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OPERATORS WITH CLOSED NUMERICAL RANGES

IN NEST ALGEBRAS

YOUQING JI AND BIN LIANG

(Communicated by Stephan Ramon Garcia)

Abstract. In the present paper, we continue our research on numerical ranges
of operators. With newly developed techniques, we show that

Let N be a nest on a Hilbert space H and T ∈ T (N ), where T (N ) denotes
the nest algebra associated with N . Then for given ε > 0, there exists a
compact operator K with ‖K‖ < ε such that T +K ∈ T (N ) and the numerical
range of T +K is closed.

As applications, we show that the statement of the above type holds for
the class of Cowen-Douglas operators, the class of nilpotent operators and the
class of quasinilpotent operators.

1. Introduction

Throughout this paper, let H be a complex separable infinite dimensional Hilbert
space endowed with the inner product 〈·, ·〉. Let B(H) and K(H) denote the algebra
of all bounded linear operators acting on H and the ideal of compact operators on
H, respectively.

Recall that the numerical range of an operator T ∈ B(H) is defined as

W (T ) =
{
〈Tx, x〉 : x ∈ H, ‖x‖ = 1

}
.

Clearly, W (T ) is a nonempty bounded subset of C. The classical Toeplitz-Hausdorff
theorem (see [9, 16]) asserts that the numerical range of an operator is always
convex.

Let T ∈ B(H). Denote by T ∗ the adjoint of T , by σ(T ) the spectrum of T ,

by conv σ(T ) the convex hull of σ(T ), by W (T ) the closure of W (T ). It is well

known that conv σ(T ) ⊆ W (T ) (see [8, page 115]). In particular, if T is normal

(i.e. T ∗T = TT ∗), then W (T ) = conv σ(T ) (see [7, Theorem 1.4-4]). In addition,
W (T ) ⊆ R if and only if T is self-adjoint (i.e. T ∗ = T ) (see [7, Theorem 1.2-2]).
Moreover, it is well known that the numerical range of a direct sum is the convex
hull of the numerical ranges of the summands. Some other properties of numerical
range can be found in [7, 8].
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As we all know, operators on finite dimensional Hilbert spaces always have
closed numerical ranges. But it may fail for operators acting on infinite dimen-
sional Hilbert spaces, such as the unilateral shift operator (see [8, page 317]), while
operators with closed numerical ranges are dense in B(H) with respect to the uni-
form (norm) topology. In fact, Bourin ([3, Proposition 1.3]) proved that for given
T ∈ B(H) and ε > 0, there must exist a compact operator K with ‖K‖ < ε such
that W (T +K) is closed. That is, every operator in B(H) has a closed numerical
range under small compact perturbations.

Inspired by Bourin’s theorem, in [13], we introduced the concept of being strongly
numerically closed. But to be more precise, we realize that such an operator class
should be said to be approximately strongly numerically closed. Here we make
a correction. An operator class A in B(H) is said to be approximately strongly
numerically closed, if for any T ∈ A and any ε > 0 there exists a compact operator
K with ‖K‖ < ε such that T +K ∈ A and W (T +K) is closed.

In our previous work [13], we proved that the class of triangular operators, the
class of hyponormal operators and the class of weighted shift operators, etc., are all
approximately strongly numerically closed. As we can see, all these results obtained
are about operator classes which maybe not operator algebras. Naturally, if we pay
attention to operator algebras, the research will become more interesting.

Note that nest algebras are the natural analogues of upper triangular matrix
algebras in infinite dimensional spaces. And what’s more, nest algebras own alge-
braic structures as well as topological structures. So nest algebras naturally catch
our attention. In addition, nest algebras are an important object of the class of
nonself-adjoint operator algebras and play an important role in operator theory and
operator algebras. So it is more interesting and more significant to discuss whether
any nest algebra is approximately strongly numerically closed.

In this paper, with newly developed techniques and some theory of nest algebras,
we will show that any nest algebra is approximately strongly numerically closed (see
Theorem 2.1). And with applications of Theorem 2.1 and the techniques used in its
proof, we obtain that the class of nilpotent operators, the class of Cowen-Douglas
operators and the class of quasinilpotent operators are also approximately strongly
numerically closed.

