and 5, respectively, so we may assume n � 4. If n is even,
then Lemma 2.6 implies that G(p) has a maximal symmetric subgroup. On the
other hand, if n is odd, then

Sp2n(2) > Sp2n−2(2)× Sp2(2) > Sp2n−2(2)× 3 > Sp2n−2(2)

is an unrefinable chain and Sp2n−2(2) has a maximal symmetric subgroup (again,
by Lemma 2.6). In both cases, we conclude that λ(G) � 3Ω(k) + 3 + 25, so (5)
holds. Moreover, for G(p) = Ω+

2n(2) we get λ(G) � 3Ω(k) + 29 because Sp2n−2(2)
is a maximal subgroup of G(p).

Next consider G(p) = PSp2n(p) with p odd and n � 2. Here G(p) has a maximal
imprimitive subgroup M = (Sp2(p) 	 Sn)/Z, where Z = Z(Sp2n(p)) = {±I2n}.

First we claim that there is an unrefinable chain

(7) Sp2(p) 	 Sn = M0 > M1 > · · · > Ms = C6 	 Sn

of length s � 3. If p ≡ ±1 (mod 10), then 2.A5 is a maximal subgroup of Sp2(p)
and we can take

(8) Sp2(p) 	 Sn > (2.A5) 	 Sn > (2.A4) 	 Sn > C6 	 Sn.

To see that this is unrefinable, consider a subgroup K such that

H = C6 	 Sn < K � L = (2.A4) 	 Sn.

Then K ∩ (2.A4)
n � (2.A4)

n is a subdirect product containing (C6)
n, so C6 �

K ∩ Li � Li, where Li is the i-th copy of 2.A4 in the direct product (2.A4)
n.

Therefore K∩Li = Li, so K contains (2.A4)
n and thus K = L. A similar argument

establishes the maximality of the other inclusions in (8) and we omit the details.
If p �≡ ±1 (mod 10), then either 2.S4 or 2.A4 is maximal in Sp2(p) and the details
are very similar. This establishes the claim (7).

Finally, we claim that there is an unrefinable chain

C6 	 Sn = H0 > H1 > · · · > Ht = 2.Sn = Z.Sn

of length t � 5. For example, if n ≡ 0 (mod 6), then

C6 	 Sn > 3n−1.2n.Sn > 3.2n.Sn > C2 	 Sn > 2n−1.Sn > 2.Sn

is an unrefinable chain of length 5. Here we are using the fact that the only proper
non-trivial Sn-invariant subgroups of r

n (r prime) are U ∼= rn−1 and W ∼= Cr (note
that U and W are the subspaces in (2), setting p = r). Similarly, there is a chain of
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length 5 if n ≡ ±2, 3 (mod 6), and one of length 4 if n ≡ ±1 (mod 6). We deduce
that there is an unrefinable chain of length at most 8 from G(p) to Sn, whence
λ(G) � 3Ω(k) + 8 + 24 by Theorem 2.

To complete the proof for untwisted classical groups, suppose G(p) = Ln(p). The
case n = 2 follows from Lemma 3.1, so assume n � 3. If n is even, then G(p) has a
maximal subgroup M = PSpn(p).r with r ∈ {1, 2} and our earlier work shows that
λ(M) � 33. Now assume n is odd. If p is odd, then G(p) has a maximal subgroup
M = PSOn(p) = Ωn(p).2 and the result follows since λ(M) � 30 as above. Finally,
suppose n is odd and p = 2. In this case, there is an unrefinable chain

G(2) = SLn(2) > 2n−1.SLn−1(2) > SLn−1(2)

and so the previous argument gives λ(G) � 3Ω(k) + 36.
Now suppose G(p) is of exceptional Lie type. In each case, we can choose a

maximal subgroup M as follows (see [24]):

G(p) E8(p) E7(p) E6(p) F4(p) G2(p)
M d.PΩ+

16(p).d L2(p
7).[7d] F4(p) d.Ω9(p) SL3(p).2

where d = (2, p−1). In each case, the desired bound quickly follows from our above
analysis of untwisted classical groups. For example, if G(p) = E8(p), then

λ(G(p)) � 3 + λ(PΩ+
16(p)) � 3 + 31.

Similarly, suppose G(p) = E7(p) and M = L2(p
7).[7d]. If p = 2, then

E7(2) > L2(2
7).7 > L2(2

7) > D2(27−1) > C27−1 > 1

is an unrefinable chain. For odd p, there is an unrefinable chain from E7(p) to L2(p)
of length 4, and Lemma 3.1 implies that λ(L2(p)) � 4. The other cases are similar
and we omit the details.

