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MAXIMAL ORTHOPLECTIC FUSION FRAMES

FROM MUTUALLY UNBIASED BASES AND BLOCK DESIGNS

BERNHARD G. BODMANN AND JOHN I. HAAS

(Communicated by Pham Huu Tiep)

Abstract. The construction of optimal line packings in real or complex Eu-
clidean spaces has been shown to be a tantalizingly difficult task, because
it includes the problem of finding maximal sets of equiangular lines. In the
regime where equiangular lines are not possible, some optimal packings are
known, for example, those achieving the orthoplex bound related to maximal
sets of mutually unbiased bases. In this paper, we investigate the packing
of subspaces instead of lines and determine the implications of maximality in
this context. We leverage the existence of real or complex maximal mutually
unbiased bases with a combinatorial design strategy in order to find optimal
subspace packings that achieve the orthoplex bound. We also show that max-
imal sets of mutually unbiased bases convert between coordinate projections

associated with certain balanced incomplete block designs and Grassmannian
2-designs. Examples of maximal orthoplectic fusion frames already appeared
in the works by Shor, Sloane, and by Zauner. They are realized in dimensions
that are a power of four in the real case or a power of two in the complex case.

1. Introduction

The problem of finding the best packings of lines, one-dimensional subspaces of
a real or complex Euclidean space, is easy to state. Despite its simple geometric
formulation, it has given rise to a surprisingly diverse literature over many years,
ranging from relatively elementary, low dimensional examples [17] to more sophisti-
cated constructions [13], some involving combinatorial [24,27,35] or group-theoretic
aspects [10, 38] and results on bounds on the relationship between the number of
lines and achievable angles [21,28,36]. Maximal sets of equiangular lines are known
to be optimal packings, but the number of lines that can be realized is hard to deter-
mine in general [16]. Special regard has been given to the construction of complex
examples, motivated by applications in quantum information theory [39]. Numeri-
cal searches indicate that they exist in many cases [31, 34], but a rigorous proof of
their existence is restricted to low dimensions; see [31] and references therein.

Next to lines, packings of higher-dimensional subspaces have also been investi-
gated [11,13]. In this case, even less seems to be known about general construction
principles that realize tight bounds [3, 4, 6, 18]. More recently, these packing prob-
lems have been studied in the context of frame theory. Apart from geometric opti-
mality criteria, frame design aims at tightness, which implies that the projections
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onto the subspaces sum to a multiple of the identity. The case of higher-dimensional
subspaces corresponds to fusion frames. If the number of subspaces is not too large,
then in close similarity to line packings, equidistant fusion frames present optimal
solutions [22]. Examples of such constructions follow similar strategies as in the
frame case [2, 5, 11, 19]. For a larger number of subspaces, such equiangular ar-
rangements cannot be realized, and one needs to find an alternative bound for the
characterization of optimal packings, for example the orthoplex bound for lines or
subspaces [13]. In an earlier paper, we constructed optimal line packings when
the number of lines goes slightly beyond the threshold beyond which equiangular
lines are impossible to realize [7]. In this paper, we study the orthoplex bound for
subspace packings and investigate cases in which the bound is achieved while the
number of subspaces is maximal.

The main results are as follows. In order to maximize the number of subspaces
while achieving the orthoplex bound, the dimension of the subspaces is necessarily
half of the dimension of the ambient space, and the chordal distance between sub-
spaces assumes only two values. Because of the relation with the orthoplex bound,
we call these subspace packings maximal orthoplectic fusion frames. The family of
examples we describe here has already appeared in the literature, either as optimal
real subspace packings [32], whose discovery is ascribed to a “remarkable coinci-
dence”, or among the more general family of quantum 2-designs [39] in complex
Hilbert spaces of prime power dimensions. In the complex case, it was observed
that the projections are affine, Grassmannian designs [39] (see also [29]), where the
construction is attributed to Rötteler. In the present paper, we examine rigidity
properties in the construction of maximal orthoplectic fusion frames obtained from
the theory of packings and designs [4, 5, 29, 39]. We treat the real and complex
case on the same footing, involving a new construction principle. To this end, we
leverage earlier constructions of orthoplex-bound achieving optimal line packings
associated with mutually unbiased bases introduced by Schwinger [30]. Maximal
sets of mutually unbiased bases are known to exist in the complex case in prime
power dimensions [1, 9, 15, 37] and in the real case if the dimension is a power of
four [12, 23]; see also [8]. We obtain maximal orthoplectic fusion frames by aug-
menting these maximal mutually unbiased bases with block designs, subsets of the
index set that satisfy certain combinatorial conditions. The designs we construct
for our purposes are known as balanced incomplete block designs and at the same
time associated with optimal constant-weight binary codes [20]; see also [33]. The
resulting families of subspaces are constructed in any real Hilbert space whose di-
mension is a power of four or in any complex Hilbert space whose dimension is a
power of two.

With hindsight, one can interpret the results presented here as another instance
of maximal packings having design properties (see the general bounds on the size
of codes in metric spaces in the paper by Levenshtĕın [25]) which apply to binary
codes and block designs as well as to spherical or even Grassmannian codes and
designs; see also [3, 4]. The rigidity in the design properties helps narrow down
the construction of maximal packings by additional structural requirements. In
our case, these requirements appear in combinatorial design elements and in the
emerging Grassmannian packings.