The rest of this paper is organized as follows. In section 2, we will give our
main result by showing that any nest algebra is approximately strongly numerically
closed. In section 3 we show some applications of the main result and the techniques.
This section is divided into three subsections to deal with the class of nilpotent
operators, the class of Cowen-Douglas operators and the class of quasinilpotent
operators. And we will prove that these operator classes are also approximately
strongly numerically closed.

2. Nest algebras

The following theorem is our main result.

Theorem 2.1. For every nest N , nest algebra T (N ) associated with N is approx-
imately strongly numerically closed.

Before proving Theorem 2.1, we first review some terminologies and notation.
Given a collection {Mα} of subspaces of a Hilbert space H,

∨
Mα denotes the

closed linear span and
∧
Mα denotes intersection. Then these two operations make

the set of subspaces of H into a lattice.
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Recall that a nest N is a chain (by inclusion) of closed subspaces of a Hilbert
space H containing {0} and H which is closed under intersection and closed span.
The nest algebra associated with N , denoted by T (N ), is the family of all operators
defined by

T (N ) = {T ∈ B(H) : TN ⊆ N for all N in N}.
It is well known that T (N ) is a weak operator closed subalgebra of B(H) (see
[5, Proposition 2.2]).

For each N ∈ N , denote

N− =
∨{

N ′ ∈ N : N ′ < N
}
, N+ =

∧{
N ′ ∈ N : N ′ > N

}
and define {0}− = {0},H+ = H. If N− �= N , N− is called the immediate prede-
cessor to N and N = (N−)+ is called the immediate successor of N−. In this case,
the subspace N �N− is called an atom of N . If the atoms of N span H, then N
is said to be atomic. If there are no atoms in N , N is continuous. If N1 < N2 in
N , the subspace E = N2 � N1 is called an interval of N . We refer the reader to
Davidson’s monograph [5] for the theory of nest algebras.

In addition, we need the following auxiliary results.

Lemma 2.2 ([8]). Let T ∈ B(H) and M be a closed subspace of H. Denote by P
the orthogonal projection onto M. Then W (PT |M) ⊆ W (T ).

Recall that the essential numerical range of T ∈ B(H), denoted by We(T ), is the
nonempty set

We(T ) =
⋂

K∈K(H)

W (T +K).

It is apparent that We(T ) is convex, closed and invariant under compact perturba-
tions. That is, We(T +K) = We(T ) for any K ∈ K(H). Moreover, by [6, Theorem
5.1], λ ∈ We(T ) if and only if there exists a orthonormal sequence {xn}∞n=1 in H
such that 〈Txn, xn〉 → λ. For references on essential numerical ranges, see [2, 6].

Lemma 2.3 ([15, Theorem 1]). If T ∈ B(H), then W (T ) = conv
{
W (T )∪We(T )

}
.

As an application of Lemma 2.3, to prove that W (T ) = W (T ), it suffices to show
that We(T ) ⊆ W (T ).

In this paper, we denote by intΩ the interior of a set Ω of C and by ∂Ω the
boundary of Ω. Moreover, for convex sets of C, we have the following observation.
We record this as a lemma for the convenience of future reference.

Lemma 2.4. If Ω is a bounded convex subset of C and 0 ∈ int Ω, then for
given 0 < ε < min{d, 1

2}, where d = dist(0, ∂Ω), there exist finitely many points

u1, u2, . . . , un ∈ Ω and a positive integer N such that Ω ⊆ conv
{
(1 + 3ε

4 )λk : 1 ≤
k ≤ n

}
, whenever λk satisfies |λk − uk| < ε2

N for each k, 1 ≤ k ≤ n.

The following result about nest algebras plays an important role in our proof of
the main theorem.

Lemma 2.5 ([5, Theorem 3.10]). Let H be a separable Hilbert space and let N be a
nest on H. Then there is a sequence {Rn}∞n=1 of finite rank contractions in T (N )
such that Rn converges to the identity in the strong operator topology.

Lemma 2.6 ([5, Lemma 3.7]). Let x ⊗ y be a rank one operator in T (N ). Then
there is an element N of N such that x belongs to N and y belongs to (N−)

⊥.
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Lemma 2.7. Let N be an atomic nest. If T ∈ T (N ) and W (T ) is a closed line
segment of C, then for given ε > 0, there is a compact operator K with ‖K‖ < ε
such that T +K ∈ T (N ) and W (T +K) is closed.