Case 2 (Twisted groups). Now let us consider the twisted groups of Lie type,
excluding the cases labelled (b) and (c) above. First assume G = 2G2(3

k) with
k odd. Taking a chain of subfield subgroups of length Ω(k), we can get down
to 2G2(3) ∼= L2(8).3. The latter has depth 4, so λ(G) � Ω(k) + 4. Similarly,
λ(2F4(2

k)′) � Ω(k) + 5.
In each of the remaining cases, the goal is to find a short unrefinable chain from

G to a simple untwisted group of Lie type H, and then apply the bounds in Case
1.

Suppose G = Un(q) is a unitary group. If n � 4 is even, then there is an
unrefinable chain of length at most 2 from G to H = PSpn(q), so λ(G) � 2 +
3Ω(k)+32. Similarly, if nq is odd, then H = Ωn(q) and the same bound holds. If n
is odd and q = 2k with k odd, then we can use maximal subfield subgroups to find
an unrefinable chain of length at most 3Ω(k) from G to H = Un(2). If n = 3, then
λ(H) = 4, so we can assume n � 5. Now H has a maximal subgroup a.Un−1(2).b,
where a = 3/(3, n) and b = (3, n−1), so λ(H) � λ(Un−1(2))+2 � 36 as above and
thus λ(G) � 3Ω(k) + 36.

For G = PΩ−
2n(q) with q odd, there is an unrefinable chain of length at most

2 from G to Ωn−1(q) and the result quickly follows. The case G = Ω−
2n(q) with q

even is also easy since Sp2n−2(q) is a maximal subgroup.
Finally, if G = 2E6(q) or

3D4(q), then G has a maximal subgroup F4(q) or G2(q),
respectively, and the result follows from the bounds on λ(F4(q)) and λ(G2(q)) in
Case 1.
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Case 3 (The remaining cases). To complete the proof, we may assume that one of
the following holds:

(a) G = L2(2
k) with k � 2;

(b) G = 2B2(2
k) with k � 3 odd;

(c) G = Un(2
k) with n odd and k even.

First suppose G = G(2k) is of type L2(2
k) or 2B2(2

k). Let π(k) be the set of
prime divisors of k. For any r ∈ π(k), there is an unrefinable chain of subfield
subgroups of length Ω(k)−1 from G to G(2r). Now G(2r) has a maximal subgroup
H = D2(2r−1) and λ(H) � 1 + Ω(2r − 1), so

λ(G) � Ω(k) + 1 +min{Ω(2r − 1) : r ∈ π(k)}
as required (see Proposition 3.7 below for the exact depth of G in these two cases).

Finally, let us turn to case (c), so G = G(2k) = Un(2
k) with n odd and k even.

Write k = 2ab, where a � 1 and b is odd, so Ω(k) = a + Ω(b). By considering
subfield subgroups, there is an unrefinable chain of length at most 3Ω(b) from G to
G(22

a

). Now G(22
a

) has a maximal reducible subgroup H = c.PGUn−1(2
2a) where

c divides 22
a

+ 1, so

λ(H) � 2Ω(22
a

+ 1) + λ(Un−1(2
2a)) � 2Ω(22

a

+ 1) + 34 + 3Ω(2a)

and thus

λ(G) � 3Ω(b) + 2Ω(22
a

+ 1) + 35 + 3a � 3Ω(k) + 2Ω(22
a

+ 1) + 35.

This completes the proof of Theorem 4. �
In fact, we can determine the exact depth of G in cases (a) and (b) above.

Proposition 3.7. We have

λ(L2(2
k)) =

{
Ω(k) + 1 +min{Ω(2r ± 1) : r ∈ π(k)} k � 3 odd,
Ω(k) + 2 +min{Ω(22c ± 1)− c : 1 � c � a} k = 2ab even, b odd,

and

λ(2B2(2
k)) = Ω(k) + 1 +min{Ω(2r − 1),Ω(2r ±

√
2r+1 + 1) + 1 : r ∈ π(k)},

where π(k) is the set of prime divisors of k.

Proof. First assume G = L2(2
k). In view of Proposition 3.5, we may assume k = 2ab

is even and b � 1 is odd. By arguing as in the proof of Proposition 3.5, we deduce
that λ(G) = Ω(b) + λ(H), where H = L2(2

2a). Consider a t-chain

H = H0 > H1 > H2 > · · · > Ht = 1

of minimal length and let s � 0 be maximal so that Hs = L2(2
2c) is a subfield

subgroup of H. Then c � 1 and λ(H) = s+λ(Hs). Moreover, s = Ω(2a−c) = a− c
and the maximality of s implies that λ(Hs) = 2 +min{Ω(22c ± 1)}, so

λ(H) = a− c+ 2 +min{Ω(22c ± 1)}.
The result now follows since Ω(k) = a+Ω(b).