This paper is organized as follows. After the introduction, we fix notation
and recall known distance and cardinality bounds on fusion frames in Section 2.
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We relate the orthoplex bound for fusion frames with the notion of mutual unbiased-
ness in Section 3 and study implications for the structure of maximal orthoplectic
fusion frames as packings and as Grassmannian designs. Finally, Section 4 presents
the construction of a family of maximal orthoplectic fusion frames.

2. Distance bounds and Grassmannian fusion frames

Definition 2.1. Let l,m, n ∈ N and let F denote the field R or C. An (n, l,m)-
fusion frame is a set F = {Pj}nj=1, where each Pj is an orthogonal projection onto
an l-dimensional subspace of Fm, such that there exist positive numbers A and B
with 0 < A ≤ B for which the chain of inequalities A‖x‖2 ≤

∑n
j=1 ‖Pjx‖2 ≤ B‖x‖2

holds for every x ∈ Fm. If we can choose A = B, then F is tight. If there is C ≥ 0
such that tr(PiPj) = C for each pair i �= j in the index set [[n]] ≡ {1, 2, . . . , n}, then
F is called equiangular.

By the polarization identity, the tightness property is equivalent to the fusion
frame resolving the identity Im on Fm according to

1

A

n∑
j=1

Pj = Im .

More general types of fusion frames are obtained by relaxing the condition that
all subspaces have the same dimension and by scaling the projections with non-
negative weight factors.

For any two projections P and P ′ onto l-dimensional subspaces of Fm, the chordal
distance is defined by dc(P, P

′) = 1√
2
‖P − P ′‖ = (l − tr(PP ′))1/2 . In order to

characterize optimal packings with respect to dc, we use an embedding that maps
the projections to vectors in a higher-dimensional Hilbert space. We denote the
dimension of this space as

dF(m) =

{
(m+2)(m−1)

2 , F = R,
m2 − 1, F = C.

Theorem 2.2 ([13]). If F = {Pj}nj=1 is an (n, l,m)-fusion frame, then letting

Vj =

√
m

l(m− l)

(
Pj −

l

m
Im

)

defines a set of unit-norm vectors {Vj}nj=1 in the dF(m)-dimensional real Euclidean
space of symmetric/Hermitian m×m matrices with vanishing trace, equipped with
the Hilbert-Schmidt norm, such that the inner products satisfy

tr (PjPk) =
l2

m
+

l(m− l)

m
tr(VjVk),

for every j, k ∈ [[n]]. Furthermore, if F forms a tight fusion frame for Fm, then∑n
j=1 Vj = 0.

We use Rankin’s distance bound for vectors on the sphere [28] in the formulation
used by Conway, Hardin, and Sloane [13].

Theorem 2.3. Let d be a positive integer. Any n vectors {v1, v2, . . . , vn} on the unit

sphere in Rd have a minimum Euclidean distance minj,k∈[[n]],j �=k ‖vj−vk‖ ≤
√

2n
n−1 ,
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and if equality is achieved, then n ≤ d+1 and the vectors form a simplex. Addition-
ally, if n > d+1, then the minimum Euclidean distance is minj,k∈[[n]],j �=k ‖vj−vk‖ ≤√
2, and if equality holds in this case, then n ≤ 2d. Moreover, if n = 2d, then equal-

ity holds if and only if the vectors form an orthoplex, the union of an orthonormal
basis with the negatives of its basis vectors.

In terms of the inner products between n unit vectors in Rd, the Rankin bound
is maxj,k∈[[n]],j �=k〈vj , vk〉 ≥ − 1

n−1 , and if n > d+1, then it improves to the estimate

maxj,k∈[[n]],j �=k〈vj , vk〉 ≥ 0 .
Using the embedding from Theorem 2.2, we reformulate the Rankin bound for

the Hilbert-Schmidt inner products of the projections of a fusion frame. This results
in a bound that has already been derived in an alternative way before [22, 26] and
in an improved bound for a larger number of subspaces, as noted in [29].

Corollary 2.4. If F = {Pj}nj=1 is an (n, l,m)-fusion frame, then

max
j,k∈[[n]],j �=k

tr(PjPk) ≥
nl2 −ml

m(n− 1)
,

and if equality is achieved, then the fusion frame is equiangular and n ≤ dF(m)+1.
If n > dF(m) + 1, then

max
j,k∈[[n]],j �=k

tr(PjPk) ≥
l2

m
,

and if equality is achieved, then n ≤ 2dF(m). Moreover, if n = 2dF(m), then

equality in this bound implies that for each j ∈ [[m]], tr(PjPk) =
2(2l−m)

m for exactly

one k ∈ [[m]] \ {j} and tr(PjPk) =
l2

m for all other k ∈ [[m]] \ {j}.

