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VARIATIONS OF GEOMETRIC INVARIANT QUOTIENTS

FOR PAIRS, A COMPUTATIONAL APPROACH

PATRICIO GALLARDO AND JESUS MARTINEZ-GARCIA

(Communicated by Lev Borisor)

Abstract. We study GIT compactifications of pairs formed by a hypersurface
and a hyperplane. We provide a general setting to characterize all polarizations
which give rise to different GIT quotients. Furthermore, we describe a finite
set of one-parameter subgroups sufficient to determine the stability of any
GIT quotient. We characterize all maximal orbits of non-stable and strictly
semistable pairs, as well as minimal closed orbits of strictly semistable pairs.
Our construction gives natural compactifications of the space of log smooth
pairs for Fano and Calabi-Yau hypersurfaces.

1. Introduction

The construction and study of moduli spaces is a central subject in algebraic
geometry, and Geometric Invariant Theory (GIT) is one of its foundational tools.
It has been applied to study hypersurfaces [1, 4, 9], and it is a first step towards
constructing the moduli space of del Pezzo surfaces admitting a Kähler–Einstein
metric [12]. A GIT quotient depends on a choice of a line bundle in a parameter
space, and any two compactifications, with the exceptions of some limit cases, are
related by birational transformations (see [14], [3]).

In this article, we consider the GIT quotients parameterizing pairs (X,H) where
X ⊂ Pn+1 is a hypersurface of degree d and H ⊂ Pn+1 is a hyperplane. This is a
natural setting to consider pairs (X,D) where D = X ∩H is a hyperplane section.
Our work generalizes to higher dimensions R. Laza’s work on curves [8]. Our setting
can be automatized to perform computations for any dimension n and degree d.
Indeed, in the companion to this article [5] we provide algorithms, already fully
implemented in software [7], to compute all the invariants and functions in this
article. In [6], we apply the current setting and a specific analysis of singularities to
describe geometrically all GIT compactifications of pairs (S,C) where S is a cubic
surface and C ∈ | −KS | is an anticanonical divisor.

Let Rn,d be the parameter space of pairs (X,H). There is a one-dimensional
space of stability conditions parametrized by t ∈ [0, tn,d] corresponding to polariza-
tions of Rn,d (see Section 2). There is a finite number of values ti ∈ Q�0 known
as GIT walls where 0 = t0 < t1 < · · · < tn,d and segments (ti, ti+1) known as GIT
chambers. Two GIT quotients are isomorphic if and only if their linearizations be-
long to either the same GIT chamber or wall. In particular, there is a finite number
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of non-isomorphic GIT quotients M
GIT

n,d,t corresponding to values t = ti and to any
t ∈ (ti, ti+1).

Theorem 1.1. Let Sn,d be the set of one-parameter subgroups in Definition 3.1.
All GIT walls {t0, . . . , tn,d} correspond to a subset of the finite set{

−〈m,λ〉
〈xi, λ〉

∣∣∣∣ m is a monomial of degree d, 0 � i � n+ 1, λ ∈ Sn,d

}
,(1)

and they are contained in the interval [0, tn,d] where tn,d = d
n+1 . Every pair (X,H)

has an interval of stability [a, b] with a, b ∈ {t0, . . . , tn,d}. Namely, (X,H) is t-
semistable if and only if t ∈ [ti, tj ] for some walls ti, tj. If (X,H) is t-stable for
some t, then (X,H) is t-stable if and only if t ∈ (ti, tj).

Corollary 1.2. Assume that the ground field is algebraically closed with charac-
teristic 0 and that the locus of stable points is not empty and d � 3. Then

dimM
GIT

n,d,t =

(
n+ d+ 1

d

)
− n2 − 3n− 3.

Each M
GIT

n,d,t is a compactification of the space of log smooth pairs (X,X ∩ H)
described above.

When X is Fano or Calabi-Yau the pairs (X,H) are realized as log pairs:

Theorem 1.3. Every point in the GIT quotient M
GIT

n,d,t parametrizes a closed orbit
associated to a pair (X,D) with D = X ∩H in the cases where X is a Calabi-Yau
or a Fano hypersurface of degree d > 1. Furthermore, if X is Fano t � tn,d and
(X,D) is t-semistable, then X does not contain a hyperplane in its support, unless
t = tn,d, in which case (X,D) is strictly tn,d-semistable.

Once a set of coordinates is fixed, any pair (X,H) can be determined by homo-
geneous polynomials F and F ′ of degrees d and 1, respectively, which define a pair
of sets of monomials, namely those which appear with non-zero coefficients in F
and F ′. Suppose (X,H) is not t-stable. We find sets of monomials N⊕

t (λk, xi) such
that in some coordinate system the equations of F and F ′ are given by monomials
in N⊕

t (λk, xi). A similar procedure follows for t-unstable pairs, where the relevant
sets of monomials are N+

t (λk, xi).