Proof. First, suppose that W (T ) is not closed. And without loss of generality, we

can assume that W (T ) = [0, 1]. Hence T is a self-adjoint operator in T (N ).
Noting that N is atomic, there are two possibilities:

(i) there exists an atom A0 of N such that W
(
P (A0)T |A0

)
= [0, 1],

(ii) for ε > 0, there exist two atoms A1 and A2 of N such that

dist
(
0,W

(
P (A1)T |A1

))
<

ε

8
and dist

(
1,W

(
P (A2)T |A2

))
<

ε

8
,

where P (Ak) denotes the orthogonal projection onto Ak.

Case (i). In this case, since W (T ) is not closed and W (T ) = [0, 1], there are three
possibilities:

W
(
P (A0)T |A0

)
= (0, 1), W

(
P (A0)T |A0

)
= (0, 1] and W

(
P (A0)T |A0

)
= [0, 1).

If W
(
P (A0)T |A0

)
= (0, 1), then using Lemma 2.3, we have We

(
P (A0)T |A0

)
=

[0, 1]. By Bourin’s theorem, for given ε > 0, there exists a compact operator
K ∈ T (N ) with K = P (A0)KP (A0) and ‖K‖ < ε, such that T +K ∈ T (N ) and
W

(
P (A0)(T +K)|A0

)
is closed. Then by Lemma 2.2, we have

[0, 1] = We

(
P (A0)T |A0

)
⊆ W

(
P (A0)(T +K)|A0

)
⊆ W (T +K).

Hence

We(T +K) = We(T ) ⊆ [0, 1] ⊆ W (T +K).

It follows from Lemma 2.3 that W (T +K) is closed.
If W

(
P (A0)T |A0

)
= (0, 1], then there exists a unit vector x1 ∈ A0 such that

〈Tx1, x1〉 = 〈P (A0)T |A0
x1, x1〉 = 1.

By Lemma 2.3, we have 0 ∈ We(P (A0)T |A0
). Hence for given ε > 0, there must

exist a unit vector x2 ∈ A0 with x2 ⊥ x1 such that

〈Tx2, x2〉 = 〈P (A0)T |A0
x2, x2〉 <

ε

2
.

Set K = 3ε
4 x1 ⊗ x1 − 3ε

4 x2 ⊗ x2. A simple calculation shows that ‖K‖ < ε. And
by Lemma 2.6, we have K ∈ T (N )∩K(H). Hence T +K ∈ T (N ). Moreover, note
that

〈P (A0)(T +K)|A0
x1, x1〉 = 〈(T +K)x1, x1〉 = 1 +

3ε

4

and

〈P (A0)(T +K)|A0
x2, x2〉 = 〈(T +K)x2, x2〉

= 〈Tx2, x2〉 −
3ε

4

< −ε

4
.

Hence

We(T ) ⊆ [0, 1] ⊆ W
(
P (A0)(T +K)|A0

)
⊆ W (T +K).

Then it follows from Lemma 2.3 that W (T +K) is closed.
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With the same argument as that in the case W
(
P (A0)T |A0

)
= (0, 1], one can

show that the result is true for the case where W
(
P (A0)T |A0

)
= [0, 1). This

completes the proof of Case (i).

Case (ii). In this case, there must exist two unit vectors e1 ∈ A1 and e2 ∈ A2 such
that

0 ≤ 〈Te1, e1〉 ≤
ε

4
and 1− ε

4
≤ 〈Te2, e2〉 ≤ 1.

SetK = − 3ε
4 (e1⊗e1−e2⊗e2). It follows from Lemma 2.6 thatK ∈ T (N )∩K(H).

Hence T+K ∈ T (N ). Moreover, as A1 ⊥ A2, we have e1 ⊥ e2. Then a computation
shows that ‖K‖ < ε. Furthermore, note that

〈(T +K)e1, e1〉 = 〈Te1, e1〉+ 〈Ke1, e1〉

= 〈Te1, e1〉 −
3ε

4

≤ −ε

2

and

〈(T +K)e2, e2〉 = 〈Te2, e2〉+ 〈Ke2, e2〉

= 〈Te2, e2〉+
3ε

4

≥ 1 +
ε

2
.

Hence

We(T +K) = We(T ) ⊆ [0, 1] ⊆ W (T +K).

By Lemma 2.3, we deduce that W (T +K) is closed. �

Similarly, for any continuous nest, we have the following result.