Definition 2.5. Let F = {Pj}nj=1 be an (n, l,m)-fusion frame. If F is a solution

to the subspace packing problem, that is, it minimizes maxj �=k tr(PjPk) among all
(n, l,m)-fusion frames, then it is called a Grassmannian fusion frame. If F is
Grassmannian, then it is called orthoplex-bound achieving if n > dF(m) + 1
and max

j,k∈[[n]],j �=k
tr(PjPk) = l2/m. If F is orthoplex-bound achieving and n = 2dF(m),

then F is referred to as a maximal orthoplectic fusion frame.

We wish to construct maximal orthoplectic fusion frames, which means the pro-
jections must embed exhaustively into the vertices of an orthoplex in RdF(m). The
feasability of this depends on whether the embedding admits antipodal points in
the higher-dimensional Euclidean sphere, which in turn depends on the relationship
between l and m.

Proposition 2.6. If F = {Pj}nj=1 is an (n, l,m)-fusion frame and V = {Vj}nj=1 ⊂
RdF(m) are the embedded vectors obtained from Theorem 2.2, then

min
j,k∈[[n]],j �=k

〈Vj , Vk〉 ≥ − l

m− l

for every j, k ∈ [[n]]. In particular, the embedding admits antipodal points only if
l ≥ m

2 .

Proof. This follows immediately from the non-negativity of the inner product be-

tween projections, 0 ≤ min
j,k∈[[n]],j �=k

tr (PjPk) =
l2

m + l(m−l)
m min

j,k∈[[n]],j �=k
〈Vj , Vk〉. �
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Partitioning a maximal orthoplectic fusion frame into orthogonal pairs of pro-
jections shows, together with the preceding proposition, that m = 2l.

Corollary 2.7. If F = {Pj}nj=1 is a maximal orthoplectic (n, l,m)-fusion frame,
then m = 2l.

Maximal orthoplectic fusion frames enjoy another property that has been studied
in the literature: they are part of a family of Grassmannian 2-designs, as shown by
Zauner [39]. For our purposes, this is important because it imposes more rigidity
on their construction. We follow Zauner’s convention for the definition of these
designs.

Definition 2.8. An (n, l,m)-fusion frame F = {Pj}nj=1 is called a Grassmannian
t-design if

n∑
j=1

P⊗t
j =

n∑
j=1

(UPjU
∗)⊗t

for any orthogonal matrix or unitary U in the real or complex case, respectively,
where P⊗t

j is the t-fold Kronecker/tensor product of Pj with itself and U∗ is the
adjoint of U or the transpose of U in the real case.

Equivalently, the right-hand side of the defining identity can be averaged with
respect to the Haar measure μ on the group U of orthogonal or unitary m × m
matrices. This formulation implies a simple characterization of the design property
based on the t-coherence tensor

Kt,l,m =

∫
U
(UPU∗)⊗tdμ(U) ,

where P is any rank-l orthogonal projection matrix. Because of the analogy with
bounds for constant-weight codes [33], Zauner calls the following estimate a gener-
alized Sidelnikov inequality.

Theorem 2.9 (Zauner, Theorem 2.5 of [39]). Let F = {Pj}nj=1 be an (n, l,m)-
fusion frame. Then

1

n2

n∑
i,j=1

(tr(PiPj))
t ≥ tr(K2

t,l,m),

and equality holds if and only if F is a Grassmannian t-design.

Proof. Let C =
∑n

j=1 P
⊗t
j −nKt,l,m. Then we have tr(C2) =

∑n
i,j=1(tr(PiPj))

t

−n2 tr(K2
t,l,m) ≥ 0, and cases of equality are characterized by C = 0, which is the

Grassmannian t-design property. �

Zauner also computes the value for the Hilbert-Schmidt norm K2,l,m that pro-
vides the lower bound.

Lemma 2.1 (Zauner, Lemma 2.7 of [39]). Given positive integers l and m with
l ≤ m, the squared Hilbert-Schmidt norm of the 2-coherence tensor is

tr(K2
2,l,m) =

l4

m2
+

l2(m− l)2

dF(m)m2
.

Next, we verify that maximal orthoplectic fusion frames are Grassmannian 2-
designs.
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Theorem 2.10. Given a maximal orthoplectic (2dF(m),m/2,m)-fusion frame F =

{Pj}2dF(m)
j=1 , equality holds in the generalized Sidelnikov inequality in Theorem 2.9

and the fusion frame is a Grassmannian 2-design.

Proof. We first compute the value of the lower bound from Theorem 2.9:

tr(K2
2,m/2,m) =

m2(dF(m) + 1)

16dF(m)
.

Using Corollary 2.4, we compute the average squared inner product for the projec-
tion matrices:

1

4dF(m)2

2dF(m)∑
j,j′=1

(tr(PjPj′))
2 =

1

2dF(m)

(
l2 +

l(2l −m)

m
+ (2dF(m)− 2)

l4

m2

)
.

This last expression is verified to be equal to tr(K2
2,m/2,m) by l = m/2. As stated

in Theorem 2.9, this characterizes Grassmannian 2-designs. �

3. Mutually unbiased bases and fusion frames

Definition 3.1. If B = {bj}mj=1 and B′ = {b′j}mj=1 are a pair of orthonormal bases

for Fm, then they are mutually unbiased if |〈bj , b′j′〉|2 = 1
m for every j, j′ ∈ [[m]].