Theorem 1.4. Let t ∈ (0, tn,d). A pair (X,H) is not t-stable (t-unstable, re-
spectively) if and only if there exists g ∈ SL(n,K) such that the set of monomials
associated to (g · X, g · H) is contained in a pair of sets N⊕

t (λ, xi) (N+
t (λ, xi),

respectively) defined in Lemma 5.2.
Furthermore, the sets N⊕

t (λ, xi) and N+
t (λ, xi) which are maximal with respect

to the containment order of sets define families of non-t-stable pairs (t-unstable
pairs, respectively) in Rn,d. Any non-t-stable (respectively t-unstable) pair (g ·X,
g ·H) belongs to one of these families for some group element g.

These results allow us to identify non-t-stable pairs, and these are either strictly
t-semistable or t-unstable.

The Centroid Criterion gives a polyhedral interpretation of stability. Indeed,
a pair (X,H) determines a convex polytope Convt(X,H), and the parameter t
determines a point Ot in affine space (for details see Section 4).
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Lemma 1.5 (Centroid Criterion). Let t ∈ Q�0. A pair (X,H) is t-semistable

(respectively t-stable) if and only if Ot ∈ Convt(X,H) (Ot ∈ Int (Convt(X,H)),
respectively).

The boundary of M
GIT

n,d,t is of special interest for GIT problems. Each of its
points has a one-to-one correspondence to a strictly t-semistable closed orbit.

Theorem 1.6. Assume t ∈ (0, tn,d) and ground field of characteristic 0. If a
pair (X,H) belongs to a closed strictly t-semistable orbit, then there are g ∈ SLn+2,
λ ∈ Sn,d, and xi such that the set of monomials associated to (g·X , g·H) corresponds
to those in a pair of sets (V 0

t (λ, xi), B
0(λ, xi)) defined such that (v, b) ∈ V 0

t (λ, xi)×
B0(λ, xi) if and only if μt(v, b) = 0 and (v, b) ∈ N⊕

t (λ, xi).

1.1. Conventions and notation. We work over an algebraically closed field K.
Let G = SL(n+2,K) and T ⊂ G be a fixed maximal torus. The torus T ∼= (K∗)n+2

induces lattices of characters M = HomZ(T,Gm) ∼= Zn+2 and of one-parameter
subgroups N = HomZ(Gm, T ) ∼= Zn+2, with a natural pairing:

〈−,−〉 : M ×N −→ HomZ(Gm,Gm) ∼= Z.

We choose projective coordinates (x0 : · · · : xn+1) in Pn+1 such that T is diagonal.
Given a one-parameter subgroup λ : Gm

∼= K∗ → T ⊂ G in M , we say it is
normalized ([10, §7.2(b)]) if

λ(s) = Diag(sr0 , . . . , srn+1) :=

⎛
⎜⎝

sr0 · · · 0
...

. . .
...

0 · · · srn+1

⎞
⎟⎠ ,

such that r0 � · · · � rn+1,
∑

ri = 0, and not all ri = 0. In particular r0 > 0
and rn+1 < 0. Denote by Ξk the set of all monomials of degree k in variables
x0, . . . , xn+1. Since each monomial in Ξk can be identified with a character X a ∈
M of weight k, we can see the pairing 〈−,−〉 of one-parameter subgroups with
monomials as

〈xd0
0 · · ·xdn+1

n+1 ,Diag(sr0 , . . . , srn+1)〉 = 〈X a, λ〉 =
∑

di · ri ∈ Z,

where a = (d0, . . . , dn+1) ∈ (Z�0)
n+2,

∑
di = k.

Let X be a hypersurface of degree d defined by polynomials F =
∑

cIx
I with

I = (d0, . . . , dn+1) and let H be a hyperplane defined by
∑

hixi where cI , hi ∈ K.
We define their associated sets of monomials (X ,H) as the pair of sets

X = {xI ∈ Ξd | cI 	= 0}, H = {xi ∈ Ξ1 | hi 	= 0}.
Let λ be a normalized one-parameter subgroup of G. By definition [11, 21, p. 81],
the Hilbert-Mumford function is

μ(X,λ) := min{〈I, λ〉 | cI 	= 0}.
Note that for fixed X, the function μ(X,−) is piecewise linear. Finally, there is
a natural partial order on Ξk which we call Mukai order [10, Lemma 7.18]: given
v,m ∈ Ξk,

v � m ⇐⇒ 〈v, λ〉 � 〈m,λ〉,
for all normalized one-parameter subgroups λ. Under this order there is a unique
maximal element xk

0 and unique minimal element xk
n+1 in Ξk. In the special case

when k = 1, the Mukai order is a total one.
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Our results, together with a good knowledge of the singularities of (X,D ∩H)
for given d and n, are sufficient to describe all the GIT compactifications. A sketch
of such an algorithm is discussed in section 6. We refer the reader to [7] for the
details and to [6] for the case of cubic surfaces and their anticanonical divisors.