Now assume G = 2B2(2
k), where k � 3 is odd. Set q = 2k and let H be a

maximal subgroup of G. By [31], H is one of

q1+1:(q − 1), D2(q−1), (q ±
√
2q + 1):4, 2B2(q0),

where q0 = 2k/s for a proper prime divisor s of k. We have

λ(q1+1:(q − 1)) = Ω(q − 1) + 2, λ(D2(q−1)) = Ω(q − 1) + 1
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and
λ((q ±

√
2q + 1):4) = λ(D2(q±

√
2q+1)) + 1 = Ω(q ±

√
2q + 1) + 2.

Similarly,

λ(2B2(q0)) � λ(D2(q0−1)) + 1 = Ω(q0 − 1) + 2 � Ω(q − 1) + 1

and
λ(2B2(q0)) � Ω(q0 ±

√
2q0 + 1) + 3 � Ω(q ∓

√
2q + 1) + 2

(note that q0 ±
√
2q0 + 1 divides q ∓

√
2q + 1). Therefore, we can construct an

unrefinable chain for G of minimal length by descending via a sequence of Ω(k)− 1
subfield subgroups to 2B2(2

r) for some prime divisor r of k. It follows that

λ(G) = Ω(k)− 1 + min{Ω(2r − 1) + 2, λ(2r ±
√
2r+1 + 1) + 3 : r ∈ π(k)}

as required. �
3.6. Proof of Corollary 5. We apply Theorem 4. Trivially, Ω(k) � log2 k. So
λ(G) � 3Ω(k) + 36 implies λ(G) � 3 log2 k + 36 � f1(k), as required.

Next, suppose conclusion (i) of Theorem 4 holds, namely

λ(G) � Ω(k) + 1 +min{Ω(2r − 1) : r ∈ π(k)}.
For each prime divisor r of k, each prime s dividing 2r − 1 satisfies s ≡ 1 (mod r),
so s � r + 1. Hence

Ω(2r − 1) � log2(2
r − 1)/ log2(r + 1) < r/ log2 r � k/ log2 k.

This yields
λ(G) � log2 k + k/ log2 k + 1

and the result follows.
Finally, suppose conclusion (ii) of Theorem 4 holds, namely

λ(G) � 3Ω(k) + 2Ω(22
a

+ 1) + 35,

where k = 2ab with a � 1 and b odd.
Let s be a prime divisor of 22

a

+ 1. We claim that s ≡ 1 (mod 2a+1). Indeed,
let m be the multiplicative order of 2 modulo s. Since 22

a ≡ −1 (mod s) we have

22
a+1 ≡ 1 (mod s), so m divides 2a+1. But m does not divide 2a, hence m = 2a+1,

so 2a+1 divides s− 1, as claimed. Therefore, s � 2a+1 + 1 and thus

Ω(22
a+1 + 1) � log2(2

2a + 1)/ log2(2
a+1 + 1) < 2a/(a+ 1).

This implies that

λ(G) < 3Ω(k) + 2a+1/(a+ 1) + 35 � 3 log2 k + (2k/b)/(log2(2k/b)) + 35

� 3 log2 k + 2k/ log2(2k) + 35,

completing the proof. �
3.7. Proof of Theorem 6. Fix n � 2 and let p1, . . . , pn−1 be the first n−1 primes
which are greater than 5. Let S be the set of primes p satisfying p ≡ ±3,±13
(mod 40) and p ≡ 1 (mod pi) for i = 1, . . . , n − 1. By the Chinese Remainder
theorem and Dirichlet’s theorem, S is infinite.

Let G = L2(p) with p ∈ S. Then λ(G) = 3 by Theorem 1. On the other hand,
the dihedral group Dp−1 is a subgroup of G, so we have

l(G) > l(Dp−1) = Ω(p− 1) � n.

This completes the proof. �
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3.8. Proof of Theorem 7. We always have λ(G) < l(G) and h(l) � 36, so it
suffices to show that if l(G) � 36, then λ(G) < h(l).

If G is sporadic, then λ(G) � 6 by Lemma 3.3, and if G is alternating, then by
Theorem 2 we have λ(G) � 23. Hence Theorem 7 holds for these groups.