A collection of orthonormal bases {Bk}k∈K is called a set of mutually unbiased
bases if the pair Bk and Bk′ is mutually unbiased for every k �= k′.

The number of mutually unbiased bases is bounded in terms of m.

Theorem 3.2 (Delsarte, Goethals, and Seidel [14]). Let Fm be a real or complex
Hilbert space and let {Bk}k∈K be a set of mutually unbiased bases for Fm, where

Bk =
{
b
(k)
j

}
for each k ∈ K, and let r = |K|. If F = R, then r ≤ m/2 + 1,

and if F = C, then r ≤ m + 1. If equality is achieved in either case, then the real

span of the corresponding projection operators,
{
b
(k)
j ⊗

(
b
(k)
j

)∗
: j ∈ [[m]], k ∈ K

}
,

is that of all symmetric or Hermitian operators on Fm, respectively.

For the real case, it is known that, for most values of m, the maximal number of
mutually unbiased bases is less than or equal to 3 [23]. However, if m is a power of
4, then examples exist that achieve the bound in Theorem 3.2 [12]. In the complex
case, the bound is achieved if m is a prime power [37].

Theorem 3.3 (Cameron and Seidel [12], Wootters and Fields [37]). If m is a prime
power, then a family of m + 1 mutually unbiased bases for Cm exists. If m is a
power of 4, then a family of m/2 + 1 mutually unbiased bases exists for Rm.

Henceforth, we abbreviate kR(m) = m/2 + 1 and kC(m) = m+ 1. The rank one
orthogonal projections corresponding to maximal sets of mutually unbiased bases
give rise to Grassmannian 2-designs.

Proposition 3.4. If {Bk}k∈K is a set of mutually unbiased bases for Fm with |K| =
kF(m), then the family of rank one projections

{
b
(k)
j ⊗

(
b
(k)
j

)∗
: k ∈ K, j ∈ [[m]]

}
forms a Grassmannian 2-design.

Proof. We only need to compare both sides of the inequality from Theorem 2.9.
To evaluate the left-hand side, we observe that the Hilbert-Schmidt inner product
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is expressed in terms of the basis vectors as
(
tr
(
P

(k)
j P

(k′)
j′

))2

=
∣∣∣〈b(k)j , b

(k′)
j′ 〉

∣∣∣4.
Given any fixed basis vector b

(k)
j , the fourth power of the absolute value of its inner

product with the other vectors in the set are 0, which occurs m − 1 times; 1/m2,
which occurs (kF(m)− 1)m times; and 1, which occurs once. Averaging these gives

1

m2kF(m)2

m∑
j,j′=1

kF(m)∑
k,k′=1

(
tr
(
P

(k)
j P

(k′)
j′

))2

=
kF(m) +m− 1

m2kF(m)
.

Comparing with the value of tr(K2
2,l,m) in the special case l = 1 and using dF(m) =

(m− 1)kF(m) show that equality holds in the inequality in Theorem 2.9. �

The version of the orthoplex bound for projections motivates the notion of mu-
tual unbiasedness for fusion frames.

Definition 3.5. If F = {Pj}nj=1 is an (n, l,m)-fusion frame and F ′ = {P ′
j}n

′

j=1 is an

(n′, l,m)-fusion frame, then F and F ′ are mutually unbiased if tr(PjP
′
j′) =

l2

m for

every j ∈ [[n]] and j′ ∈ [[n′]]. A collection of fusion frames {Fk}k∈K for Fm, where
each Fk consists of projections onto l-dimensional subspaces, is a set of mutually
unbiased fusion frames if the pair Fk and Fk′ is mutually unbiased for every
k �= k′.

Given a subset of a fixed orthonormal basis, the orthogonal projection onto the
span is given by the sum of the corresponding rank one projections. Projections
formed in this way are called coordinate projections.

Definition 3.6. Given an orthonormal basis B = {bj}mj=1 for Fm and a subset
J ⊂ [[m]], the J -coordinate projection with respect to B is PJ =

∑
j∈J

bj ⊗ b∗j .

Given a pair of mutually unbiased bases, one can select coordinate projections
from the respective bases to form mutually unbiased fusion frames.

Proposition 3.7. If B = {bj}mj=1 and B′ = {b′j}mj=1 are a pair of mutually unbiased

bases for Fm and J ,J ′ ⊂ [[m]] with l = |J | = |J ′|, then tr (PJP ′
J ′) = l2

m , where
PJ is the J -coordinate projection with respect to B and P ′

J ′ is the J ′-coordinate
projection with respect to B′. Moreover, if F = {PJ }J∈S is a set of coordinate
projections with respect to B, F ′ = {P ′

J ′}J ′∈S′ is a set of coordinate projections
with respect to B′, F is an (|S| , l,m)-fusion frame, and F ′ is an (|S′| , l,m)-fusion
frame, then F ∪ F ′ are mutually unbiased.