2. VGIT setting

Let R = Rn,d be the parameter scheme of pairs (X,H) given by

Rn,d = P(H0(Pn+1,OPn+1(d)))× P(H0(Pn+1,OPn+1(1))) ∼= PN × Pn+1,

where N =
(
n+1+d

d

)
− 1.

Lemma 2.1. The set of G-linearizable line bundles PicG(R) is isomorphic to Z2.

Then a line bundle L ∈ PicG(R) is ample if and only if

L = O(a, b) := π∗
1(OPN (a))⊗ π∗

2(OPn+1(b)) ∈ PicG(R),

where π1 and π2 are the natural projections on PN and Pn+1, respectively, and
a, b > 0.

Proof. Let π1 : R → PN , π2 : R → Pn+1 be the natural projections. The action
of G on Ξd and Ξ1 induces a natural action on R ∼= PN × Pn+1, which preserves
the fibers. Hence we have an action of G on both PN and Pn+1 and π1, π2 are
morphisms of G-varieties. Recall there is an exact sequence (see [2, Theorem 7.2])

0 −→ X (G) −→ PicG(R) −→ Pic(R) −→ Pic(G),

where X (G) is the kernel of the forgetful morphism PicG(R) → Pic(R). Since

X (G) = {1} and Pic(G) = {1} by [2, Chapter 7.2] then PicG(R) ∼= Pic(R). More-

over, given that PicG(R) ⊆ Pic(R)G ⊂ Pic(R), where Pic(R)G is the group of
G-invariant line bundles, the result follows from

PicG(R) ∼= Pic(R)G ∼= Pic(R) ∼= π∗
1(Pic(P

N ))× π∗
2(Pic(P

n+1)) ∼= Z× Z.

�

For L ∼= O(a, b), the GIT quotient is defined as

M
GIT

n,d,t = Proj
⊕
m�0

H0(R,L⊗m)G,

where t = b
a .

The main tool to understand variations of GIT from a computational viewpoint
is the Hilbert-Mumford numerical criterion, which in our particular case has the
following form.

Lemma 2.2. Given an ample L ∼= O(a, b) ∈ PicG(R), let (X,H) be a pair
parametrized by R, and let λ be a normalized one-parameter subgroup of G. The
Hilbert-Mumford function (see [11, Definition 2.2]) is μL((X,H), λ) = aμt(X,H, λ),
where t = b

a ∈ Q>0 and

μt(X,H, λ) := μ(X,λ) + tμ(H,λ)

= min{〈I, λ〉 | xI ∈ X}+ tmin{ri | xi ∈ H}.
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Proof. By [11, p. 49], for fixed (X,H) and λ, μL : PicG(R) → Z is a group homo-
morphism. Moreover, given any G-equivariant morphism of G-varieties π : R → Y ,
we have that μπ∗L((X,H), λ) = μL(π(X,H), λ). Applying these two properties,
the result follows from

μO(a,b)((X,H), λ) = μπ∗
1OPN (a)⊗π∗

2OPn+1 (b)((X,H), λ)

= μπ∗
1OPN

(a)((X,H), λ) + μπ∗
2OPn+1 (b)((X,H), λ)

= aμO
PN (1)(X,λ) + bμO

Pn+1 (1)(H,λ) = aμt(X,H, λ). �

Remark 2.3. Let (X,H) and (X ′, H ′) be such that (X ,H′) = (X ,H). Then,
μt(X,H, λ) = μt(X

′, H ′, λ).

Definition 2.4. Let t ∈ Q�0. The pair (X,H) is t-stable (resp. t-semistable) if
μt(X,H, λ) < 0 (resp. μt(X,H, λ) � 0) for all non-trivial one-parameter subgroups
λ of G. A pair (X,H) is t-unstable if it is not t-semistable. A pair (X,H) is strictly
t-semistable if it is t-semistable but not t-stable.

3. Stratification of the space of stability conditions

In this section, we fix a maximal torus T of one-parameter subgroups of G and
a coordinate system of Pn such that T is diagonal in G.

Definition 3.1. The fundamental set Sn,d of one-parameter subgroups λ ∈ T
consists of all non-trivial elements λ = Diag(sr0 , . . . , srn+1) where

(r0, . . . , rn+1) = c(γ0, . . . , γn+1) ∈ Zn+1,

satisfying the following:

(1) γi = ai

bi
∈ Q such that gcd(ai, bi) = 1 for all i = 0, . . . , n + 1 and c =

lcm(b0, . . . , bn+1).
(2) 1 = γ0 � γ1 � · · · � γn+1 = −1−

∑n
i=1 γi.

(3) (γ0, . . . , γn+1) is the unique solution of a consistent linear system given by
n equations chosen from the union of the following sets:

Eq(n, d) := {γi − γi+1 = 0 | i = 0, . . . , n}(2)

∪
{

n+1∑
i=0

(di − d̄i)γi = 0 | di, d̄i ∈ Z�0 for all i and
n+1∑
i=0

di =
n+1∑
i=0

d̄i = d

}
.

The set Sn,d is finite since there are a finite number of monomials in Ξd.