It remains to deal with groups of Lie type G = Gr(p
k), where r is the Lie rank

of G. Let B be a Borel subgroup of G and let P < B be a Sylow p-subgroup of G.
Note that any unrefinable chain for G passing through B has length r+ l(B). Also
note that l(B) = Ω(|B|) since B is solvable. Define u(G) by |P | = (pk)u(G). Then

l(G) � r+ l(B) = r+Ω(|B|) = r+Ω(|B|/|P |)+Ω(|P |) � 2r+Ω(|P |) = 2r+ku(G)

and thus

(9) k � (l(G)− 2r)/u(G).

We now use Corollary 5, its notation and its proof.
In the generic case of Theorem 4 we have

(10) λ(G) < 3 log2 k + 36 � 3 log2(l(G)− 2) + 36 � h(l(G)),

where the last inequality is easily checked numerically, using our assumption that
l(G) � 36.

In case (i) of Theorem 4 we have

λ(G) � log2 k + k/ log2 k + 1 � log2(l(G)− 2) +
l(G)− 2

log2(l(G)− 2)
+ 1 � h(l(G)).

Finally, in case (ii) we have G = Un(2
k) for odd n � 3 and for even k, say k = 2m.

We claim that k � (l(G)− 4)/3 unless k = 2 and G = U3(4).
Indeed, if the rank r is at least 2, then this follows from (9). So suppose r = 1.

Then n = 3 and |B| = ((2k)2−1)(2k)3. If k > 2, then Ω((2k)2−1) = Ω(24m−1) � 3
(since m � 2), which yields l(G) � 1+Ω(|B|) � 1+3+3k, proving the claim. Note
that, by [29, Theorem 1] we have l(G) = 1 + Ω(|B|) in this case.

Combining the above claim with Corollary 5, we conclude that, if k > 2, then

λ(G) < 3 log2 k + 2k/ log2(2k) + 35 = f1(k) � f1((l(G)− 4)/3) � h(l(G)).

Finally, if k = 2, then G = U3(4) and l(G) = 9 < 36, so the result holds trivially in
this case.

This completes the proof of Theorem 7. �
In fact similar arguments give rise to better bounds. In the theorem below

we adopt the above notation, and let o(1) denote a number tending to zero as
l(G) → ∞.

Theorem 3.8. Let G = Gr(p
k). Then

(i) λ(G) < f1((l(G)− 2r)/u(G)).

(ii) If r > 1, then λ(G) � 1+o(1)
r(r+1/2) ·

l(G)
log2 l(G) .

(iii) If G is not as in case (i) or (ii) of Theorem 4, then

λ(G) � (3 + o(1)) log2 l(G).

Proof. Part (i) follows immediately from the proof of Theorem 7, combined with
inequality (9) above.

Part (iii) follows from inequality (10) above.
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Finally, part (ii) follows from part (iii) unless G = Un(2
k), with odd n and even

k. In the latter case we have n = 2r+1 and u(G) = n(n− 1)/2 = r(2r+1), so the
result follows from part (i). �

In fact it may well be that λ(G) = O(log2 l(G)) for all finite simple groups G.
In view of Theorems 2 and 3.8 it suffices to prove it for G as in case (i) or (ii) of
Theorem 4. This depends on better upper bounds on Ω(2r − 1) for r prime, and
on Ω(22

a

+ 1).
It is known that for most natural numbers n we have Ω(n) ∼ log log n (see,

for instance, [15, Theorem 431]). It is reasonable to assume – though impossible
to prove using present methods of Number Theory – that 2r − 1 (r prime) and
22

a

+1 are less composite than most numbers. In particular we therefore expect that
Ω(2r−1) � log log(2r−1) � log r for r � 0, and that Ω(22

a

+1) � log log(22
a

+1) �
a for a � 0. Note that this implies that, for primes r � 0, the largest prime divisor
of 2r − 1 is at least (2r − 1)1/ log r, a bound far stronger than all known bounds,
even assuming the ABC conjecture or the Generalized Riemann Hypothesis (see,
for instance, [25]). Anyway, plugging our two heuristic assumptions into the proof
of Corollary 5 it would follow that λ(G(pk)) = O(log2 k) in all cases, and this in
turn would yield λ(G) = O(log2 l(G)).

Finally, note that, in view of the lower bound given in Proposition 8, our above
conjectured upper bound on λ(G) in terms of l(G) would be best possible.

References

[1] K. Alladi, R. Solomon, and A. Turull, Finite simple groups of bounded subgroup chain length,
J. Algebra 231 (2000), no. 1, 374–386, DOI 10.1006/jabr.2000.8371. MR1779605
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