Lemma 2.8. Let N be a continuous nest. If T ∈ T (N ) and W (T ) is a closed line
segment of C, then for given ε > 0, there is a compact operator K with ‖K‖ < ε
such that T +K ∈ T (N ) and W (T +K) is closed.

To prove Lemma 2.8, we need the following lemma.

Lemma 2.9. Let N be a continuous nest and T ∈ T (N ). If T is self-adjoint with
σ(T ) ⊆ [0, 1] and 0, 1 ∈ σ(T ), then for given 0 < ε < 1

2 , there exist two intervals
E1 and E2 of N with E1 ⊥ E2 such that

σ
(
P (E1)T |E1

)
∩ [0, ε] �= ∅ and σ

(
P (E2)T |E2

)
∩ [1− ε, 1] �= ∅,

where P (Ek) denotes the orthogonal projection onto Ek.

Proof. For each n ≥ 1, set Hk = N k
2n

� N k−1
2n

, 1 ≤ k ≤ 2n, where N0 = {0} and

N1 = H. As T ∈ T (N ) is self-adjoint, T admits the following matrix representation:

T =

⎡
⎢⎢⎢⎣
T1

T2

. . .

T2n

⎤
⎥⎥⎥⎦

H1

H2

...
H2n

,

where each Tk is self-adjoint and each omitted entry is 0.
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We claim that for given 0 < ε < 1
2 , there exists a positive integer n0 such that

σ(Ti1) ∩ [0, ε] �= ∅ and σ(Ti2) ∩ [1− ε, 1] �= ∅
for some i1, i2, 1 ≤ i1 �= i2 ≤ 2n0 .

Otherwise, there exists an ε ∈ (0, 12 ) such that for each n ≥ 1, there exists an in,
1 ≤ in ≤ 2n such that

0, 1 ∈ σ(Tin) and σ(Tk) ⊆ [ε, 1− ε] for each k �= in, 1 ≤ k ≤ 2n.

Let Pin denote the orthogonal projection onto N in
2n

�N in−1
2n

. Then {I−Pin}∞n=1

is an increasing sequence of orthogonal projections and I − Pin converges to I in
the strong operator topology as n → +∞.

Set An = (I−Pin)T |(I−Pin )H for all n ≥ 1. It is clear that each An is self-adjoint.

And it is not hard to check that W (T ) =
⋃∞

n=1 W (An).
Moreover, noting that

σ(An) =
⋃{

σ(Tk), 1 ≤ k ≤ 2n, k �= in
}
,

we deduce that σ(An) ⊆ [ε, 1− ε] for all n ≥ 1. Since each An is self-adjoint,

W (An) = conv σ(An) ⊆ [ε, 1− ε]

for all n ≥ 1. Therefore

W (T ) =

∞⋃
n=1

W (An) ⊆ [ε, 1− ε].

This contradicts the fact that

W (T ) = conv σ(T ) = [0, 1].

So the claim is proved. This also completes the proof of the lemma. �
Proof of Lemma 2.8. First, suppose that W (T ) is not closed. And without loss of

generality, we can assume that W (T ) = [0, 1]. Then T is a self-adjoint operator

in T (N ). Hence conv σ(T ) = W (T ) = [0, 1]. This implies that 0, 1 ∈ σ(T ) and
σ(T ) ⊆ [0, 1].

For fixed ε > 0, without loss of generality, one can assume that 0 < ε < 1
2 . Then

by Lemma 2.9, there exist two intervals E1 = N2�N1 and E2 = N4�N3 satisfying
E1 ⊥ E2 for some Nk ∈ N , 1 ≤ k ≤ 4, such that

σ
(
P (E1)T |E1

)
∩ [0,

ε

8
] �= ∅ and σ

(
P (E2)T |E2

)
∩ [1− ε

8
, 1] �= ∅.

Hence there exist two unit vectors x1 ∈ E1 and x2 ∈ E2 such that

0 ≤ 〈Tx1, x1〉 ≤
ε

4
and 1− ε

4
≤ 〈Tx2, x2〉 ≤ 1.

Furthermore, there exist two elements N ′
1 and N ′

2 in N with N1 < N ′
1 < N2 and

N3 < N ′
2 < N4 such that

‖x(1)
1 ‖ = ‖x(2)

1 ‖ =

√
2

2
and ‖x(1)

2 ‖ = ‖x(2)
2 ‖ =

√
2

2
,

where
x
(1)
1 = P (N ′

1 �N1)x1, x
(2)
1 = P (N2 �N ′

1)x1

and
x
(1)
2 = P (N ′

2 �N3)x2, x
(2)
2 = P (N4 �N ′

2)x2.