Lemma 3.2. A pair (X,H) is not t-stable (respectively not t-semistable) if and
only if there is g ∈ G satisfying

μt(X,H) = max
λ∈Sn,d

{μt(g ·X, g ·H,λ)} � 0 (respectively > 0),

where μt is the Hilbert-Mumford function defined in Lemma 2.2 and Sn,d is the
fundamental set of Definition 3.1.

Proof. Let Rns
Tt

be the non-t-stable loci of R with respect to a maximal torus T ,
and let Rns be the non-t-stable loci of R. By [2, p. 137]), the following holds:

Rns =
⋃

Ti⊂G

Rns
Ti
.
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Let (X ′, H ′) be a pair which is not t-stable. Then, μt(X
′, H ′, ρ) � 0 for some ρ ∈ T ′

in a maximal torus T ′ which may be different from T . All the maximal tori are
conjugate to each other in G, and by [2, Exercise 9.2(i)] the following holds:

μt((X
′, H ′), ρ) = μt(g · (X ′, H ′), gρg−1).

Then, there is g0 ∈ G such that λ := g0ρg
−1
0 is normalized and (X,H) := g0 ·

(X ′, H ′) has coordinates in our coordinate system such that μt(X,H, λ) � 0. In
this coordinate system one-parameter subgroups form a closed convex polyhedral
subset Δ of dimension n + 1 in M ⊗ Q ∼= Qn+2 (in fact Δ is a standard simplex).
Indeed, this is the case since for any normalized one-parameter subgroup, λ =
Diag(sr0 , . . . , srn+1),

∑
ri = 0, and ri − ri+1 � 0.

By Lemma 2.2, for any fixed t, X, and H, the function μt(X,H,−) : M⊗Q → Q

is piecewise linear. The critical points of μt (i.e., the points where μt fails to
be linear) correspond to those points in M ⊗ Q where 〈I, λ〉 = 〈I, λ〉 for I =
(d0, . . . , dn+1), I = (d0, . . . , dn+1) representing monomials of degree d of the form
f =

∑
fIx

I defining f . Since 〈−,−〉 is bilinear that is equivalent to saying that
〈I − I, λ〉 = 0. These points define a hyperplane in M ⊗Q, and the intersection of
this hyperplane with Δ is a simplex ΔI,I of dimension n.

The function μt(X,H,−) is linear on the complement of the hyperplanes defined
by 〈I − I, λ〉 = 0. Hence its minimum is achieved on the boundary, i.e., either
on ∂Δ or on ΔI,I which are all convex polytopes of dimension n. We can repeat
this reasoning by finite inverse induction on the dimension until we conclude that
the minimum of μt(X,H,−) is achieved at one of the vertices of Δ or ΔI,I . But
these correspond precisely, up to multiplication by a constant, to the finite set of
one-parameter subgroups in Sn,d. �

Corollary 3.3. Let (X,H) ∈ R and

a = min{t ∈ Q�0 | μt(g · (X,H), λi) � 0 for all λi ∈ Sn,d, g ∈ G},
b = max{t ∈ Q�0 | μt(g · (X,H), λi) � 0 for all λi ∈ Sn,d, g ∈ G}.

If (X,H) is t-semistable for some t ∈ Q�0, then

(i) (X,H) is t-semistable if and only if t ∈ [a, b] ∩Q�0,
(ii) if (X,H) is t-stable for some t, then (X,H) is t-stable for all t ∈ (a, b) ∩

Q>0.

We will call [a, b] the interval of stability of the pair (X,H). We say [a, b] = ∅ if
(X,H) is t-unstable for all t ∈ Q�0.

Proof. Recall that Sn,d is a finite set, by Lemma 3.2. Moreover, the pair (X,H) is
t-(semi)stable if and only if

μt(X,H) = max
λi∈Sn,d

g∈G

{μt(g · (X,H), λi)} < 0 (� 0) .

Notice that each of the functions μt(g · (X,H), λi) is affine on t and that there are
only a finite number of such functions to consider in the definition of μt(X,H).
Indeed, the last statement follows from observing that μt depends only on λi (finite
number of choices in Sn,d to consider) and the monomials with non-zero coefficients
in the polynomials defining g · (X,H). But there are only a finite number of such
subsets of those monomials, since P(Ξd)× P(Ξ1) is finite.
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To see that b < ∞, observe that any hyperplane in Pn+1 is conjugate by an
element of G to the hyperplane given by {x0 = 0}. Let r = (1, 0, . . . , 0,−1) ∈ Zn+2

and λ = Diag(sr) ∈ Sn,d. Then μ({x0 = 0}, λ) = 1 > 0. Hence, for t � 0, we have
that μt(X,D) > 0 as each μt(g · (X,D), λ) is piecewise affine. We conclude that if
(X,D) is not t-semistable for some t ∈ Q�0, then

[a, b] =
⋂

λi∈Sn,d

g∈G

{t | μt(g · (X,H), λi) � 0}

is a bounded interval, as it is an intersection of a finite number of intervals. This
proves (i).