Proof. We compute

tr(PJP ′
J ′) =

∑
j∈J ,j′∈J ′

tr
(
bj ⊗ (bj)

∗
b′j′ ⊗ (b′j′)

∗)
=

∑
j∈J ,j′∈J ′

|〈bj , b′j′〉|2 =
l2

m
.

The claim about mutual unbiasedness follows directly from this computation. �

We repeat the embedding of fusion frames for the special case of coordinate pro-
jections. Tight fusion frames of coordinate projections have also been investigated
as commutative quantum designs by Zauner [39]. We first focus on the structure
of optimal packings of coordinate projections.
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Theorem 3.8. Let B = {bj}mj=1 be an orthonormal basis for Fm and let S =
{Jj}nj=1 be a set of subsets of [[m]], each of size |Jj | = l. If F = {Pj}nj=1 is a
family of projections for which Pj is the Jj-coordinate projection with respect to B,
then the set of unit vectors V = {Vj}nj=1 obtained as in Theorem 2.2 resides in a
m− 1-dimensional subspace of the real Euclidean space of symmetric matrices and

tr (PjPj′) =
l2

m
+

l(m− l)

m
〈Vj , Vj′〉,

for every j, j′ ∈ [[n]].

Proof. By definition, F is a set of rank-l orthogonal projections that can be regarded
as diagonal matrices when represented in the basis B. The mapping Pj �→ Vj :=√

m
l(m−l)(Pj − l

mIm) embeds the projections into the real diagonal matrices with

zero trace. This implies dim
(
span {Vj}nj=1

)
≤ m− 1. The identity for the Hilbert-

Schmidt inner products follows directly from the definition of {Vj}nj=1. �

In this special case, the Rankin bound can be expressed in terms of the subsets
indexing the coordinate projections, because tr(PJPJ ′) = |J ∩J ′| for any J ,J ′ ⊂
[[m]].

Corollary 3.9. If S is a collection of n subsets of [[m]] for which n > m and each
J ∈ S has size |J | = l, then

max
J ,J ′∈S,J �=J ′

|J ∩ J ′| ≥ l2

m
.

Moreover, if n = 2(m−1) and equality holds in this bound, then S can be partitioned
into m− 1 disjoint pairs of subsets of size m/2.

A more general bound of this type has been derived by Johnson in the context of
constant-weight codes [20, inequality (14)]. The case of equality was also known to
Levenshtĕın as a special case of a Delsarte code among the constant-weight codes of
sizem(m−1)/l = 2(m−1) and minimum Hamming distance 2(l−1)(m−l)/(m−2) =
l; see [25, Table 8.4, p. 63].

In light of Corollary 3.9 and Proposition 3.7, we pursue the idea of generat-
ing tight, orthoplex-bound achieving fusion frames by using coordinate projections
from maximal sets of mutually unbiased bases, which are sets of mutually unbiased
bases that achieve the cardinality bound in Theorem 3.2. In order to construct an
orthoplex-bound achieving fusion frame, we need n > dF(m) + 1 subspaces. Thus,
given a maximal set of mutually unbiased bases, we need a sufficient number of
coordinate projections per basis with low Hilbert-Schmidt inner products. In order
to bound the inner products between coordinate projections corresponding to a
given orthonormal basis, the intersection of any two different index sets J and J ′

must have a small intersection, which we call a cohesiveness bound.

Definition 3.10. Let S be a collection of subsets of [[m]], each J ∈ S of size l. We
say that S is c-cohesive if there exists c > 0 such that max

J ,J ′∈S

J �=J ′

|J ∩ J ′| ≤ c. If S is

l2/m-cohesive and |S| = 2(m− 1), then it is maximally orthoplectic.

Theorem 3.11. Let S be an l2/m-cohesive collection of subsets of [[m]], where each
J ∈ S is of size l, let {Bk}k∈K be a set of mutually unbiased bases for Fm, where
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|K||S| > dF(m) + 1 and Bk =
{
b
(k)
j

}m

j=1
for each k ∈ K, and let n = |K||S|. If

the set F =
{
P

(k)
J : k ∈ K,J ∈ S

}
forms an (n, l,m)-fusion frame, where each P

(k)
J

denotes the J -coordinate projection with respect to Bk, then F is an orthoplex-bound
achieving (n, l,m)-fusion frame. Moreover, if ([[m]], S) is maximally orthoplectic and
if |K| = kF(m), then the set F is a tight, maximal orthoplectic fusion frame.

Proof. The cardinality requirement in the definition of orthoplex-bound achieving
fusion frames is satisfied since n > dF(m) + 1. Let k, k′ ∈ K. If k �= k′, then

tr
(
P

(k)
J P

(k′)
J ′

)
=

l2

m

for every J ,J ′ ∈ S by Proposition 3.7. If k = k′, then the fact that S is l2/m-
cohesive yields

max
J ,J ′∈S

J �=J ′

tr
(
P

(k)
J P

(k)
J ′

)
= max

J ,J ′∈S

J �=J ′

|J ∩ J ′| ≤ l2

m
,

which shows that F is an orthoplex-bound achieving fusion frame. Finally, if S is
maximally orthoplectic and the set of mutually unbiased bases is maximal, then
Corollary 3.9 shows that the coordinate projections belonging to each basis sum to
a multiple of the identity, so the corresponding fusion frame is tight. Hence, the
union of all the coordinate projections belonging to the mutually unbiased bases
forms a set of n = kF(m) (2m− 2) = 2dF(m) orthogonal projections whose pairwise
inner products are bounded by l2/m, which shows that F is a maximal orthoplectic
fusion frame. �

Following Zauner’s ideas, we repeat the study of design properties for the special
case of a fusion frame formed by coordinate projections. To this end, we define the
diagonal coherence tensor,

Dt,l,m =
1(
m
l

) ∑
J∈J

D⊗t
J ,

where J is the set of all subsets of [[m]] of size l, and, for each J ∈ J, DJ is the J -
coordinate projection with respect to the canonical basis. An elementary counting
argument shows that D1,l,m = l

mIm and

D2,l,m =
l

m

m∑
j=1

Ej,j ⊗ Ej,j +
l(l − 1)

m(m− 1)

m∑
j,j′=1
j �=j′

Ej,j ⊗ Ej′,j′ ,

where {ej}mj=1 denotes the canonical basis for Fm and Ej,j′ = ej ⊗ e∗j′ for each

j, j′ ∈ [[m]]. By squaring the diagonal entries and summing, we compute

tr(D2
2,l,m) = m

l2

m2
+m(m− 1)

l2(l − 1)2

m2(m− 1)2
=

l2

m(m− 1)
(l2 − 2l +m) .

With this notation, the combinatorial notion of a block t-design is characterized
conveniently.

Definition 3.12. A t-(m, l, λ) block design S is a collection of subsets of [[m]]
called blocks, where each block J ∈ S has cardinality l, such that every subset
of [[m]] with cardinality t is contained in exactly λ blocks. When the parameters
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are not important or implied by the context, then S is also referred to as a block
t-design. The special case of a block 2-design is also referred to as a balanced
incomplete block design.

Theorem 3.13 (Zauner [39, Theorem 1.12]). A collection S of subsets of [[m]] where
each J ∈ S has size l is a t-(m, l, λ) block design if and only if

1

|S|
∑
J∈S

D⊗t
J = Dt,l,m,

with λ = |S| tr
(
Dt,l,m

⊗t
s=1 Es,s

)
, where {ej}mj=1 denotes the canonical basis for

Fm and Es,s = es ⊗ e∗s for each s ∈ [[m]].

In the special case where t = 1 in Theorem 3.13, we obtain the correspondence
between the block 1-design property of S and tightness of the corresponding fusion
frame of coordinate projections.

Corollary 3.14. If B is any orthonormal basis for Fm, then a set of coordinate
projections {PJ }J∈S with respect to B is a tight fusion frame if and only if S is a
1-design.

Given any positive integers l and m with l ≤ m, one can choose the set of all
blocks of size l from [[m]] to form a tight fusion frame in this way.

Example 3.15. If S = {J : J ⊂ [[m]], |J | = l}, the set of all blocks of size l,
then S forms a t-(m, l, λ) block design. Given an orthonormal basis B for Fm, the
corresponding set of coordinate projections with respect to B, F = {PJ }J∈S forms
a tight (n, l,m)-fusion frame by Corollary 3.14, where n = |S| =

(
m
l

)
.

With the same proof as in Theorem 2.9, we obtain an analogous characterization
of block t-designs.

Corollary 3.16. Given a collection S of subsets of [[m]], where each J ∈ S has size
l,

1

|S|2
∑

J ,J ′∈S

|J ∩ J ′|t ≥ tr(D2
t,l,m),

and equality holds if and only if S is a t-(m, l, λ) block design with λ as in Theo-
rem 3.13.

Levenshtĕın’s classical bounds in polynomial metric spaces [25] show that when
S is chosen to be a maximal constant-weight Johnson code with weight l = m/2 and
size 2m−2, it is a 2-(m,m/2,m/2−1) block design. In more detail, S has minimal
Hamming distance 2l−2l2/m = m/2, Levenshtĕın’s standard substitution function
is linear, and his dimensionality constants are r0 = 1 and r1 =

(
2m−2

1

)
−1 = 2m−3.

Hence, equality is achieved in bound (1.24) of [25], from which it follows that bound
(1.26) is saturated as well, implying that S is a 2-design.

We can now deduce that subsets of coordinate projections in a maximal ortho-
plectic fusion frame constructed from a maximal set of mutually unbiased bases
realize block 2-designs. For the sake of keeping the exposition self-contained, we
have chosen to incorporate the combinatorial part of the proof in the form of the
tensor-based characterization in Corollary 3.16.
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Theorem 3.17. Let {Bk}k∈K be a maximal set of mutually unbiased bases for Fm,
so |K| = kF(m), and let S ⊂ [[m]] be a collection of subsets, each with size l. If

F =
{
P

(k)
J : k ∈ K,J ∈ S

}
is a (2dF(m),m/2,m)-fusion frame, where each P

(k)
J is

the J -coordinate projection with respect to Bk, then F is a Grassmannian 2-design
if and only if S is a 2-(m,m/2,m/2− 1) block design.