Since E1 ⊥ E2, x
(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 are pairwise orthogonal.
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Set K = − 3ε
2

(
x
(1)
1 ⊗x

(2)
1 −x

(1)
2 ⊗x

(2)
2

)
. A simple calculation shows that ‖K‖ < ε.

And it follows from Lemma 2.6 that K ∈ T (N ) ∩ K(H). Hence T +K ∈ T (N ).
Moreover, note that

〈(T +K)x1, x1〉 = 〈Tx1, x1〉+ 〈Kx1, x1〉

≤ ε

4
− 3ε

2
‖x(1)

1 ‖2‖x(2)
1 ‖2 = −ε

8

and

〈(T +K)x2, x2〉 = 〈Tx2, x2〉+ 〈Kx2, x2〉

≥ 1− ε

4
+

3ε

2
‖x(1)

2 ‖2‖x(2)
2 ‖2 = 1 +

ε

8
.

Hence

We(T +K) = We(T ) ⊆ W (T ) = [0, 1] � W (T +K).

It follows from Lemma 2.3 that W (T +K) is closed. The proof is complete. �

Now we are in a position to give our proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose that T ∈ T (N ) and W (T ) is not closed. Then
either intW (T ) �= ∅ or intW (T ) = ∅.

Case 1. intW (T ) �= ∅. Without loss of generality, one can assume that ‖T‖ = 1
and 0 ∈ intW (T ).

For fixed ε > 0, without loss of generality, one can assume that 0 < ε <
min{r, 1

2}, where r = dist
(
0, ∂W (T )

)
. Then by Lemma 2.4, one can find a positive

integer N and finitely many points u1, u2, . . . , un ∈ W (T ) such that

W (T ) ⊆ conv
{
(1 +

3ε

4
)λk : 1 ≤ k ≤ n

}
whenever λk ∈ C satisfies |λk − uk| < ε2

N for each k, 1 ≤ k ≤ n. As uk ∈ W (T ),
there exists a unit vector xk such that uk = 〈Txk, xk〉.

Set Tn = TRn for all n ≥ 1, where {Rn}∞n=1 is the sequence in Lemma 2.5. Then
each Tn ∈ T (N ) ∩ K(H) and Tn converges to T in the strong operator topology.
Hence there is a sufficiently large integer n0 such that

|〈Tn0
xk, xk〉 − uk| <

ε2

N
for each k, 1 ≤ k ≤ n.

Denote

λk = 〈Tn0
xk, xk〉 and wk =

1

1 + 3ε
4

(uk +
3

4
ελk).

It is trivial that |wk − uk| < ε2

N . Hence

W (T ) ⊆ conv
{
(1 +

3ε

4
)wk : 1 ≤ k ≤ n

}
= conv

{
uk +

3

4
ελk : 1 ≤ k ≤ n

}
.

Set K = 3
4εTn0

. Then K ∈ T (N ) ∩ K(H) and ‖K‖ < ε. Hence T +K ∈ T (N ).
Moreover, note that

〈(T +K)xk, xk〉 = 〈Txk, xk〉+ 〈Kxk, xk〉

= uk +
3

4
ελk.
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That is, uk +
3
4ελk ∈ W (T +K) for each k, 1 ≤ k ≤ n. Hence

We(T ) ⊆ W (T ) ⊆ conv
{
uk +

3

4
ελk : 1 ≤ k ≤ n

}
⊆ W (T +K).

By Lemma 2.3, W (T +K) is closed.

Case 2. intW (T ) = ∅. Since W (T ) is convex, W (T ) is a closed line segment in

C. Without loss of generality, one can directly assume that W (T ) = [0, 1]. This
implies that T is a self-adjoint operator.

Let Pa be the orthogonal projection onto
∨
{Eα : α ∈ Λ}, where {Eα}α∈Λ is

the set of atoms of N . Denote Ha = ranPa and Hc = ran(I − Pa). Since T is a
self-adjoint operator in T (N ), T admits the following matrix representation:

T =

[
A 0
0 B

]
Ha

Hc

for some self-adjoint operators A and B. This implies that A is self-adjoint in
T (Na) and B is self-adjoint in T (Nc), where Na = {PaN : N ∈ N} is an atomic
nest and Nc = {(I − Pa)N : N ∈ N} is a continuous nest.