For (ii), notice that (X,H) being t-stable for some t0 is equivalent to the func-
tions μt0(g · (X,H), λi) being always strictly negative. Then, the statement follows
because μt(g · (X,H), λi) are affine functions, and [a, b] is a compact interval. �

4. Centroid Criterion

Lemma 3.2 allows us to detect the lack of t-stability of a G-orbit by having to
consider only a finite number of one-parameter subgroups, precisely those in Sn,d.
However, sometimes it is convenient to decide on the t-stability of a given pair
(X,H) without comparing to all the elements in Sn,d. For this purpose and to
shorten the proof of Theorem 1.1, we developed the Centroid Criterion, for which
we need to introduce extra notation. Fix t ∈ Q�0. We have a map disct : Ξd×Ξ1 →
M ⊗Q ∼= Qn+2, defined as

disct(x
d0
0 · · ·xdn+1

n+1 , xj) = (d0, . . . , dj−1, dj + t, dj+1, . . . , dn+1).

The image of disct is supported on the first quadrant of the hyperplane

Hn,d,t =

{
(y0, . . . , yn+1) ∈ Qn+2

∣∣∣∣∣
n+1∑
i=0

yi = d+ t

}
.

We define the set Convt(X,H) as the convex hull of

{disct(v, b) | v ∈ X , b = min(H)} ⊂ Hn,d,t,

where the minimum is for the Mukai order in Ξ1, which is a total order (see Section

1.1). Observe that Convt(X,H) is a convex polytope.
Given t ∈ Q�0, we define the t-centroid as

Ot = On,d,t =

(
d+ t

n+ 2
, . . . ,

d+ t

n+ 2

)
∈ Hn,d,t ⊂ Qn+2.

Proof of Lemma 1.5. First we note that (X,H) is t-semistable (t-stable, respec-
tively) if and only if (X,X ∩ {min(H) = 0}) is t-semistable (t-stable, respectively).
Indeed, let xk = min(H). Given any one-parameter subgroup λ ∈ N we have

μt((X,H), λ) = μ(X , λ) + tmin
b∈H

{〈b, λ〉}

= μ(X , λ) + t〈xk, λ〉 = μt((X,X ∩ {xk = 0}), λ).

Hence, we may assume that D = X ∩ {xk = 0}. Suppose Ot 	∈ Convt(X,H).
Then there is an affine function φ : Rn+2 → R such that φ|

Convt(X,H)
is positive
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and φ(Ot) = 0. In fact, since the vertices of Convt(X,H) have rational coefficients,
we can choose φ to have integral coefficients. Write

φ(y0, . . . , yn+1) =
n+1∑
i=0

aiyi + l.

For disct(x
d0 · · ·xdn+1 , xk) = (d0, . . . , dk + t, . . . , dn+1) ∈ Convt(X,H) we have

n+1∑
i=0

aidi + tak + l > 0,

and since φ(Ot) = 0, we obtain d+t
n+2

∑n+1
i=0 ai+ l = 0. Let p = − l

d+t ∈ Q and choose
m ∈ Z�0 such that mp ∈ Z. Let

λ(s) =

⎛
⎜⎝

sm(a0−p) · · · 0
...

. . .
...

0 · · · sm(an+1−p)

⎞
⎟⎠ ∈ N.

Hence

μt((X,H), λ) = min
∏

i x
di
i ∈X

{
n+1∑
i=0

m(ai − p)di

}
+ tm(ak − p)

= m

(
min

∏
i x

di
i ∈X

{(
n+1∑
i=0

aidi

)
+ tak

}
− p(d+ t)

)

= min
v∈Convt(X,H)

φ(v) > 0.

Hence (X,H) is not t-semistable. We have shown that if (X,H) is t-semistable, then

Ot ∈ Convt(X,H). The proof of the statement when (X,H) is t-stable is similar;

in the above reasoning we only need to replace Convt(X,H) by Int(Convt(X,H))
and the strict inequalities by � 0.

Conversely, suppose that (X,H) is not t-semistable. Then there is a normalized
one-parameter subgroup λ = Diag(sr0 , . . . , srn+1) ∈ N with

∑
ri = 0 and such that

0 < μt(X,H, λ) = min
∏

i x
di
i ∈X

{
n+1∑
i=0

diri

}
+ trk

= min
∏

i x
di
i ∈X

{r0d0 + · · ·+ rk(dk + t) + · · ·+ rn+1dn+1} .

Let φ(y0, . . . , yn+1) =
∑

riyi. By convexity, we have that φ|Convt(X,H) > 0. On

the other hand, φ(Ot) =
∑

ri
d+t
n+2 = d+t

n+2

∑
ri = 0. Hence Ot 	∈ Convt(X,H). The

proof for t-stability is similar. �

Lemma 4.1. Let (X,H) ∈ R. Suppose that its interval of semi-stability [a, b] is
not empty. Then:

(i) a = 0 if and only if X is a GIT-semistable hypersurface of degree d.
(ii) b � tn,d = d

n+1 .