Proof. First, let F be a Grassmannian 2-design. By Corollary 2.1 and the choice
of l = m/2,

∑
k,k′∈K

∑
J ,J ′∈S

(
tr(P

(k)
J P

(k′)
J ′ )

)2

=
m2dF(m)(dF(m) + 1)

4
.

From the assumption on the size kF(m) = |K| and dF(m) = (m − 1)kF(m), the
set S has size |S| = 2(m − 1). Since the orthormal bases are unitarily equivalent
and each pair of them is mutually unbiased, we can obtain the sum for the squared
Hilbert-Schmidt inner products belonging to one basis,

∑
J ,J ′∈S

(
tr(P

(k)
J P

(k)
J ′ )

)2

=
m2dF(m)(dF(m) + 1)

4kF(m)
− (kF(m)− 1)4(m− 1)2

m2

16

=
(m− 1)m2

4

(
kF(m)(m− 1) + 1− (kF(m)− 1)(m− 1)

)
=

(m− 1)m3

4
.

The average of the Hilbert-Schmidt inner products of the |S| = 2(m−1) coordinate
projections belonging to each basis is then

1

|S|2
∑

J ,J ′∈S

(
tr(P

(k)
J P

(k)
J ′ )

)2

=
1

|S|

(
l2 + (n− 2)

l4

m2

)
.

Specializing the expression tr
(
D2

2,l,m

)
= l2(l2 − 2l + m)/m(m − 1) to l = m/2

shows that equality holds in Corollary 3.16 for t = 2, so S is a block 2-design. The

parameter of the design then follows from λ = |S| l(l−1)
m(m−1) = m/2− 1.

Conversely, if S is a 2-(m,m/2,m/2 − 1) block design, then equality holds in
the inequality in Corollary 3.16. Since the squared inner product between any two
coordinate projections belonging to different bases equals l4/m2, the lower bound
from Corollary 3.16 is equivalent to a lower bound for the squared inner products
among the coordinate projections belonging to all mutually unbiased bases, and
both bounds are saturated. Using the preceding two identities shows that this
implies that equality holds in the inequality in Theorem 2.9 and hence F is a
Grassmannian 2-design. �

4. A family of maximal orthoplectic fusion frames

In this section, we construct a family of {0, 1}-matrices, {Sr}r∈N, and show that
they generate maximally orthoplectic block 1-designs and therefore generate max-
imal orthoplectic fusion frames by Theorem 3.11. Consequently, by Theorem 3.17
they are 2-designs. We give an independent proof of this fact to illustrate the
rigidity in the construction of these matrices.

We recall from Corollary 2.7 that a necessary condition for the existence of a
maximal orthoplectic fusion frame is that the subspace dimension is l = m

2 . In
order to exploit the existence of maximal sets of mutually unbiased bases in prime
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power dimensions, it is natural to focus on the case where m is a power of two. We
construct the block 1-designs in terms of the associated incidence matrices.

Definition 4.1. The incidence matrix S associated with a sequence S = {J1,
J2, . . . ,Jn} of subsets of [[m]] is an m× n matrix whose (a, b)-th entry is

Sa,b =

{
1, a ∈ Jb,
0, otherwise.

Let S1 = I2. For r ∈ N, let Fr = I(2r−1)⊗
(

0 1
1 0

)
and let 1r denote the 2r×1

matrix of all ones and let 0r be the 2r × 1 matrix of all zeros. For r ≥ 2, define Sr

recursively and blockwise by

Sr =
(
B(i)

r B(ii)
r B(iii)

r

)
,

where

B(i)
r =

(
1r−1 0r−1

0r−1 1r−1

)
, B(ii)

r =

(
Sr−1

Sr−1

)
, and B(iii)

r =

(
Sr−1

Sr−1Fr−1

)
.

If cr and ρr denote the number of columns and rows of St, respectively, then we
have the recurrence relation

c1 = 2, cr+1 = 2cr + 2,

which has the solution cr = 2r+1 − 2. By the construction of Sr, ρr+1 = 2ρr = 2r,
so Sr is a 2r × (2r+1 − 2) matrix.

Furthermore, if c̃
(j)
r denotes the number of ones in the jth column of Sr and

ρ̃
(j)
r denotes the number of ones in the j-th row of Sr, then it is straightforward to

verify, by construction, that both of these values are independent of j. In particular,

c̃
(j)
r = 2r−1 for each j and ρ̃

(j)
r = 2r − 1 for each j in the index set of columns or

rows, respectively. We record this as a lemma.

Lemma 4.1. Each column of Sr has exactly 2r−1 ones among its entries, and each
row of Sr has exactly 2r − 1 ones among its entries.

Next, we examine the inner products among the columns {sj}j∈[[cr ]], of Sr, noting
that these are encoded in the matrix

S∗
rSr = (〈sb, sa〉)cra,b=1 .

We write Jx,y for the x× y matrix whose entries all equal 1.

Lemma 4.2. For each r ∈ N, the matrix G = S∗
rSr is of the form

G = 2r−2 ·
[
Jcr,cr + Icr/2 ⊗

(
1 −1
−1 1

)]
.