Since W (T ) = conv{W (A) ∪W (B)}, W (A) ⊆ [0, 1] and W (B) ⊆ [0, 1]. Then it
suffices to consider the atomic case and the continuous case separately. For either
case, in Lemma 2.7 or Lemma 2.8, we have given an affirmative answer. Now the
proof is complete. �

Remark 2.10. From the construction of K in the proof of Case 1, we know that if
T admits a strictly upper triangular matrix representation with respect to a nest
N , then K can be chosen to be arbitrarily small and also strictly upper triangular
with respect to N such that W (T +K) is closed.

3. Some applications

In this section, we will deal with the class of nilpotent operators, the class of
Cowen-Douglas operators and the class of quasinilpotent operators. Using Theo-
rem 2.1, especially the techniques used in the proof, we will prove that all these
operator classes are also approximately strongly numerically closed.

3.1. Class of nilpotent operators. Let Nn(H) denote the set of all nilpotent
operators of order at most n (n = 1, 2, . . .) of B(H). That is, Nn(H) = {T ∈ B(H) :
Tn = 0}. For the class of nilpotent operators, we have the following theorem.

Theorem 3.1. For each integer n ≥ 1, Nn(H) is approximately strongly numeri-
cally closed.

Proof. Suppose that T ∈ Nn(H) andW (T ) is not closed. Without loss of generality,
we may assume that Tn = 0 and Tn−1 �= 0.

Denote Nk = kerT k for each k, 0 ≤ k ≤ n. Then N = {Nk : 0 ≤ k ≤ n} is an
atomic nest and T ∈ T (N ). Note that T admits an n× n strictly upper triangular
matrix representation with respect to N , Then by Theorem 2.1 and Remark 2.10,
for given ε > 0, we can find a strictly upper triangular compact operator K with
‖K‖ < ε such that T +K ∈ T (N ) and W (T +K) is closed.

Moreover, note that T +K also admits an n×n strictly upper triangular matrix
representation. This implies that T + K is a nilpotent operator of order n. The
proof is complete. �
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3.2. Class of Cowen-Douglas operators. Let Ω be a bounded connected open
set of C and n be a positive integer. The set Bn(Ω) of Cowen-Douglas operators of
index n is the set of operators T ∈ B(H) satisfying

(i) Ω ⊆ σp(T ) ⊆ σ(T ), where σp(T ) denotes the set of all eigenvalues of T ;
(ii) dimker (λ− T ) = n for each λ ∈ Ω;
(iii) ran(T − λ) = H for all λ ∈ Ω;
(iv)

∨
{ker (λ− T ) : λ ∈ Ω} = H.

Note that (iv) can be replaced by

(iv′)
∨
{ker(λ− T )k : k ≥ 1} = H for some λ ∈ Ω.

From the definition of Cowen-Douglas operators, we can see that Ω ⊆ σp(T ) ⊆
W (T ) for all T ∈ Bn(Ω). For references on Cowen-Douglas operators, see [11,14,17].

Let T ∈ B(H). Recall that if ranT is closed and either dimkerT or dimkerT ∗

is finite, then T is called a semi-Fredholm operator. In this case, the index of T is
defined by

indT = dimkerT − dim kerT ∗.

In particular, if −∞ < indT < +∞, then T is called a Fredholm operator. It is
well known that if T is Fredholm, then the index of T is stable under compact
perturbations. That is, ind(T + K) = indT for all K ∈ K(H). Moreover, if S is
also Fredholm, then ind (TS) = indT + indS. For references on Fredholm theory,
see [1, 4].

By Fredholm theory and the definition of Cowen-Douglas operators, if T ∈
Bn(Ω), then ind(T − λ) = n and ind(T − λ)k = kn for all k ≥ 1 and λ ∈ Ω.

The following theorem is the main result of this subsection.

Theorem 3.2. For each integer n ≥ 1, Bn(Ω) is approximately strongly numeri-
cally closed.

Proof. First, without loss of generality, one can assume that 0 ∈ Ω. Suppose that
T ∈ Bn(Ω) and W (T ) is not closed.