(iii) The pair (X,H) is tn,d-semistable if and only if X ∩ H is a semistable
hypersurface of degree d in H ∼= Pn.
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Proof. The first statement holds because the Hilbert-Mumford function at t = 0
coincides with the Hilbert-Mumford function for hypersurfaces, and the natural
projection R → Pn+1 is G-invariant.

For part (ii), suppose that t > tn,d. Without loss of generality, we can suppose
that the equations of any pair (X,H) are given by

X = (F (x0, . . . , xn+1) = 0) , H = (x0 = 0).

Let λ = (n+ 1,−1, . . . ,−1); then

μtn,d
((X,H), λ) > −d+

d

n+ 1
(n+ 1) = 0

holds and (X,H) is t-unstable. Therefore b � tn,d.
Next, we discuss (iii). Suppose that Y0 := X ∩ H is unstable. We can select a

coordinate system such that

Y0 := (pd(x1, . . . , xn+1) = 0) , H := {x0 = 0},
and Y0 is unstable in the coordinate system {x1, . . . , xn+1}. By using Mukai’s order
of monomials, we claim that among all possible pairs (X,H) such that Y0 = X∩H,

the pair (X̃,H) given by

X̃ := pd(x1, . . . , xn+1) + xd−1
n+1x0, H := (x0 = 0)(3)

will minimize the Hilbert-Mumford function for any normalized one-parameter sub-
group, because

μ(X̃, λ) = min{μ(X,λ) | X ∩H = Y0}.
Indeed, any other X with X ∩H = Y0 differs from X̃ by a monomial involving the
variable x0. Then, we observe that any other monomial divided by x0 is greater
than x0x

d−1
n+1 in Mukai’s order. As a consequence if μtn,d

(X̃,H, λ) > 0, then any
pair (X,H) with X ∩H = Y0 is tn,d-unstable. Next, we use the Centroid Criterion
(Lemma 1.5). By hypothesis, Y0 is not a semistable hypersurface in Pn. Then the

convex hull of its monomials does not contain the point
(

d
n+1 , . . . ,

d
n+1

)
∈ Rn+1. If

we consider the monomials of Y0 as monomials in K[x0, . . . , xn+1], then the convex

hull of the monomials of X̃ does not contain the point
(
0, d

n+1 , . . . ,
d

n+1

)
∈ Rn+2.

Notice that this implies that Convtn,d
(X̃, (x0 = 0)) does not contain the point

On,d,tn,d
=

(
0,

d

n+ 1
, . . . ,

d

n+ 1

)
+

d

n+ 1
(1, 0, . . . , 0),

and by the Centroid Criterion (X,H) is tn,d-unstable. To see the last assertion,

notice that Convtn,d
(X̃, (x0 = 0)) is the convex hull of

V = {disctn,d
(m,x0) | m is a monomial in pd} ⊂ P := {y0 = tn,d} ⊂ Rn+2,

and the point q := (1 + tn,d, . . . , 0, d− 1) 	∈ P . Therefore Convtn,d
(X̃, (x0 = 0)) is

a pyramid with base V and vertex q. Since Otn,d
∈ P \ V , the claim follows.

Next suppose that (X,H) is unstable. Then, by the Centroid Criterion there is

a coordinate system such that Convt(X,H) does not contain the centroid On,d, d
n+1

.

By using the Mukai order as in the previous case, we may assume H = {xi = 0}.
Let

v :=

(
d

n+ 1
, . . . ,

d

n+ 1
, 0,

d

n+ 1
, . . . ,

d

n+ 1

)
,
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where the value 0 corresponds to the i-th entry. Observe that v 	∈ Conv0(X,H),
since otherwise

On,d,tn,d
= disc d

n+1
(v, xi) ∈ Convtn,d

(X,H).

The monomials in the polynomial defining X ∩ (xi = 0) are precisely those mono-
mials mj in the polynomial defining X with exponents of the form

aj = (dj0, . . . , d
j
i−1, 0, d

j
i+1, . . . , d

j
n+1).

Those monomials correspond to the points generating a face F of Convtn,d
(X,H),

namely the convex hull of points (dj0, . . . , d
j
i−1, td,n, d

j
i+1, . . . , d

j
n+1). The projection

FP of F onto the hyperplane P = {yi = 0} ⊂ Rn+2 gives us that v 	∈ FP since

FP ⊆ Conv0(X,H). But FP corresponds to Conv0(X ∩H) and v = On−1,d,0, so
by the Centroid Criterion X ∩H is unstable. �

Proof of Theorem 1.1. By Remark 2.3 and the fact that P(Ξk)× P(Ξ1) is a finite
set, there is a finite number of possible intervals of stability, say [aj , bj ]. Hence
ti ∈