Proof. We prove the claimed form of G by induction. The claim is true for r = 1,
so let r > 1, and assume the claim holds for r − 1.

Using the block structure in the definition of Sr, we have

G =

⎛
⎜⎝

(
B

(i)
r

)∗
B

(i)
r

(
B

(i)
r

)∗
B

(ii)
r

(
B

(i)
r

)∗
B

(iii)
r(

B
(ii)
r

)∗
B

(i)
r

(
B

(ii)
r

)∗
B

(ii)
r

(
B

(ii)
r

)∗
B

(iii)
r(

B
(iii)
r

)∗
B

(i)
r

(
B

(iii)
r

)∗
B

(ii)
r

(
B

(iii)
r

)∗
B

(iii)
r

⎞
⎟⎠ .
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A direct application of the definition of B
(i)
r and Lemma 4.1 gives the values of the

first row and first column of blocks in G:

G =

⎛
⎝

2r−1 · I2 2r−2 · J2,cr−1 2r−2 · J2,cr−1

2r−2 · Jcr−1,2

(
B

(ii)
r

)∗
B

(ii)
r

(
B

(ii)
r

)∗
B

(iii)
r

2r−2 · Jcr−1,2

(
B

(iii)
r

)∗
B

(ii)
r

(
B

(iii)
r

)∗
B

(iii)
r

⎞
⎠.

A direct application of the induction hypothesis gives us the center block,
(
B

(ii)
r

)∗
B

(ii)
r = S∗

r−1Sr−1 + S∗
r−1Sr−1 = 2r−2

[
Jcr−1,cr−1

+ I(cr−1/2) ⊗
(

1 −1
−1 1

)]
.

Next, observe that by the induction assumption and definition of Fr−1, we have

S∗
r−1Sr−1Fr−1 = 2r−3

[
Jcr−1,cr−1

+ Icr/2 ⊗
(

1 −1
−1 1

)] [
Icr−1/2 ⊗

(
0 1
1 0

)]

= 2r−3

[
Jcr−1,cr−1

+ Icr/2 ⊗
(

1 −1
−1 1

)]
,

so it follows that(
B(ii)

r

)∗
B(iii)

r = S∗
r−1Sr−1 + S∗

r−1Sr−1Fr−1 = 2r−2Jcr−1,cr−1
,

and, by symmetry, we also have(
B(iii)

r

)∗
B(ii)

r = 2r−2Jcr−1,cr−1
.

Finally, observe that F ∗
r−1S

∗
r−1Sr−1Fr−1 = S∗

r−1Sr−1, so(
B(iii)

r

)∗
B(iii)

r = S∗
r−1Sr−1 + F ∗

r−1S
∗
r−1Sr−1Fr−1

= 2r−2

[
Jcr−1,cr−1

+ Icr−1/2 ⊗
(

1 −1
−1 1

)]
.

This establishes that the nine blocks match the claimed form of G. �

For each r ∈ N, we let Sr be the set of blocks in [[m]] defined in accordance with
the columns of Sr by Jb = {a : (Sr)a,b = 1} , where (Sr)a,b denotes the (a, b)-th
entry of St.

Finally, we state the main theorem of this section, which summarizes the con-
struction of maximal orthoplectic tight fusion frames.

Theorem 4.2. Let r ∈ N, where r is even if F = R. If m = 2r and {Bk}k∈K is a
maximal collection of mutually unbiased bases for Fm, so |K| = kF(m), then F ={
P

(k)
J : k ∈ K,J ∈ Sr

}
forms a tight, maximal orthoplectic fusion frame, where

each P
(k)
J is the J -coordinate projection with respect to Bk.

Proof. It follows directly from Lemma 4.1 that Sr is a 1-(m, l,m− 1) block design,
where m = 2r, l = 2r−1, and |Sr| = cr = 2r+1 − 2. If {sj}j∈[[cr ]] denotes the
columns of Sr, then the Gram matrix S∗

rSr encodes the intersections of the blocks
by 〈sa, sb〉 = |Ja ∩ Jb|, so Lemma 4.2 implies that max

a �=b
|Ja ∩ Jb| = 2r−2. This

means that Sr is c-cohesive, where c =
l2

m = m
4 , and since |Sr| = 2r+1−2 = 2(m−1),

we conclude that Sr is a maximally orthoplectic block 1-design.
Finally, using a maximal set of mutually unbiased bases {Bk}k∈K and the maxi-

mally orthoplectic block 1-(m,m/2,m−1) design Sr, Theorem 3.11 shows that the
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set F = {P (k)
J : k ∈ K, J ∈ Sr} forms a maximal orthoplectic fusion frame, where

each P
(k)
J is the J -coordinate projection with respect to Bk. �

Although Lemma 4.2 only shows that Sr is an l2/m-cohesive block 1-design, by
the maximality of F , Theorem 3.17 implies that Sr is a block 2-design.

Corollary 4.3. The block set Sr is a 2-(2r, 2r−1, 2r−1 − 1) block design.

The 2-design property of Sr does not appear explicitly in the proof of Theo-
rem 4.2. Nevertheless, the additional, implicit structural constraints were useful
for finding the incidence matrix Sr, which is central to our construction.
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