Set Nk = kerT k and Hk = Nk � Nk−1 for each k ≥ 1, where N0 = {0}. Since
0 ∈ Ω and T ∈ Bn(Ω), H =

⊕∞
k=1Hk and dimHk = n for all k ≥ 1. Denote

N = {Nk, k ≥ 0,H}. Then N is an atomic nest and T ∈ T (N ).
Let Pk denote the orthogonal projection onto Nk. As dimNk = kn for each

k ≥ 0, then {Pk}∞k=0 is an increasing sequence of finite rank orthogonal projections
in T (N ) and Pk converges to the identity I in the strong operator topology.

Note that Ω ⊆ intW (T ). Then by the proof of Theorem 2.1, for given ε > 0,
there is a compact operator K = δTPn0

with ‖K‖ < ε for some positive integer n0

and δ > 0, such that T +K ∈ T (N ) and W (T +K) is closed.
Now it only remains to show that T +K is also a Cowen-Douglas operator.
Note that T admits a strictly upper triangular matrix representation

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 T1 ∗ ∗ · · ·
0 T2 ∗ · · ·

0 T3 · · ·

0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

H1

H2

H3

H4

...
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with respect to N and each Tk is invertible. By the choice of K, T +K also admits
a strictly upper triangular matrix representation of the form

T +K =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 T ′
1 ∗ ∗ · · ·
0 T ′

2 ∗ · · ·
0 T ′

3 · · ·

0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

H1

H2

H3

H4

...

,

where

T ′
k =

{
(1 + δ)Tk if 1 ≤ k ≤ n0 − 1,

Tk otherwise.

For any λ ∈ Ω, by the stability of the index, ind(T + K − λ) = ind(T −
λ) = n. Noting that each T ′

k is invertible, then a simple calculation shows that
ker(T + K − λ)∗ = {0}. This implies that dimker(T + K − λ) = n. Hence
Ω ⊆ σp(T +K) ⊆ σ(T +K).

Moreover, one can directly show that kerT k ⊆ ker(T +K)k for all k ≥ 1. This,
together with

∨
{kerT k : k ≥ 1} = H, implies that

∨
{ker(T +K)k : k ≥ 1} = H.

Summarizing the above arguments, we conclude that T +K ∈ Bn(Ω). Now the
proof is complete. �

3.3. Class of quasinilpotent operators. Recall that an operator T ∈ B(H) is
quasinilpotent if σ(T ) = {0}. The main result of this subsection is the following
theorem.

Theorem 3.3. The class of quasinilpotent operators in B(H) is approximately
strongly numerically closed.

Before giving the proof of Theorem 3.3, we first make some preparation.
Let T ∈ B(H). The Wolf spectrum σlre(T ) of T is defined by

σlre(T ) = {λ ∈ C : T − λ is not semi-Fredholm}.
It is clear that σlre(T ) ⊆ σe(T ), where σe(T ) denotes the essential spectrum of T .

Denote by σ0(T ) the set of normal eigenvalues of T , that is,

σ0(T ) = {λ ∈ C : λ is an isolalted point of σ(T ) and ind (λ− T ) = 0}.
From the definition of normal eigenvalues, one can easily obtain that σ0(T ) ⊆ σp(T ).

Recall that the Weyl spectrum σW (T ) of T ∈ B(H) is defined by

σW (T ) =
⋂{

σ(T +K) : K ∈ K(H)
}
.

And it is well known that

σW (T ) = {λ ∈ C : λ− T is not a Fredholm operator of index 0}.
It follows that σlre(T ) ⊆ σW (T ) and σ0(T ) ∩ σW (T ) = ∅ for all T ∈ B(H).

The reader is referred to [4, 10] for more details about the notation and termi-
nologies.

Lemma 3.4 ([4, page 366]). Let T ∈ B(H). Then ∂σ(T ) ⊆ σ0(T ) ∪ σlre(T ).

Lemma 3.5. If T ∈ B(H) admits a strictly upper triangular matrix representation
and σe(T ) = {0}, then T is quasinilpotent.
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Proof. As σe(T ) = {0}, it follows from Lemma 3.4 that

∂σ(T ) ⊆ σ0(T ) ∪ σlre(T ) ⊆ σ0(T ) ∪ {0}.