⋃
j{aj , bj}, and Lemma 4.1 implies that all bi � tn,d. Notice that given any

wall ti there is at least a pair (X,H) such that

μt(X,H) = max
λ∈Sn,d

{μt((X,H), λ)}

satisfies μt(X,H) � 0 for t � ti and μt(X,H) > 0 for t > ti. Hence μt(X,H) = 0
for t = ti since μt is continuous. The result follows from Lemma 3.2 and Remark
2.3. �

Proof of Corollary 1.2. From [13, Theorem 2.1], any hypersurface X of degree d �
3 has dim(Aut(X)) = 0. Hence, for any log smooth pair p = (X,D) ∈ R, its
stabilizer Gp satisfies

0 � dim(Gp) = dim(GX ∩GD) � dim(GX) � dim(Aut(X)) = 0,

where the last equality follows from [13, Theorem 2.1]. The result follows from the
following identity (see [2, Corollary 6.2]):

dim
(
M

GIT

n,d,t

)
= dim(H)− dim(G) + min

p∈H
dimGp

=

((
n+ 1 + d

d

)
− 1 + (n+ 1)

)
−
(
(n+ 2)2 − 1

)
.

We are left to prove the following claim: any pair (X,D) such that D 	⊂ X and
X ∩D is smooth is t-semistable for all t ∈ [0, tn,d]. Since smooth hypersurfaces are
GIT semistable, the claim follows from Lemma 4.1. �

Proof of Theorem 1.3. Suppose n+2 � d and (X,H) is a pair such that Supp(H) ⊂
Supp(X). It suffices to show that (X,H) is t-unstable for all t � 0. We choose
a coordinate system such that H = (x0 = 0) and X is given as the zero locus

of F = x0fd−1(x0, x1, . . . , xn+1). The monomial x0x
d−1
n+1 is minimal for the Mukai

order in the set X ∪ {xd−1
n+1x0}. Then for any normalized one-parameter subgroup

λ = (sr0 , . . . , srn+1),

μt(X,H, λ) � (r0 + (d− 1)rn+1) + tr0
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holds. Since d � n + 2, the one-parameter subgroup λ0 = Diag(sr) is normalized,
where

r = (n(d− 1),−(d− 2), . . . ,−(d− 2),−n) .

Then μt(X,H, λ0) � tn(d − 1) > 0 and (X,H) is unstable for any t > 0. Now,
if X is a reducible Fano hypersurface, then d � n + 1, and we may assume that
F = x0fd−1(x0, . . . , xn+1). Let λ = Diag(n+ 1,−1, . . . ,−1). By the previous step
H 	= {x0 = 0}, so

μt(X,D, λ) = n+ 1− (d− 1)− t,

and as t � d
n+1 and d � n+ 1, the result follows. �

5. Families of t-unstable pairs

In this section we determine, for a given t, the set of monomials that characterize
non-t-stable and t-unstable pairs.

Definition 5.1. Fix t ∈ [0, tn,d], and let λ be a normalized one-parameter sub-
group. A non-empty pair of sets A ⊂ Ξd and B ⊂ Ξ1 is a maximal t-(semi)destab-
ilized pair (A,B) with respect to λ if the following conditions hold:

(i) Each pair (v,m) ∈ A×B satisfies 〈v, λ〉+ t〈m,λ〉 > 0 (� 0, respectively).

(ii) If there is another pair of sets Ã ⊂ Ξd, B ⊂ Ξ1 such that A ⊆ Ã, B ⊆ B̃, and

for all (v,m) ∈ Ã× B̃ the inequality 〈v, λ〉+ t〈m,λ〉 > 0 (� 0, respectively)

holds, then Ã = A and B̃ = B.

Lemma 5.2. Given a one-parameter subgroup λ any maximal t-(semi)destabilized
pair with respect to λ can be written as

N+
t (λ, xi) := (V +

t (λ, xi), B
+(xi)),

(respectively N⊕
t (λ, xi) := (V ⊕

t (λ, xi), B
⊕(xi))),

where xi ∈ Ξ1 and

V +
t (λ, xi) := {v ∈ Ξd | 〈v, λ〉+ t〈xi, λ〉 > 0}, B+(xi) := {m ∈ Ξ1 | m � xi},

V ⊕
t (λ, xi) := {v ∈ Ξd | 〈v, λ〉+ t〈xi, λ〉 � 0}, B⊕(xi) := {m ∈ Ξ1 | m � xi}.

Proof. Let (A,B) be a maximal t-semidestabilized pair with respect to λ. Let
xi := min(B). By Mukai’s order,

〈v, λ〉+ t〈m,λ〉 � 〈v, λ〉+ t〈xi, λ〉 � 0, for all (v,m) ∈ (A,B).

Then (A,B) ⊆ N⊕
t (λ, xi), and the maximality condition implies that (A,B) =

N⊕
t (λ, xi). In particular, this proves that N⊕

t (λ, xi) is a maximal t-semidestabi-
lized pair with respect to λ. The proof for maximal t-destabilized pairs is similar,
exchanging the inequalities for strict inequalities. �

Proof of Theorem 1.4. Suppose (X,H) is a t-unstable pair (a non-t-stable pair,
respectively). By Lemma 3.2 there is g ∈ G and λ ∈ Sn,d such that

μt((g ·X, g ·H), λ) > 0 ( � 0, respectively).