This implies that σ(T ) = {0} ∪ σ0(T ). Hence ind(T − λ) = 0 for any λ �= 0.
Since T admits a strictly upper triangular matrix, a simple calculation shows

that ker(T − λ)∗ = {0} for all λ �= 0. Hence ker(T − λ) = {0} for all λ �= 0. This
implies that σ0(T ) = ∅. Hence σ(T ) = {0}. That is, T is quasinilpotent. �

Lemma 3.6. If T ∈ B(H) is quasinilpotent, then

σ(T +K) = {0} ∪ σ0(T +K), ∀ K ∈ K(H).

Proof. As T is quasinilpotent, σlre(T ) = σe(T ) = {0}. Hence for any K ∈ K(H),
σlre(T +K) = {0}. It follows from Lemma 3.4 that ∂σ(T +K) ⊆ σ0(T +K)∪{0}.
This implies that σ(T +K) = σ0(T +K) ∪ {0}. The proof is complete. �

Recall that an operator T is quasitriangular if there exists an increasing sequence
{Pn}∞n=1 of finite rank orthogonal projections in B(H) with Pn → I in the strong
operator topology such that ‖(I−Pn)TPn‖ → 0. It is well known that an operator
T ∈ B(H) is quasitriangular if and only if ind(T − λ) ≥ 0 for all λ /∈ σlre(T ) (see
[10, Theorem 6.4]).

Lemma 3.7 ([12, Theorem 2.3]). Suppose that T ∈ B(H) is quasitriangular and
σ(T ) = σW (T ). Let Γ = {λn}∞n=1 be a sequence of complex numbers such that

(1) λn ∈ σ(T ) for all n ≥ 1,
(2) each clopen subset σ of σ(T ) satisfies card{n : λn ∈ σ} = ℵ0.

Then given ε > 0, there exists a compact K with ‖K‖ < ε such that σ(T +K) =
σW (T +K) and T +K admits an upper triangular matrix representation

T +K =

⎡
⎢⎢⎢⎣
a1 ∗ ∗ · · ·

a2 ∗ · · ·
a3 · · ·

. . .

⎤
⎥⎥⎥⎦
e1
e2
e3
...

with respect to some orthonormal basis {en}∞n=1 and the set of {an : n = 1, 2, . . .}
coincides with Γ.

Lemma 3.8. Let T ∈ B(H) be quasinilpotent and ε > 0. Then there is a compact
operator K with ‖K‖ < ε such that T + K is also quasinilpotent and T + K is
strictly upper triangular with respect to some orthonormal basis.

Proof. Since T ∈ B(H) is quasinilpotent, σlre(T ) = σe(T ) = {0} and ind(λ− T ) =
0 for any λ �= 0. Hence T is quasitriangular and σ(T ) = σW (T ) = {0}. By
Lemma 3.7, for given ε > 0, there exists a K ∈ K(H) with ‖K‖ < ε such that
σ(T + K) = σW (T + K) and T + K is strictly upper triangular with respect to
some orthonormal basis.

Moreover, by Lemma 3.6, we know σ(T +K) = {0}∪σ0(T +K). This, together
with σ(T + K) = σW (T + K), implies that σ(T + K) = {0}. That is, T is
quasinilpotent. The proof is complete. �

Now we are ready to prove Theorem 3.3.
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Proof of Theorem 3.3. Suppose that T ∈ B(H) is quasinilpotent and W (T ) is not
closed.

As T is quasinilpotent, it follows from Lemma 3.8 that for given ε > 0, there
exists a K1 ∈ K(H) with ‖K1‖ < ε/2 such that T +K1 is also quasinilpotent and
T + K1 admits a strictly upper triangular matrix representation relative to some
orthonormal basis {en}∞n=1. Without loss of generality, suppose that T + K1 is
nonzero. Otherwise, the proof is complete.

Let Nn = {ek : 1 ≤ k ≤ n} for all n ≥ 1. Then N =
{
{0}, Nn, n ≥ 1,H

}
is

an atomic nest and T + K1 ∈ T (N ). Note that T + K1 admits a strictly upper
triangular matrix representation with respect to N . Then by Theorem 2.1 and
Remark 2.10, for given ε > 0, we can find a strictly upper triangular compact
operator K2 with ‖K2‖ < ε/2 such that T +K1+K2 ∈ T (N ) and W (T +K1+K2)
is closed.

Set K = K1 + K2. Then ‖K‖ < ε. Note that σe(T + K) = σe(T ) = {0} and
T +K is strictly upper triangular. Hence by Lemma 3.5, T +K is quasinilpotent.
This completes the proof. �
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