Then, every (v,m) ∈ (g · X , g · H) satisfies 〈v, λ〉+ t〈m,λ〉 > 0 (� 0, respectively).
By the definition of maximal t-(semi)stable pairs and Lemma 5.2, g ·X ⊆ V +

t (λ, xi)
and g · H ⊆ B+(xi) (g · X ⊆ V ⊕

t (λ, xi) and g · H ⊆ B⊕(xi), respectively) hold for
some λ ∈ Sn,d and some xi ∈ Ξ1. Choosing the maximal pairs of sets N⊕

t (λ, xi)
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under the containment order where λ ∈ Sn,d and xi ∈ Ξ1, we obtain families of
pairs whose coefficients belong to maximal t-(semi)destabilized sets. �

Proposition 5.3. Let t ∈ (0, tn,d). If the set

Annt (λ, xi) = {(v,m) ∈ V ⊕
t (λ, xi)×B⊕(xi) | 〈v, λ〉+ t〈m,λ〉 = 0}

is not empty, then it is equal to the cartesian product V 0
t (λ, xi)×B0 (λ, xi) where

V 0
t (λ, xi) = {v ∈ V ⊕

t (λ, xi) |∃m′ ∈ B⊕(xi) such that 〈v, λ〉+ t〈m′, λ〉 = 0},
B0 (λ, xi) = {m ∈ B⊕(xi) | 〈m,λ〉 � 〈m,λ〉 for all m ∈ B⊕(xi)}.

We call Annt (λ, xi) the Annihilator of λ and xi at t.

Proof. Let (v,m) ∈ Annt (λ, xi). Then v ∈ V 0
t (λ, xi). Suppose there ism ∈ B⊕(xi)

such that 〈m,λ〉 > 〈m,λ〉. Then, since t > 0,

0 = 〈v, λ〉+ t〈m,λ〉 > 〈v, λ〉+ t〈m,λ〉,

which contradicts the fact that (v,m) ∈ N⊕
t (λ, xi). Therefore m ∈ B0(λ, xi).

Let (v,m) ∈ V 0
t (λ, xi) × B0 (λ, xi). Then there is m′ ∈ B⊕(xi) such that

〈v, λ〉 + t〈m′, λ〉 = 0. Since m ∈ B0 (λ, xi), then 〈m′, λ〉 � 〈m,λ〉. Therefore, we
have that

0 = 〈v, λ〉+ t〈m′, λ〉 � 〈v, λ〉+ t〈m,λ〉 � 0,

because (v,m) ∈ N⊕
t (λ, xi). This implies that (v,m) ∈ Annt(λ, xi). �

Proof of Theorem 1.6. Let p = (X,H). By [2, Remark 8.1 (5)], since p = (X,H) is
strictly t-semistable and represents a closed orbit, then the stabilizer subgroup Gp ⊂
G = SL(n+2,K) is infinite. This implies there is a one-parameter subgroup λ ∈ Gp.
In particular lims→0 λ(s) · (X,H) = (X,H). This implies that μt(X,H, λ) = 0. By
choosing an appropriate coordinate system and applying Lemma 3.2 we may assume
that λ ∈ Sn,d and (X ,D) = (V 0

t (λ, xi), B
0(λ, xi)). Indeed, the latter follows from

Proposition 5.3. �

6. A method to study stability

The following method can be extended to a full algorithm to describe MGIT
n,d,t [7]:

1. By Theorem 1.1, the interval of stability of any pair (X,H) for any polar-
ization t ∈ Q�0 is determined by a finite set of one-parameter subgroups
Sn,d which can be computed using Definition 3.1.

2. The walls t0, . . . , tn,d are among those in (1).
3. For each wall t = ti or for any t ∈ (ti, ti+1) we may compute the sets of

monomials N⊕
t (λ, xj) for each λ ∈ Sn,d and 0 � j � n + 1 and choose

the maximal among them. By Theorem 1.4, these correspond to families
in Rn,d of non-t-stable pairs. Each non-t-stable pair corresponds to one
of these families. Then, the Centroid Criterion (Lemma 1.5) distinguishes
for which of these families the general element is strictly t-semistable or
t-unstable.

4. For each family which is strictly t-semistable, we consider the set

(V 0
t (λ, xi), B

0(λ, xi))

of each maximal N⊕
t (λ, xj). Any strictly t-semistable closed orbit must

belong to families whose defining equations have monomials in this set
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(Theorem 1.6). These are also called t-polystable orbits which are not
t-stable.

5. To determine the t-stable orbits geometrically, we classify the families given
by N⊕

t (λ, xj) according to their singularities. This requires an understand-
ing of the singularities of (X,H) for given n and d as well as their defor-
mations. See [6] for the case of cubic surfaces.
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